The Role of Glutathione Transferase Omega-Class Variant Alleles in Individual Susceptibility to Ovarian Cancer
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PDQ Adult Treatment Editorial Board Ovarian Epithelial. Fallopian Tube, and Primary Peritoneal Cancer Treatment (PDQ®): Health Professional Version. In PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda, MD, USA, 2002. [Google Scholar]
- Sambasivan, S. Epithelial Ovarian Cancer: Review Article. Cancer Treat. Res. Commun. 2022, 33, 100629. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; Chen, L.; Hou, J.Y.; Burke, W.M.; Tergas, A.I.; Ananth, C.V.; Neugut, A.I.; Hershman, D.L. Association of Hospital Volume and Quality of Care with Survival for Ovarian Cancer. Obs. Gynecol. 2017, 130, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian Cancer. Nat. Rev. Dis. Prim. 2016, 2, 16061. [Google Scholar] [CrossRef]
- Gilbert, L.; Basso, O.; Sampalis, J.; Karp, I.; Martins, C.; Feng, J.; Piedimonte, S.; Quintal, L.; Ramanakumar, A.V.; Takefman, J.; et al. Assessment of Symptomatic Women for Early Diagnosis of Ovarian Cancer: Results from the Prospective DOvE Pilot Project. Lancet Oncol. 2012, 13, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Nebgen, D.R.; Lu, K.H.; Bast, R.C. Novel Approaches to Ovarian Cancer Screening. Curr. Oncol. Rep. 2019, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Achimas-Cadariu, P.; Kubelac, P.; Irimie, A.; Berindan-Neagoe, I.; Rühli, F. Evolutionary Perspectives, Heterogeneity and Ovarian Cancer: A Complicated Tale from Past to Present. J. Ovarian Res. 2022, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.M.; Cardenas, C.; Tedja, R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers 2019, 11, 1083. [Google Scholar] [CrossRef] [PubMed]
- Veneziani, A.C.; Gonzalez-Ochoa, E.; Alqaisi, H.; Madariaga, A.; Bhat, G.; Rouzbahman, M.; Sneha, S.; Oza, A.M. Heterogeneity and Treatment Landscape of Ovarian Carcinoma. Nat. Rev. Clin. Oncol. 2023, 20, 820–842. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front. Cell Dev. Biol. 2020, 8, 758. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Mijatović, S.; Savić-Radojević, A.; Plješa-Ercegovac, M.; Simić, T.; Nicoletti, F.; Maksimović-Ivanić, D. The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants 2020, 9, 374. [Google Scholar] [CrossRef]
- Tew, K.D.; Townsend, D.M. Glutathione-S-Transferases as Determinants of Cell Survival and Death. Antioxid. Redox Signal. 2012, 17, 1728–1737. [Google Scholar] [CrossRef]
- Pljesa-Ercegovac, M.; Savic-Radojevic, A.; Matic, M.; Coric, V.; Djukic, T.; Radic, T.; Simic, T. Glutathione Transferases: Potential Targets to Overcome Chemoresistance in Solid Tumors. Int. J. Mol. Sci. 2018, 19, 3785. [Google Scholar] [CrossRef]
- Wu, B.; Dong, D. Human Cytosolic Glutathione Transferases: Structure, Function, and Drug Discovery. Trends Pharmacol. Sci. 2012, 33, 656–668. [Google Scholar] [CrossRef]
- Board, P.G.; Menon, D. Glutathione Transferases, Regulators of Cellular Metabolism and Physiology. Biochim. Biophys. Acta BBA Gen. Subj. 2013, 1830, 3267–3288. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, H.S.; Suh, D.H.; Kim, M.-K.; Chung, H.H.; Song, Y.-S. Ovarian Cancer Biomarker Discovery Based on Genomic Approaches. J. Cancer Prev. 2013, 18, 298–312. [Google Scholar] [CrossRef]
- Bast, R.C.; Hennessy, B.; Mills, G.B. The Biology of Ovarian Cancer: New Opportunities for Translation. Nat. Rev. Cancer 2009, 9, 415–428. [Google Scholar] [CrossRef]
- Simic, P.; Pljesa, I.; Nejkovic, L.; Jerotic, D.; Coric, V.; Stulic, J.; Kokosar, N.; Popov, D.; Savic-Radojevic, A.; Pazin, V.; et al. Glutathione Transferase P1: Potential Therapeutic Target in Ovarian Cancer. Medicina 2022, 58, 1660. [Google Scholar] [CrossRef]
- Sawers, L.; Ferguson, M.J.; Ihrig, B.R.; Young, H.C.; Chakravarty, P.; Wolf, C.R.; Smith, G. Glutathione S-Transferase P1 (GSTP1) Directly Influences Platinum Drug Chemosensitivity in Ovarian Tumour Cell Lines. Br. J. Cancer 2014, 111, 1150–1158. [Google Scholar] [CrossRef]
- Ferracini, A.C.; Lopes-Aguiar, L.; Lourenço, G.J.; Yoshida, A.; Lima, C.S.P.; Sarian, L.O.; Derchain, S.; Kroetz, D.L.; Mazzola, P.G. GSTP1 and ABCB1 Polymorphisms Predicting Toxicities and Clinical Management on Carboplatin and Paclitaxel-Based Chemotherapy in Ovarian Cancer. Clin. Transl. Sci. 2021, 14, 720–728. [Google Scholar] [CrossRef]
- Pljesa, I.; Berisavac, M.; Simic, T.; Pekmezovic, T.; Coric, V.; Suvakov, S.; Stamatovic, L.; Matic, M.; Gutic, B.; Milenkovic, S.; et al. Polymorphic Expression of Glutathione Transferases A1, M1, P1 and T1 in Epithelial Ovarian Cancer: A Serbian Case-Control Study. J. BUON 2017, 22, 72–79. [Google Scholar] [PubMed]
- Zhang, Z.; Xie, Z.; Sun, G.; Yang, P.; Li, J.; Yang, H.; Xiao, S.; Liu, Y.; Qiu, H.; Qin, L.; et al. Reversing Drug Resistance of Cisplatin by Hsp90 Inhibitors in Human Ovarian Cancer Cells. Int. J. Clin. Exp. Med. 2015, 8, 6687–6701. [Google Scholar] [PubMed]
- Fontana, F.; Carollo, E.; Melling, G.E.; Carter, D.R.F. Extracellular Vesicles: Emerging Modulators of Cancer Drug Resistance. Cancers 2021, 13, 749. [Google Scholar] [CrossRef] [PubMed]
- Whitbread, A.K.; Masoumi, A.; Tetlow, N.; Schmuck, E.; Coggan, M.; Board, P.G. Characterization of the Omega Class of Glutathione Transferases. Methods Enzym. 2005, 401, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Board, P.G.; Menon, D. Structure, Function and Disease Relevance of Omega-Class Glutathione Transferases. Arch. Toxicol. 2016, 90, 1049–1067. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Board, P.G. A Role for Glutathione Transferase Omega 1 (GSTO1-1) in the Glutathionylation Cycle. J. Biol. Chem. 2013, 288, 25769–25779. [Google Scholar] [CrossRef]
- Piaggi, S.; Raggi, C.; Corti, A.; Pitzalis, E.; Mascherpa, M.C.; Saviozzi, M.; Pompella, A.; Casini, A.F. Glutathione Transferase Omega 1-1 (GSTO1-1) Plays an Anti-Apoptotic Role in Cell Resistance to Cisplatin Toxicity. Carcinogenesis 2010, 31, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Pan, L.; Yuan, Y.; Lang, J.; Mao, N. Identification of Platinum-Resistance Associated Proteins through Proteomic Analysis of Human Ovarian Cancer Cells and Their Platinum-Resistant Sublines. J. Proteome Res. 2007, 6, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Shigeto, T.; Miura, R.; Kobayashi, A.; Mizunuma, M.; Yamauchi, A.; Futagami, M.; Mizunuma, H. Differences in the Sensitivity of Ovarian Cancer to Photodynamic Therapy and the Mechanisms for Those Differences. Oncol. Lett. 2017, 13, 4933–4938. [Google Scholar] [CrossRef]
- Zhou, H.; Brock, J.; Liu, D.; Board, P.G.; Oakley, A.J. Structural Insights into the Dehydroascorbate Reductase Activity of Human Omega-Class Glutathione Transferases. J. Mol. Biol. 2012, 420, 190–203. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants 2022, 11, 1993. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-T.; Wang, J.; Yin, R.; Qiu, M.-T.; Xu, L.; Wang, J.; Xu, L. Genetic Polymorphisms in Glutathione S-Transferase Omega (GSTO) and Cancer Risk: A Meta-Analysis of 20 Studies. Sci. Rep. 2014, 4, 6578. [Google Scholar] [CrossRef] [PubMed]
- Marahatta, S.B.; Punyarit, P.; Bhudisawasdi, V.; Paupairoj, A.; Wongkham, S.; Petmitr, S. Polymorphism of Glutathione S-Transferase Omega Gene and Risk of Cancer. Cancer Lett. 2006, 236, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Whitbread, A.K.; Tetlow, N.; Eyre, H.J.; Sutherland, G.R.; Board, P.G. Characterization of the Human Omega Class Glutathione Transferase Genes and Associated Polymorphisms. Pharmacogenetics 2003, 13, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B.; Salavaggione, O.E.; Pelleymounter, L.L.; Moon, I.; Eckloff, B.W.; Schaid, D.J.; Wieben, E.D.; Weinshilboum, R.M. Glutathione S-transferase omega 1 and omega 2 pharmacogenomics. Drug Metab. Dispos. 2006, 34, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Pongstaporn, W.; Rochanawutanon, M.; Wilailak, S.; Linasamita, V.; Weerakiat, S.; Petmitr, S. Genetic Alterations in Chromosome 10q24.3 and Glutathione S-Transferase Omega 2 Gene Polymorphism in Ovarian Cancer. J. Exp. Clin. Cancer Res. 2006, 25, 107–114. [Google Scholar]
- Bumbasirevic, U.; Bojanic, N.; Pljesa-Ercegovac, M.; Zivkovic, M.; Djukic, T.; Zekovic, M.; Milojevic, B.; Kajmakovic, B.; Janicic, A.; Simic, T.; et al. The Polymorphisms of Genes Encoding Catalytic Antioxidant Proteins Modulate the Susceptibility and Progression of Testicular Germ Cell Tumor. Cancers 2022, 14, 1068. [Google Scholar] [CrossRef]
- Hughes, M.M.; Hooftman, A.; Angiari, S.; Tummala, P.; Zaslona, Z.; Runtsch, M.C.; McGettrick, A.F.; Sutton, C.E.; Diskin, C.; Rooke, M.; et al. Glutathione Transferase Omega-1 Regulates NLRP3 Inflammasome Activation through NEK7 Deglutathionylation. Cell Rep. 2019, 29, 151–161.e5. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, M.; Simic, T.; Djukic, T.; Radic, T.; Savic-Radojevic, A.; Zekovic, M.; Durutovic, O.; Janicic, A.; Milojevic, B.; Kajmakovic, B.; et al. The Polymorphisms in GSTO Genes (GSTO1 Rs4925, GSTO2 Rs156697, and GSTO2 Rs2297235) Affect the Risk for Testicular Germ Cell Tumor Development: A Pilot Study. Life 2023, 13, 1269. [Google Scholar] [CrossRef]
- Djukic, T.; Simic, T.; Radic, T.; Matic, M.; Pljesa-Ercegovac, M.; Suvakov, S.; Coric, V.; Pekmezovic, T.; Novakovic, I.; Dragicevic, D.; et al. GSTO1*C/GSTO2*G Haplotype Is Associated with Risk of Transitional Cell Carcinoma of Urinary Bladder. Int. Urol. Nephrol. 2015, 47, 625–630. [Google Scholar] [CrossRef]
- Radic, T.M.; Coric, V.M.; Pljesa-Ercegovac, M.S.; Basta-Jovanovic, G.M.; Radojevic-Skodric, S.M.; Dragicevic, D.P.; Matic, M.G.; Bogdanovic, L.M.; Dzamic, Z.M.; Simic, T.P.; et al. Concomitance of Polymorphisms in Glutathione Transferase Omega Genes Is Associated with Risk of Clear Cell Renal Cell Carcinoma. Tohoku J. Exp. Med. 2018, 246, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Bhardwaj, M.; Kang, S.C. GSTO1 Confers Drug Resistance in HCT-116 Colon Cancer Cells through an Interaction with TNFαIP3/A20. Int. J. Oncol. 2022, 61, 136. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, L.; Liu, M.; Luo, J. Protein Post-Translational Modifications in the Regulation of Cancer Hallmarks. Cancer Gene Ther. 2023, 30, 529–547. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Uys, J.D.; Tew, K.D.; Townsend, D.M. S-Glutathionylation: From Molecular Mechanisms to Health Outcomes. Antioxid. Redox Signal 2011, 15, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Laliberte, R.E.; Perregaux, D.G.; Hoth, L.R.; Rosner, P.J.; Jordan, C.K.; Peese, K.M.; Eggler, J.F.; Dombroski, M.A.; Geoghegan, K.F.; Gabel, C.A. Glutathione S-Transferase Omega 1-1 Is a Target of Cytokine Release Inhibitory Drugs and May Be Responsible for Their Effect on Interleukin-1beta Posttranslational Processing. J. Biol. Chem. 2003, 278, 16567–16578. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, S.; Monaci, P.M.; Polimanti, R.; Manfellotto, D.; Fuciarelli, M. GSTO2*N142D Gene Polymorphism Associated with Hypothyroidism in Italian Patients. Mol. Biol. Rep. 2013, 40, 1967–1971. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Xu, Y.; Guo, X.; Wang, B.; Sun, L.; Liu, L.; Cui, F.; Zhuang, Q.; Bao, X.; et al. The Hypoxia-Inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-Induced Toxicity. J. Biol. Chem. 2014, 289, 3339–3351. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Yeh, S.-D.; Shen, K.-H.; Shen, C.-H.; Juang, G.-D.; Hsu, L.-I.; Chiou, H.-Y.; Chen, C.-J. A Significantly Joint Effect between Arsenic and Occupational Exposures and Risk Genotypes/Diplotypes of CYP2E1, GSTO1 and GSTO2 on Risk of Urothelial Carcinoma. Toxicol. Appl. Pharmacol. 2009, 241, 111–118. [Google Scholar] [CrossRef]
- Ding, D.-N.; Xie, L.-Z.; Shen, Y.; Li, J.; Guo, Y.; Fu, Y.; Liu, F.-Y.; Han, F.-J. Insights into the Role of Oxidative Stress in Ovarian Cancer. Oxid. Med. Cell Longev. 2021, 2021, 8388258. [Google Scholar] [CrossRef]
- Schmuck, E.M.; Board, P.G.; Whitbread, A.K.; Tetlow, N.; Cavanaugh, J.A.; Blackburn, A.C.; Masoumi, A. Characterization of the Monomethylarsonate Reductase and Dehydroascorbate Reductase Activities of Omega Class Glutathione Transferase Variants: Implications for Arsenic Metabolism and the Age-at-Onset of Alzheimer’s and Parkinson’s Diseases. Pharmacogenet Genom. 2005, 15, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M. Linkage Disequilibrium—Understanding the Evolutionary Past and Mapping the Medical Future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.; Zou, F.; Chai, H.S.; Younkin, C.S.; Miles, R.; Nair, A.A.; Crook, J.E.; Pankratz, V.S.; Carrasquillo, M.M.; Rowley, C.N.; et al. Glutathione S-Transferase Omega Genes in Alzheimer and Parkinson Disease Risk, Age-at-Diagnosis and Brain Gene Expression: An Association Study with Mechanistic Implications. Mol. Neurodegener. 2012, 7, 13. [Google Scholar] [CrossRef]
- Ranganathan, S.; Gribskov, M.R.; Nakai, K.; Schönbach, C. (Eds.) Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-811432-2. [Google Scholar]
- Corrigan, C. ‘Allergy (4th Edition)’ Edited by HolgateST, ChurchMK, BroideDH, MartinezFD. Clin. Exp. Allergy 2012, 42, 1299. [Google Scholar] [CrossRef]
Parameters 1 | Patients, n (%) | Control, n (%) | p-Value |
---|---|---|---|
Age (years) | 58.14 ± 9.8 2 | 57.05 ± 8.10 | 0.361 |
Obesity | |||
BMI < 25 | 53 (49) | 48 (42) | 0.297 |
BMI > 25 | 55 (51) | 66 (58) | |
BMI (kg/m2) | 25.79 ± 4.59 2 | 26.50 ± 4.71 | 0.253 |
Smoking 3 | |||
Never | 50 (47) | 70 (54) | 0.249 |
Ever | 57 (53) | 59 (46) | |
Hypertension | |||
Yes | 34 (32) | 49 (38) | 0.296 |
No | 74 (68) | 80 (62) |
Parameters 1 | Patients, n (%) |
---|---|
Parity | |
0 | 12 (11) |
1 | 27 (25) |
2 | 60 (55) |
>3 | 11 (9) |
Family history of ovarian cancer | |
Yes | 14 (13) |
No | 96 (87) |
FIGO stage | |
I | 33 (30) |
II | 25 (23) |
III | 50 (46) |
IV | 2 (1) |
Grade of tumor | |
I | 11 (11) |
II | 55 (52) |
III | 39 (37) |
GST Genotype | Patients n (%) | Controls n (%) | OR1 (95% CI) | p Value | OR2 (95% CI) | p Value |
---|---|---|---|---|---|---|
GSTO1 | ||||||
*CC | 54 (49) | 59 (46) | 1.00 * | 1.00 * | ||
*CA | 42 (38) | 63 (49) | 0.72 (0.42–1.24) | 0.25 | 0.72 (0.40–1.27) | 0.25 |
*AA | 14 (13) | 7 (5) | 2.18 (0.82–5.81) | 0.11 | 2.09 (0.72–6.05) | 0.17 |
*CC | 54 (49) | 59 (46) | 1.00 * | 1.00 * | ||
*CA-AA | 56 (51) | 70 (54) | 0.87 (0.52–1.45) | 0.60 | 0.84 (0.49–1.46) | 0.55 |
GSTO2 | ||||||
*AA | 43 (39) | 62 (48) | 1.00 * | 1.00 * | ||
*AG | 52 (47) | 57 (44) | 1.31 (0.76–2.25) | 0.32 | 1.43 (0.80–2.55) | 0.21 |
*GG | 15 (14) | 10 (8) | 2.16 (0.88–5.26) | 0.08 | 2.49 (0.93–6.61) | 0.06 |
*AA | 43 (39) | 62 (48) | 1.00 * | 1.00 * | ||
*AG-GG | 67 (61) | 67 (52) | 1.44 (0.86–2.41) | 0.16 | 1.57 (0.90–2.73) | 0.10 |
GSTO1 | GSTO2 | Count (Frequency) | OR1 (95% CI) | p-Value | OR2 (95% CI) | p-Value |
---|---|---|---|---|---|---|
C | A | 129 (0.58) | 1.00 * | 1.00 * | ||
A | G | 51 (0.22) | 1.47 (0.93–2.33) | 0.10 | 1.54 (0.93–2.56) | 0.095 |
C | G | 23 (0.10) | 0.76 (0.39–1.48) | 0.57 | 0.82 (0.41–1.63) | 0.57 |
A | A | 18 (0.08) | 0.29 (0.12–0.70) | 0.007 | 0.27 (0.11–0.67) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simic, P.; Coric, V.; Pljesa, I.; Savic-Radojevic, A.; Zecevic, N.; Kocic, J.; Simic, T.; Pazin, V.; Pljesa-Ercegovac, M. The Role of Glutathione Transferase Omega-Class Variant Alleles in Individual Susceptibility to Ovarian Cancer. Int. J. Mol. Sci. 2024, 25, 4986. https://doi.org/10.3390/ijms25094986
Simic P, Coric V, Pljesa I, Savic-Radojevic A, Zecevic N, Kocic J, Simic T, Pazin V, Pljesa-Ercegovac M. The Role of Glutathione Transferase Omega-Class Variant Alleles in Individual Susceptibility to Ovarian Cancer. International Journal of Molecular Sciences. 2024; 25(9):4986. https://doi.org/10.3390/ijms25094986
Chicago/Turabian StyleSimic, Petar, Vesna Coric, Igor Pljesa, Ana Savic-Radojevic, Nebojsa Zecevic, Jovana Kocic, Tatjana Simic, Vladimir Pazin, and Marija Pljesa-Ercegovac. 2024. "The Role of Glutathione Transferase Omega-Class Variant Alleles in Individual Susceptibility to Ovarian Cancer" International Journal of Molecular Sciences 25, no. 9: 4986. https://doi.org/10.3390/ijms25094986
APA StyleSimic, P., Coric, V., Pljesa, I., Savic-Radojevic, A., Zecevic, N., Kocic, J., Simic, T., Pazin, V., & Pljesa-Ercegovac, M. (2024). The Role of Glutathione Transferase Omega-Class Variant Alleles in Individual Susceptibility to Ovarian Cancer. International Journal of Molecular Sciences, 25(9), 4986. https://doi.org/10.3390/ijms25094986