Exploring Salivary Epithelial Dysfunction in Sjögren’s Disease
Abstract
:1. Epidemiology and Pathology of Sjögren’s Disease
2. Methodology and Study Design
3. Significance of the Salivary Epithelium in SjD Development and Challenges in Targeting the Pre-Symptomatic Phase
3.1. SjD Pathogenic Processes during Subclinical/Pre-Symptomatic and Clinical Phases
- The pathogenesis of SjD arises from a complex etiology where several possible predisposing factors have been linked to its development.
- Combinations of genetic and environmental perturbations eventually lead to loss of salivary epithelium integrity and, hence, acini structures.
- Homeostatic disruption by etiological factors promotes local inflammatory processes that are associated with repair-signaling pathways.
- Repair of the glandular epithelium is mediated through epithelial–mesenchymal transition (EMT), where acinar and ductal cells lose their epithelial characteristics and take on a mesenchymal-like phenotype. It is unclear at which stages increased antigen expression or recognition by immune cells occurs predominantly.
- Extracellular matrix (ECM) is damaged through enhanced expression and/or activity of proteases, including matrix metalloproteinase-9 (MMP9), providing an inadequate foundation for the re-epithelization by resident stem/progenitor cells relying on signaling molecules from the ECM. Resident stem cells/progenitor cells are unable to re-epithelize due to constant ECM dysregulation from EMT.
- Disorganization and disrepair of the salivary epithelium are mirrored by the acinar and ductal cell populations, exhibiting changes to aquaporin localization and/or expression, altered cell volume, and improper intracellular calcium signaling (6a), resulting in functional alterations of the secretory cells involved in chronic glandular repair (6b).
- Eventually, mechanisms dictating the chronic state of dysfunctional repair within the salivary epithelium contribute to SjD pathogenesis and lead to substantial infiltration by immune cells into the glandular tissue.
3.2. Challenges in Targeting the Pre-Symptomatic Phase during SjD Development
4. Loss of Structural Integrity and Salivary Hypofunction of Acini Structures in SjD
4.1. Loss of ECM Integrity in SjD
4.2. Aberrant Expression of EMT-Associated Genes in the Salivary Epithelium of SjD
4.3. Dysregulation of ETS1 and MMP9 Expression in SjD Salivary Glands
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noll, B. Dissecting the Salivary Gland: Epithelial-Centered Dysfunction in Primary Sjögren’s Syndrome. Ph.D. Thesis, The University of North Carolina at Charlotte, Charlotte, NC, USA, 2022. [Google Scholar]
- Parisis, D.; Chivasso, C.; Perret, J.; Soyfoo, M.S.; Delporte, C. Current State of Knowledge on Primary Sjögren’s Syndrome, an Autoimmune Exocrinopathy. J. Clin. Med. 2020, 9, 2299. [Google Scholar] [CrossRef] [PubMed]
- Seror, R.; Nocturne, G.; Mariette, X. Current and future therapies for primary Sjögren syndrome. Nat. Rev. Rheumatol. 2021, 17, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.; Alliende, C.; Aguilera, S.; Kwon, Y.J.; Leyton, L.; Martínez, B.; Leyton, C.; Pérez, P.; González, M.J. Basal lamina disorganisation of the acini and ducts of labial salivary glands from patients with Sjogren’s syndrome: Association with mononuclear cell infiltration. Ann. Rheum. Dis. 2006, 65, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Holdgate, N.; St Clair, E.W. Recent advances in primary Sjogren’s syndrome. F1000Research 2016, 5, F1000 Faculty Rev-1412. [Google Scholar] [CrossRef] [PubMed]
- Both, T.; Dalm, V.A.; van Hagen, P.M.; van Daele, P.L. Reviewing primary Sjögren’s syndrome: Beyond the dryness—From pathophysiology to diagnosis and treatment. Int. J. Med. Sci. 2017, 14, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Alunno, A.; Leone, M.C.; Bartoloni, E.; Gerli, R.; Carubbi, F. Novel insights on lymphoma and lymphomagenesis in primary Sjögren’s Syndrome. Panminerva Med. 2021, 63, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Risselada, A.P.; Kruize, A.A.; Goldschmeding, R.; Lafeber, F.P.; Bijlsma, J.W.; van Roon, J.A. The prognostic value of routinely performed minor salivary gland assessments in primary Sjögren’s syndrome. Ann. Rheum. Dis. 2014, 73, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Alunno, A.; Leone, M.C.; Giacomelli, R.; Gerli, R.; Carubbi, F. Lymphoma and Lymphomagenesis in Primary Sjögren’s Syndrome. Front. Med. 2018, 5, 102. [Google Scholar] [CrossRef] [PubMed]
- Kassan, S.S.; Moutsopoulos, H.M. Clinical manifestations and early diagnosis of Sjögren syndrome. Arch. Intern. Med. 2004, 164, 1275–1284. [Google Scholar] [CrossRef]
- Gilboe, I.M.; Kvien, T.K.; Uhlig, T.; Husby, G. Sicca symptoms and secondary Sjögren’s syndrome in systemic lupus erythematosus: Comparison with rheumatoid arthritis and correlation with disease variables. Ann. Rheum. Dis. 2001, 60, 1103–1109. [Google Scholar] [CrossRef]
- Daniels, T.E.; Cox, D.; Shiboski, C.H.; Schiødt, M.; Wu, A.; Lanfranchi, H.; Umehara, H.; Zhao, Y.; Challacombe, S.; Lam, M.Y.; et al. Sjögren’s International Collaborative Clinical Alliance Research Groups. Associations between salivary gland histopathologic diagnoses and phenotypic features of Sjögren’s syndrome among 1,726 registry participants. Arthritis Rheum. 2011, 63, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Abd-Allah, N.M.; Hassan, A.A.; Omar, G.; Hamdy, M.; Abdelaziz, S.T.A.; Abd El Hamid, W.M.; Moussa, R.A. Evaluation of patients with dry eye for the presence of primary or secondary Sjögren’s syndrome. Clin. Ophthalmol. 2019, 13, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Wise, C.M.; Woodruff, R.D. Minor salivary gland biopsies in patients investigated for primary Sjögren’s syndrome. A review of 187 patients. J. Rheumatol. 1993, 20, 1515–1518. [Google Scholar] [PubMed]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. International Sjögren’s Syndrome Criteria Working Group. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheum. 2017, 69, 35–45. [Google Scholar] [CrossRef]
- Risselada, A.P.; Looije, M.F.; Kruize, A.A.; Bijlsma, J.W.; van Roon, J.A. The role of ectopic germinal centers in the immunopathology of primary Sjögren’s syndrome: A systematic review. Semin. Arthritis Rheum. 2013, 42, 368–376. [Google Scholar] [CrossRef]
- Carubbi, F.; Alunno, A.; Cipriani, P.; Bartoloni, E.; Baldini, C.; Quartuccio, L.; Priori, R.; Valesini, G.; De Vita, S.; Bombardieri, S.; et al. A retrospective, multicenter study evaluating the prognostic value of minor salivary gland histology in a large cohort of patients with primary Sjögren’s syndrome. Lupus 2015, 24, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Kakugawa, T.; Sakamoto, N.; Ishimoto, H.; Shimizu, T.; Nakamura, H.; Nawata, A.; Ito, C.; Sato, S.; Hanaka, T.; Oda, K.; et al. Lymphocytic focus score is positively related to airway and interstitial lung diseases in primary Sjögren’s syndrome. Respir. Med. 2018, 137, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Li, C.; Qiang, L.; He, J.; Li, Z.; Hua, H. Role of salivary anti-SSA/B antibodies for diagnosing primary Sjögren’s syndrome. Med. Oral Patol. Oral Cir. Bucal 2015, 20, e156–e160. [Google Scholar] [CrossRef] [PubMed]
- Radfar, L.; Kleiner, D.E.; Fox, P.C.; Pillemer, S.R. Prevalence and clinical significance of lymphocytic foci in minor salivary glands of healthy volunteers. Arthritis Rheum. 2002, 47, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.B.; Vissink, A.; Limesand, K.H.; Reyland, M.E. Salivary Gland Hypofunction and Xerostomia in Head and Neck Radiation Patients. J. Natl. Cancer Inst. Monogr. 2019, 53, lgz016. [Google Scholar] [CrossRef]
- Mercadante, V.; Jensen, S.B.; Smith, D.K.; Bohlke, K.; Bauman, J.; Brennan, M.T.; Coppes, R.P.; Jessen, N.; Malhotra, N.K.; Murphy, B.; et al. Salivary Gland Hypofunction and/or Xerostomia Induced by Nonsurgical Cancer Therapies: ISOO/MASCC/ASCO Guideline. J. Clin. Oncol. 2021, 39, 2825–2843. [Google Scholar] [CrossRef]
- Garreto, L.; Charneau, S.; Mandacaru, S.C.; Nóbrega, O.T.; Motta, F.N.; de Araújo, C.N.; Tonet, A.C.; Modesto, F.M.B.; Paula, L.M.; de Sousa, M.V.; et al. Mapping Salivary Proteases in Sjögren’s Syndrome Patients Reveals Overexpression of Dipeptidyl Peptidase-4/CD26. Front. Immunol. 2021, 12, 686480. [Google Scholar] [CrossRef] [PubMed]
- Theander, E.; Jonsson, R.; Sjöström, B.; Brokstad, K.; Olsson, P.; Henriksson, G. Prediction of Sjögren’s Syndrome Years Before Diagnosis and Identification of Patients with Early Onset and Severe Disease Course by Autoantibody Profiling. Arthritis Rheumatol. 2015, 67, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, A.; Kurien, B.T.; Scofield, R.H. Autoantibodies in Sjögren’s Syndrome. Rheum. Dis. Clin. North Am. 2016, 42, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Verstappen, G.M.; Pringle, S.; Bootsma, H.; Kroese, F.G.M. Epithelial-immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat. Rev. Rheumatol. 2021, 17, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Seror, R.; Bowman, S.J.; Brito-Zeron, P.; Theander, E.; Bootsma, H.; Tzioufas, A.; Gottenberg, J.E.; Ramos-Casals, M.; Dörner, T.; Ravaud, P.; et al. EULAR Sjögren’s syndrome disease activity index (ESSDAI): A user guide. RMD Open 2015, 1, e000022. [Google Scholar] [CrossRef]
- Nikolov, N.P.; Illei, G.G. Pathogenesis of Sjögren’s syndrome. Curr. Opin. Rheumatol. 2009, 21, 465–470. [Google Scholar] [CrossRef]
- Shah, N.R.; Noll, B.D.; Padilla, R.J.; Brennan, M.T.; Mougeot, F.B.; Mougeot, J.C. Expression of ETS1 and LEF1 in salivary glands of Sjögren syndrome patients. Oral Dis. 2019, 25, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Mignogna, M.D.; Fedele, S.; Lo Russo, L.; Lo Muzio, L.; Wolff, A. Sjögren’s syndrome: The diagnostic potential of early oral manifestations preceding hyposalivation/xerostomia. J. Oral Pathol. Med. 2005, 34, 1–6. [Google Scholar] [CrossRef]
- Fujita-Yoshigaki, J.; Matsuki-Fukushima, M.; Sugiya, H. Inhibition of Src and p38 MAP kinases suppresses the change of claudin expression induced on dedifferentiation of primary cultured parotid acinar cells. Am. J. Physiol. Cell Physiol. 2008, 294, C774–C785. [Google Scholar] [CrossRef]
- Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a005058. [Google Scholar] [CrossRef]
- Pérez, P.; Kwon, Y.J.; Alliende, C.; Leyton, L.; Aguilera, S.; Molina, C.; Labra, C.; Julio, M.; Leyton, C.; González, M.J. Increased acinar damage of salivary glands of patients with Sjögren’s syndrome is paralleled by simultaneous imbalance of matrix metalloproteinase 3/tissue inhibitor of metalloproteinases 1 and matrix metalloproteinase 9/tissue inhibitor of metalloproteinases 1 ratios. Arthritis Rheum. 2005, 52, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.P.; Yamamoto, H.; Peck, A.B.; Humphreys-Beher, M.G. Genetically programmed development of salivary gland abnormalities in the NOD (nonobese diabetic)-scid mouse in the absence of detectable lymphocytic infiltration: A potential trigger for sialoadenitis of NOD mice. Clin. Immunol. Immunopathol. 1996, 79, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Thorlacius, G.E.; Björk, A.; Wahren-Herlenius, M. Genetics and epigenetics of primary Sjögren syndrome: Implications for future therapies. Nat. Rev. Rheumatol. 2023, 19, 288–306. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.E.; Weinberg, S.H.; Lemmon, C.A. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Front. Cell Dev. Biol. 2019, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, M.; Kawakita, T.; Maida, Y.; Kamoi, M.; Ogawa, Y.; Shimmura, S.; Masutomi, K.; Tsubota, K. Comparison of telomere length and association with progenitor cell markers in lacrimal gland between Sjögren syndrome and non-Sjögren syndrome dry eye patients. Mol. Vis. 2011, 17, 1397–1404. [Google Scholar] [PubMed]
- Tandon, M.; Perez, P.; Burbelo, P.D.; Calkins, C.; Alevizos, I. Laser microdissection coupled with RNA-seq reveal cell-type and disease-specific markers in the salivary gland of Sjögren’s syndrome patients. Clin. Exp. Rheumatol. 2017, 35, 777–785. [Google Scholar] [PubMed]
- Bharaj, T.K.; Aqrawi, L.A.; Fromreide, S.; Jonsson, R.; Brun, J.G.; Appel, S.; Skarstein, K. Inflammatory Stratification in Primary Sjögren’s Syndrome Reveals Novel Immune Cell Alterations in Patients’ Minor Salivary Glands. Front. Immunol. 2021, 12, 701581. [Google Scholar] [CrossRef] [PubMed]
- Shiboski, C.H.; Baer, A.N.; Shiboski, S.C.; Lam, M.; Challacombe, S.; Lanfranchi, H.E.; Schiødt, M.; Shirlaw, P.; Srinivasan, M.; Umehara, H.; et al. Sjögren’s International Collaborative Clinical Alliance Research Groups. Natural History and Predictors of Progression to Sjögren’s Syndrome Among Participants of the Sjögren’s International Collaborative Clinical Alliance Registry. Arthritis Care Res. 2018, 70, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Sebastian, M.; Misterska-Skóra, M.; Woytala, P.; Jakuszko, K.; Wiland, P. How to Distinguish Patients with pSS among Individuals with Dryness without Invasive Diagnostic Studies. J. Immunol. Res. 2018, 2018, 1060421. [Google Scholar] [CrossRef]
- Pertovaara, M.; Korpela, M.; Uusitalo, H.; Pukander, J.; Miettinen, A.; Helin, H.; Pasternack, A. Clinical follow up study of 87 patients with sicca symptoms (dryness of eyes or mouth, or both). Ann. Rheum. Dis. 1999, 58, 423–427. [Google Scholar] [CrossRef]
- Soyfoo, M.S.; Nicaise, C. Pathophysiologic role of Interleukin-33/ST2 in Sjögren’s syndrome. Autoimmun. Rev. 2021, 20, 102756. [Google Scholar] [CrossRef] [PubMed]
- Verstappen, G.M.; Gao, L.; Pringle, S.; Haacke, E.A.; van der Vegt, B.; Liefers, S.C.; Patel, V.; Hu, Y.; Mukherjee, S.; Carman, J.; et al. The Transcriptome of Paired Major and Minor Salivary Gland Tissue in Patients with Primary Sjögren’s Syndrome. Front. Immunol. 2021, 12, 681941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, Y.; Cheng, X.; Fu, X.; Du, W.; Feng, Y.; Jia, J.; Yang, X.; Xiao, G.; Zheng, Z.; et al. Epithelial Cell Adhesion Molecule in Primary Sjögren’s Syndrome Patients: Characterization and Evaluation of a Potential Biomarker. J. Immunol. Res. 2019, 2019, 3269475. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.R.; Erler, J.T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis. Model. Mech. 2011, 4, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, S.J.; Larsen, M.; DeVine, T. Extracellular matrix and growth factors in salivary gland development. Front. Oral Biol. 2010, 14, 48–77. [Google Scholar] [CrossRef] [PubMed]
- Barrera, M.J.; Bahamondes, V.; Sepúlveda, D.; Quest, A.F.; Castro, I.; Cortés, J.; Aguilera, S.; Urzúa, U.; Molina, C.; Pérez, P.; et al. Sjögren’s syndrome and the epithelial target: A comprehensive review. J. Autoimmun. 2013, 42, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Lisi, S.; Ribatti, D. The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochem. Cell Biol. 2018, 150, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Schenke-Layland, K.; Xie, J.; Angelis, E.; Starcher, B.; Wu, K.; Riemann, I.; MacLellan, W.R.; Hamm-Alvarez, S.F. Increased degradation of extracellular matrix structures of lacrimal glands implicated in the pathogenesis of Sjögren’s syndrome. Matrix Biol. 2008, 27, 53–66. [Google Scholar] [CrossRef]
- Wu, D.; Witt, R.L.; Harrington, D.A.; Farach-Carson, M.C. Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated α1β1 Integrin-Mediated Motility. Front. Cell. Dev. Biol. 2019, 7, 224. [Google Scholar] [CrossRef]
- Chen, M.; Sinha, M.; Luxon, B.A.; Bresnick, A.R.; O’Connor, K.L. Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J. Biol. Chem. 2009, 284, 1484–1494. [Google Scholar] [CrossRef]
- Velozo, J.; Aguilera, S.; Alliende, C.; Ewert, P.; Molina, C.; Pérez, P.; Leyton, L.; Quest, A.; Brito, M.; González, S.; et al. Severe alterations in expression and localisation of {alpha}6{beta}4 integrin in salivary gland acini from patients with Sjogren syndrome. Ann. Rheum. Dis. 2009, 68, 991–996. [Google Scholar] [CrossRef]
- Sisto, M.; Lorusso, L.; Tamma, R.; Ingravallo, G.; Ribatti, D.; Lisi, S. Interleukin-17 and -22 synergy linking inflammation and EMT-dependent fibrosis in Sjögren’s syndrome. Clin. Exp. Immunol. 2019, 198, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Ewert, P.; Aguilera, S.; Alliende, C.; Kwon, Y.J.; Albornoz, A.; Molina, C.; Urzúa, U.; Quest, A.F.; Olea, N.; Pérez, P.; et al. Disruption of tight junction structure in salivary glands from Sjögren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum. 2010, 62, 1280–1289. [Google Scholar] [CrossRef]
- Suh, Y.; Yoon, C.H.; Kim, R.K.; Lim, E.J.; Oh, Y.S.; Hwang, S.G.; An, S.; Yoon, G.; Gye, M.C.; Yi, J.M.; et al. Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 2013, 32, 4873–4882. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Zhang, J.; Jamaluddin, M.; Zhang, Y.; Widen, S.G.; Sun, H.; Brasier, A.R.; Zhao, Y. Type II Epithelial-Mesenchymal Transition Upregulates Protein N-Glycosylation to Maintain Proteostasis and Extracellular Matrix Production. J. Proteome Res. 2019, 18, 3447–3460. [Google Scholar] [CrossRef] [PubMed]
- Leehan, K.M.; Pezant, N.P.; Rasmussen, A.; Grundahl, K.; Moore, J.S.; Radfar, L.; Lewis, D.M.; Stone, D.U.; Lessard, C.J.; Rhodus, N.L.; et al. Minor salivary gland fibrosis in Sjögren’s syndrome is elevated, associated with focus score and not solely a consequence of aging. Clin. Exp. Rheumatol. 2018, 36 (Suppl. S112), 80–88. [Google Scholar] [PubMed]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef]
- Shah, N.R.; Noll, B.D.; Stevens, C.B.; Brennan, M.T.; Mougeot, F.B.; Mougeot, J.C. Biosemantics guided gene expression profiling of Sjögren’s syndrome: A comparative analysis with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res. Ther. 2017, 19, 192. [Google Scholar] [CrossRef]
- Noll, B.; Mougeot, F.B.; Brennan, M.T.; Mougeot, J.C. Regulation of MMP9 transcription by ETS1 in immortalized salivary gland epithelial cells of patients with salivary hypofunction and primary Sjögren’s syndrome. Sci. Rep. 2022, 12, 14552. [Google Scholar] [CrossRef]
- Furlan, A.; Vercamer, C.; Desbiens, X.; Pourtier, A. Ets-1 triggers and orchestrates the malignant phenotype of mammary cancer cells within their matrix environment. J. Cell. Physiol. 2008, 215, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Rivière, E.; Chivasso, C.; Pascaud, J.; Bechara, R.; Ly, B.; Delporte, C.; Mariette, X.; Nocturne, G. Hyperosmolar environment and salivary gland epithelial cells increase extra-cellular matrix remodeling and lymphocytic infiltration in Sjögren’s syndrome. Clin. Exp. Immunol. 2023, 212, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; John, S.A.; Clements, J.L.; Percy, D.H.; Barton, K.P.; Garrett-Sinha, L.A. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int. Immunol. 2005, 17, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Jordan, N.V.; Johnson, G.L.; Abell, A.N. Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle 2011, 10, 2865–2873. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Wang, F.; Wang, X.; Yang, F.; Zhao, C.; Feng, C.; Li, T. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J. Surg. Oncol. 2020, 18, 181. [Google Scholar] [CrossRef]
Gene/Protein | Increase/Decrease or Altered Localization | Potential Significance | PMID/s |
---|---|---|---|
ETS1 | Increase | Upregulates MMP9 through transcription control by directly binding the MMP9 promoter. | 21862874; 28818099; 31165469; 36008454 |
LEF1 | Increase | Transcription factor that regulates EMT. | 21862874; 28818099; 31165469 |
MMP9 | Increase | Enhanced expression/activity can damage ECM. Early MMP9 dysregulation may occur before immune cell infiltration. | 16142742; 17689946; 23497939; 28421997; 28818099; 31165469; 36008454 |
Vimentin | Increase | Shown to be upregulated in SjD and may be an indicator of the extent of inflammation. | 21862874; 29789993; 31165469 |
TGF- β1 | Increase | Proteolytically activated by MMP9. | 21862874; 29789993 |
SMAD4 | Increase | Involves TGF-β and receptors to activate EMT leading to the activation of RAS/RAF/MEK/ERK/MAPK pathways. | 29789993 |
Type-1 Collagen | Increase | Type-1 collagen is degraded with increased degradation of lacrimal gland ECM structures, implicating a key event in SjD development. | 17689946; 19011242; 29789993; 31165469 |
SNAI1 | Increase | Factor associated with EMT expression due to inhibited epithelial cell differentiation. | 19011242; 21862874; 29789993 |
Claudin-1 | Increase, Altered Localization | Higher protein levels in salivary gland tight junctions in patients with SjD. | 20131287; 21862874; 23160379 |
Claudin-3 | Altered Localization | Shown to be redistributed to basolateral plasma membrane of SjD patients. | 20131287; 21862874 |
Claudin-4 | Increase, Altered Localization | Higher protein levels in salivary gland tight junctions in patients with SjD. | 20131287; 21862874 |
E-cadherin/CDH1 | Decrease | May cause acinar cells to detach and adopt a mesenchymal phenotype. | 21862874; 29789993; 31165469 |
Occludin | Decrease, Altered Localization | Apical domain presence of occludin is decreased in patients with SjD. | 20131287 |
ZO1 | Decrease, Altered Localization | Apical domain presence of ZO1 is decreased in patients with SjD. | 20131287 |
α6β4 integrin | Altered Localization | Detected in the cytoplasm and lateral plasma membrane in serous and mucous acini showing dramatic alterations in acini with strong basal lamina disorganization of patients with SjD. | 18625620; 19011242 |
ZEB2 | Increase | Shown to be upregulated during the initiation and progression of multiple EMT subtypes. | 21862874; 36759947 |
SLUG | Decrease | Shown to be downregulated in SGEC’s of SjD patients compared to controls. | 36759947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noll, B.; Beckman, M.; Bahrani Mougeot, F.; Mougeot, J.-L. Exploring Salivary Epithelial Dysfunction in Sjögren’s Disease. Int. J. Mol. Sci. 2024, 25, 4973. https://doi.org/10.3390/ijms25094973
Noll B, Beckman M, Bahrani Mougeot F, Mougeot J-L. Exploring Salivary Epithelial Dysfunction in Sjögren’s Disease. International Journal of Molecular Sciences. 2024; 25(9):4973. https://doi.org/10.3390/ijms25094973
Chicago/Turabian StyleNoll, Braxton, Micaela Beckman, Farah Bahrani Mougeot, and Jean-Luc Mougeot. 2024. "Exploring Salivary Epithelial Dysfunction in Sjögren’s Disease" International Journal of Molecular Sciences 25, no. 9: 4973. https://doi.org/10.3390/ijms25094973
APA StyleNoll, B., Beckman, M., Bahrani Mougeot, F., & Mougeot, J. -L. (2024). Exploring Salivary Epithelial Dysfunction in Sjögren’s Disease. International Journal of Molecular Sciences, 25(9), 4973. https://doi.org/10.3390/ijms25094973