Tunable Construction of Chiral Nematic Cellulose Nanocrystals/ZnO Films for Ultra-Sensitive, Recyclable Sensing of Humidity and Ethanol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optical Properties of the CNC/Xylose/ZnO Nanocomposite Films
2.2. Morphology of the CNC/Xylose/ZnO Nanocomposite Films
2.3. Crystal and Chemical Structures of the CNC/Xylose/ZnO Nanocomposite Films
2.4. Environmental Responses of the CNC/Xylose/ZnO Nanocomposite Films
3. Materials and Methods
3.1. Materials
3.2. Fabrication of CNC/Xylose/ZnO Nanocomposite Films
3.3. Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sang, C.; Wang, S.; Jin, X.; Cheng, X.; Xiao, H.; Yue, Y.; Han, J. Nanocellulose-Mediated Conductive Hydrogels with NIR Photoresponse and Fatigue Resistance for Multifunctional Wearable Sensors. Carbohydr. Polym. 2024, 333, 121947. [Google Scholar] [CrossRef]
- Qian, H.; Liu, J.; Wang, X.; Pei, W.; Fu, C.; Ma, M.; Huang, C. The State-of-the-Art Application of Functional Bacterial Cellulose-Based Materials in Biomedical Fields. Carbohydr. Polym. 2023, 300, 120252. [Google Scholar] [CrossRef]
- Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O.J.; Isogai, A.; Wågberg, L. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature 2021, 590, 47–56. [Google Scholar] [CrossRef]
- Wang, X.; Tang, S.; Chai, S.; Wang, P.; Qin, J.; Pei, W.; Bian, H.; Jiang, Q.; Huang, C. Preparing Printable Bacterial Cellulose Based Gelatin Gel to Promote in Vivo Bone Regeneration. Carbohydr. Polym. 2021, 270, 118342. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, H.; Wang, S.; Jiao, Y.; Sang, C.; Jiang, S.; He, S.; Mei, C.; Xu, X.; Xiao, H.; et al. Hierarchically Core-Shell Structured Nanocellulose/Carbon Nanotube Hybrid Aerogels for Patternable, Self-Healing and Flexible Supercapacitors. J. Colloid Interface Sci. 2024, 660, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Kulasinski, K.; Keten, S.; Churakov, S.V.; Derome, D.; Carmeliet, J. A Comparative Molecular Dynamics Study of Crystalline, Paracrystalline and Amorphous States of Cellulose. Cellulose 2014, 21, 1103–1116. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, L.; Dong, F.; Liu, H.; Xu, X. Room-Temperature Self-Healing Polyurethane–Cellulose Nanocrystal Composites with Strong Strength and Toughness Based on Dynamic Bonds. Carbohydr. Polym. 2023, 308, 120654. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, Y.; Jiang, F. Sustainable Isolation of Nanocellulose from Cellulose and Lignocellulosic Feedstocks: Recent Progress and Perspectives. Carbohydr. Polym. 2021, 267, 118188. [Google Scholar] [CrossRef]
- Tran, A.; Boott, C.E.; MacLachlan, M.J. Understanding the Self-Assembly of Cellulose Nanocrystals—Toward Chiral Photonic Materials. Adv. Mater. 2020, 32, 1905876. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Y.; Ye, Q.; Wu, J.; Li, Q.; Su, G.; Harper, D.P.; Du, G.; Ye, X.P.; Wang, S. Natural Cuticle-Inspired Chitin/Silk Fibroin/Cellulose Nanocrystal Biocomposite Films: Fabrication and Characterization. Mater. Res. Express 2021, 8, 36402. [Google Scholar] [CrossRef]
- Duan, C.; Cheng, Z.; Wang, B.; Zeng, J.; Xu, J.; Li, J.; Gao, W.; Chen, K. Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. Small 2021, 17, 2007306. [Google Scholar] [CrossRef] [PubMed]
- Bumbudsanpharoke, N.; Lee, W.; Chung, U.; Ko, S. Study of Humidity-Responsive Behavior in Chiral Nematic Cellulose Nanocrystal Films for Colorimetric Response. Cellulose 2018, 25, 305–317. [Google Scholar] [CrossRef]
- Wan, H.; Li, X.; Zhang, L.; Li, X.; Liu, P.; Jiang, Z.; Yu, Z.Z. Rapidly Responsive and Flexible Chiral Nematic Cellulose Nanocrystal Composites as Multifunctional Rewritable Photonic Papers with Eco-Friendly Inks. ACS Appl. Mater. Interfaces 2018, 10, 5918–5925. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhang, Y.; Zhai, S.; Sugiyama, J.; Pan, M.; Shi, J.; Lu, H. Dual Response of Photonic Films with Chiral Nematic Cellulose Nanocrystals: Humidity and Formaldehyde. ACS Appl. Mater. Interfaces 2020, 12, 17833–17844. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhou, C.; French, A.D.; Xia, G.; Han, G.; Wang, Q.; Wu, Q. Comparative Properties of Cellulose Nano-Crystals from Native and Mercerized Cotton Fibers. Cellulose 2012, 19, 1173–1187. [Google Scholar] [CrossRef]
- Chen, J.; Ling, Z.; Wang, X.; Ping, X.; Xie, Y.; Ma, H.; Guo, J.; Yong, Q. All Bio-Based Chiral Nematic Cellulose Nanocrystals Films under Supramolecular Tuning by Chitosan/Deacetylated Chitin Nanofibers for Reversible Multi-Response and Sensor Application. Chem. Eng. J. 2023, 466, 143148. [Google Scholar] [CrossRef]
- Wang, S.; Jin, X.; Yue, Y.; Mei, C.; Xu, X.; Wu, Q.; Xiao, H.; Han, J. Biomimetic Patternable Polyhydroxyl Nanocellulose/MXene Films Sequentially Bridged through a Synergistic Hydrogen and Ionic Interaction with Tunable Multi-Photoresponsive Performances. Chem. Eng. J. 2023, 470, 144225. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, Y.; Ding, Q.; Mei, C.; Xu, X.; Wu, Q.; Xiao, H.; Han, J. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 50281–50297. [Google Scholar] [CrossRef]
- Adstedt, K.; Popenov, E.A.; Pierce, K.J.; Xiong, R.; Geryak, R.; Cherpak, V.; Nepal, D.; Bunning, T.J.; Tsukruk, V.V. Chiral Cellulose Nanocrystals with Intercalated Amorphous Polysaccharides for Controlled Iridescence and Enhanced Mechanics. Adv. Funct. Mater. 2020, 30, 2003597. [Google Scholar] [CrossRef]
- Xu, Z.-Y.; Li, L.; Du, L.; Wang, L.; Shi, L.-Y.; Yang, K.-K.; Wang, Y.-Z. Multiscale Shape-Memory Effects in a Dynamic Polymer Network for Synchronous Changes in Color and Shape. Appl. Mater. Today 2022, 26, 101276. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, X.; Liu, W.; Hou, Q.; Wang, Y. Advances in Bioinspired and Multifunctional Biomaterials Made from Chiral Cellulose Nanocrystals. Chem. Eng. J. 2023, 474, 145980. [Google Scholar] [CrossRef]
- Rofouie, P.; Galati, E.; Sun, L.; Helmy, A.S.; Kumacheva, E. Hybrid Cholesteric Films with Tailored Polarization Rotation. Adv. Funct. Mater. 2019, 29, 1905552. [Google Scholar] [CrossRef]
- Frka-Petesic, B.; Guidetti, G.; Kamita, G.; Vignolini, S. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. Adv. Mater. 2017, 29, 1701469. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhao, Q.; Meng, X.; Li, Y.; Peng, H.; Whittaker, A.K.; Zhu, S. Ultrasensitive Magnetic Tuning of Optical Properties of Films of Cholesteric Cellulose Nanocrystals. ACS Nano 2020, 14, 9440–9448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cheng, X.; Chen, S.H.; Anthamatten, M. Spontaneous Co-Assembly of Cellulose Nanocrystals and TiO2 Nanorods Followed by Calcination to Form Cholesteric Inorganic Nanostructures. Langmuir 2023, 39, 9180–9185. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Liang, S.; Xiao, K.; Mo, Y.; Huang, X. A Novel ZnO Nanoparticle Blended Polyvinylidene Fluoride Membrane for Anti-Irreversible Fouling. J. Membr. Sci. 2012, 394, 184–192. [Google Scholar] [CrossRef]
- Azizi, S.; Ahmad, M.B.; Ibrahim, N.A.; Hussein, M.Z.; Namvar, F. Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly(Vinyl Alcohol)/Chitosan Blend Films: Fabrication, Characterization and Properties. Int. J. Mol. Sci. 2014, 15, 11040–11053. [Google Scholar] [CrossRef] [PubMed]
- Ngoensawat, U.; Parnsubsakul, A.; Kaitphaiboonwet, S.; Wutikhun, T.; Sapcharoenkun, C.; Pienpinijtham, P.; Ekgasit, S. Luminescent Nanohybrid of ZnO Quantum Dot and Cellulose Nanocrystal as Anti-Counterfeiting Ink. Carbohydr. Polym. 2021, 262, 117864. [Google Scholar] [CrossRef]
- French, A.D. Increment in Evolution of Cellulose Crystallinity Analysis. Cellulose 2020, 27, 5445–5448. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, A.; Kaushal, A.; Kaur, D.; Pandey, A.; Goyal, R.N. In Situ High Temperature XRD Studies of ZnO Nanopowder Prepared via Cost Effective Ultrasonic Mist Chemical Vapour Deposition. Bull. Mater. Sci. 2008, 31, 573–577. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, W.; Shi, M.; Wang, Z.; Wang, J.; Wang, S. Improving Permeability and Antifouling Performance of Polyethersulfone Ultrafiltration Membrane by Incorporation of ZnO-DMF Dispersion Containing Nano-ZnO and Polyvinylpyrrolidone. J. Membr. Sci. 2015, 478, 105–116. [Google Scholar] [CrossRef]
- Kljun, A.; Benians, T.A.S.; Goubet, F.; Meulewaeter, F.; Knox, J.P.; Blackburn, R.S. Comparative Analysis of Crystallinity Changes in Cellulose I Polymers Using ATR-FTIR, X-ray Diffraction, and Carbohydrate-Binding Module Probes. Biomacromolecules 2011, 12, 4121–4126. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, H. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
Film | CNC (g) | Xylose (g) | ZnO NPs (g) |
---|---|---|---|
M0 | 0.1 | 0.02 | 0 |
M1 | 0.1 | 0.02 | 0.001 |
M2 | 0.1 | 0.02 | 0.005 |
M3 | 0.1 | 0.02 | 0.01 |
M4 | 0.1 | 0.02 | 0.015 |
M5 | 0.1 | 0.02 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Dong, H.; Ping, X.; Shan, G.; Chen, J.; Yan, M.; Li, W.; Ling, Z. Tunable Construction of Chiral Nematic Cellulose Nanocrystals/ZnO Films for Ultra-Sensitive, Recyclable Sensing of Humidity and Ethanol. Int. J. Mol. Sci. 2024, 25, 4978. https://doi.org/10.3390/ijms25094978
Xiao X, Dong H, Ping X, Shan G, Chen J, Yan M, Li W, Ling Z. Tunable Construction of Chiral Nematic Cellulose Nanocrystals/ZnO Films for Ultra-Sensitive, Recyclable Sensing of Humidity and Ethanol. International Journal of Molecular Sciences. 2024; 25(9):4978. https://doi.org/10.3390/ijms25094978
Chicago/Turabian StyleXiao, Xiao, Hanqi Dong, Xinxin Ping, Guowei Shan, Jie Chen, Mengxing Yan, Weixing Li, and Zhe Ling. 2024. "Tunable Construction of Chiral Nematic Cellulose Nanocrystals/ZnO Films for Ultra-Sensitive, Recyclable Sensing of Humidity and Ethanol" International Journal of Molecular Sciences 25, no. 9: 4978. https://doi.org/10.3390/ijms25094978
APA StyleXiao, X., Dong, H., Ping, X., Shan, G., Chen, J., Yan, M., Li, W., & Ling, Z. (2024). Tunable Construction of Chiral Nematic Cellulose Nanocrystals/ZnO Films for Ultra-Sensitive, Recyclable Sensing of Humidity and Ethanol. International Journal of Molecular Sciences, 25(9), 4978. https://doi.org/10.3390/ijms25094978