The Pentameric Ligand-Gated Ion Channel Family: A New Member of the Voltage Gated Ion Channel Superfamily?
Abstract
:1. Introduction
2. Results
2.1. Relationship between Families pLIC and VPC
2.2. Relationship between Families pLIC and GIC
2.3. The VIC Repeat Unit
2.4. Signature Region Identification within the VIC Superfamily
2.5. The VIC Superfamily Tree
3. Discussion
4. Methods
4.1. Sequence and Structural Data Retrieval
4.2. Sequence Similarity between Families
4.3. Projection of Pfam Domains
4.4. Comparison of HMM Profiles of Multiple Alignments
4.5. Motif Analysis
4.6. Phylogeny and Clustering Analysis
4.7. Structural Analyses
4.8. Identification of the VIC Repeat Unit
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saier, M.H.; Reddy, V.S.; Moreno-Hagelsieb, G.; Hendargo, K.J.; Zhang, Y.; Iddamsetty, V.; Lam, K.J.K.; Tian, N.; Russum, S.; Wang, J.; et al. The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res. 2021, 49, D461–D467. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.H.; Yarov-Yarovoy, V.; Gutman, G.A.; Catterall, W.A. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 2005, 57, 387–395. [Google Scholar] [CrossRef]
- Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug. Discov. 2009, 8, 982–1001. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels 2023, 17, 2281714. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A.; Lenaeus, M.J.; Gamal El-Din, T.M. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, X.; Wang, S.; Michailidis, I.; Gong, Y.; Su, D.; Li, H.; Li, X.; Yang, J. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 2017, 542, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 2005, 57, 411–425. [Google Scholar] [CrossRef]
- Yu, F.H.; Catterall, W.A. Overview of the voltage-gated sodium channel family. Genome Biol. 2003, 4, 207. [Google Scholar] [CrossRef]
- Yellen, G. The voltage-gated potassium channels and their relatives. Nature 2002, 419, 35–42. [Google Scholar] [CrossRef]
- Tao, X.; Lee, A.; Limapichat, W.; Dougherty, D.A.; MacKinnon, R. A gating charge transfer center in voltage sensors. Science 2010, 328, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Freites, J.A.; Tobias, D.J. Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J. Membr. Biol. 2015, 248, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Fux, J.E.; Mehta, A.; Moffat, J.; Spafford, J.D. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front. Physiol. 2018, 9, 1406. [Google Scholar] [CrossRef] [PubMed]
- Platoshyn, O.; Remillard, C.V.; Fantozzi, I.; Mandegar, M.; Sison, T.T.; Zhang, S.; Burg, E.; Yuan, J.X. Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L226–L238. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.P. Two-pore domain potassium channels: Variation on a structural theme. Channels 2012, 6, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.K.; Bomben, V.C.; Sontheimer, H. Expression and function of calcium-activated potassium channels in human glioma cells. Glia 2006, 54, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol. Rev. 2010, 90, 291–366. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.D.; Kuan, G.; Saier, M.H., Jr.; Montal, M. Modular assembly of voltage-gated channel proteins: A sequence analysis and phylogenetic study. J. Mol. Microbiol. Biotechnol. 1999, 1, 281–287. [Google Scholar] [PubMed]
- Hvorup, R.N.; Saier, M.H., Jr. Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily. Microbiology 2002, 148, 3760–3762. [Google Scholar] [CrossRef]
- Lee, S.Y.; Letts, J.A.; MacKinnon, R. Functional reconstitution of purified human Hv1 H+ channels. J. Mol. Biol. 2009, 387, 1055–1060. [Google Scholar] [CrossRef]
- Chanda, B.; Bezanilla, F. A common pathway for charge transport through voltage-sensing domains. Neuron 2008, 57, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Kurata, H.T.; Rapedius, M.; Kleinman, M.J.; Baukrowitz, T.; Nichols, C.G. Voltage-dependent gating in a “voltage sensor-less” ion channel. PLoS Biol. 2010, 8, e1000315. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.F. Boosting the signal: Endothelial inward rectifier K(+) channels. Microcirculation 2017, 24, e12319. [Google Scholar] [CrossRef] [PubMed]
- Doupnik, C.A. GPCR-Kir channel signaling complexes: Defining rules of engagement. J. Recept. Signal. Transduct. Res. 2008, 28, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jin, T.; Gazgalis, D.; Cui, M.; Logothetis, D.E. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gbetagamma dimer. J. Biol. Chem. 2019, 294, 18934–18948. [Google Scholar] [CrossRef] [PubMed]
- Van Petegem, F. Ryanodine receptors: Structure and function. J. Biol. Chem. 2012, 287, 31624–31632. [Google Scholar] [CrossRef] [PubMed]
- Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2010, 2, a003996. [Google Scholar] [CrossRef] [PubMed]
- Foskett, J.K.; White, C.; Cheung, K.H.; Mak, D.O. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 2007, 87, 593–658. [Google Scholar] [CrossRef]
- Toprak, U.; Dogan, C.; Hegedus, D. A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021, 11, 1031. [Google Scholar] [CrossRef]
- Mio, K.; Ogura, T.; Sato, C. Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J. Synchrotron Radiat. 2008, 15, 211–214. [Google Scholar] [CrossRef]
- George, C.H.; Jundi, H.; Thomas, N.L.; Scoote, M.; Walters, N.; Williams, A.J.; Lai, F.A. Ryanodine receptor regulation by intramolecular interaction between cytoplasmic and transmembrane domains. Mol. Biol. Cell 2004, 15, 2627–2638. [Google Scholar] [CrossRef] [PubMed]
- Vennekens, R.; Menigoz, A.; Nilius, B. TRPs in the Brain. Rev. Physiol. Biochem. Pharmacol. 2012, 163, 27–64. [Google Scholar] [CrossRef]
- Latorre, R.; Zaelzer, C.; Brauchi, S. Structure-functional intimacies of transient receptor potential channels. Q. Rev. Biophys. 2009, 42, 201–246. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Hughes, T.E.T.; Moiseenkova-Bell, V.Y. Transient Receptor Potential (TRP) Channels. Subcell. Biochem. 2018, 87, 141–165. [Google Scholar] [CrossRef]
- Vazquez, G.; Wedel, B.J.; Aziz, O.; Trebak, M.; Putney, J.W., Jr. The mammalian TRPC cation channels. Biochim. Biophys. Acta 2004, 1742, 21–36. [Google Scholar] [CrossRef]
- Alonso-Carbajo, L.; Kecskes, M.; Jacobs, G.; Pironet, A.; Syam, N.; Talavera, K.; Vennekens, R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 2017, 66, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, N.; Kobayashi, H.; Katoh, H.; Ogawa, T.; Futatsugi, L.; Nakamura, T.; Bakker, E.P.; Uozumi, N. Na+-dependent K+ uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. J. Biol. Chem. 2004, 279, 54952–54962. [Google Scholar] [CrossRef]
- Zeng, G.F.; Pypaert, M.; Slayman, C.L. Epitope tagging of the yeast K(+) carrier Trk2p demonstrates folding that is consistent with a channel-like structure. J. Biol. Chem. 2004, 279, 3003–3013. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Sakaguchi, M.; Mori, Y.; Saito, K.; Nakamura, T.; Bakker, E.P.; Sato, Y.; Goshima, S.; Uozumi, N. Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc. Natl. Acad. Sci. USA 2001, 98, 6488–6493. [Google Scholar] [CrossRef]
- Saier, M.H., Jr. Transport protein evolution deduced from analysis of sequence, topology and structure. Curr. Opin. Struct. Biol. 2016, 38, 9–17. [Google Scholar] [CrossRef]
- Roosild, T.P.; Miller, S.; Booth, I.R.; Choe, S. A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 2002, 109, 781–791. [Google Scholar] [CrossRef]
- Kato, N.; Akai, M.; Zulkifli, L.; Matsuda, N.; Kato, Y.; Goshima, S.; Hazama, A.; Yamagami, M.; Guy, H.R.; Uozumi, N. Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels 2007, 1, 161–171. [Google Scholar] [CrossRef]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef]
- Twomey, E.C.; Yelshanskaya, M.V.; Grassucci, R.A.; Frank, J.; Sobolevsky, A.I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 2017, 549, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.S.; VanDongen, H.M.; VanDongen, A.M. The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J. Neurosci. 2002, 22, 2044–2053. [Google Scholar] [CrossRef]
- Wilding, T.J.; Huettner, J.E. Cadmium activates AMPA and NMDA receptors with M3 helix cysteine substitutions. J. Gen. Physiol. 2020, 152, e201912537. [Google Scholar] [CrossRef]
- Alsaloum, M.; Kazi, R.; Gan, Q.; Amin, J.; Wollmuth, L.P. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors. J. Neurosci. 2016, 36, 2617–2622. [Google Scholar] [CrossRef]
- Das, U.; Kumar, J.; Mayer, M.L.; Plested, A.J. Domain organization and function in GluK2 subtype kainate receptors. Proc. Natl. Acad. Sci. USA 2010, 107, 8463–8468. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.L. Glutamate receptors at atomic resolution. Nature 2006, 440, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Labrakakis, C.; Joseph, D.J.; Macdermott, A.B. Functional similarities and differences of AMPA and kainate receptors expressed by cultured rat sensory neurons. Neuroscience 2004, 129, 35–48. [Google Scholar] [CrossRef]
- Gotz, T.; Kraushaar, U.; Geiger, J.; Lubke, J.; Berger, T.; Jonas, P. Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J. Neurosci. 1997, 17, 204–215. [Google Scholar] [CrossRef]
- Sasaki, M.; Takagi, M.; Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 2006, 312, 589–592. [Google Scholar] [CrossRef]
- Castillo, K.; Pupo, A.; Baez-Nieto, D.; Contreras, G.F.; Morera, F.J.; Neely, A.; Latorre, R.; Gonzalez, C. Voltage-gated proton (H(v)1) channels, a singular voltage sensing domain. FEBS Lett. 2015, 589, 3471–3478. [Google Scholar] [CrossRef]
- Ramsey, I.S.; Moran, M.M.; Chong, J.A.; Clapham, D.E. A voltage-gated proton-selective channel lacking the pore domain. Nature 2006, 440, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shen, R.; Treger, J.S.; Wanderling, S.S.; Milewski, W.; Siwowska, K.; Bezanilla, F.; Perozo, E. Resting state of the human proton channel dimer in a lipid bilayer. Proc. Natl. Acad. Sci. USA 2015, 112, E5926–E5935. [Google Scholar] [CrossRef]
- Takeshita, K.; Sakata, S.; Yamashita, E.; Fujiwara, Y.; Kawanabe, A.; Kurokawa, T.; Okochi, Y.; Matsuda, M.; Narita, H.; Okamura, Y.; et al. X-ray crystal structure of voltage-gated proton channel. Nat. Struct. Mol. Biol. 2014, 21, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Sine, S.M.; Engel, A.G. Recent advances in Cys-loop receptor structure and function. Nature 2006, 440, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, N.; Prado de Carvalho, L.; Cartaud, J.; Neyton, J.; Le Poupon, C.; Taly, A.; Grutter, T.; Changeux, J.P.; Corringer, P.J. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 2007, 445, 116–119. [Google Scholar] [CrossRef]
- Haeger, S.; Kuzmin, D.; Detro-Dassen, S.; Lang, N.; Kilb, M.; Tsetlin, V.; Betz, H.; Laube, B.; Schmalzing, G. An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors. Nat. Struct. Mol. Biol. 2010, 17, 90–98. [Google Scholar] [CrossRef]
- Wang, H.L.; Milone, M.; Ohno, K.; Shen, X.M.; Tsujino, A.; Batocchi, A.P.; Tonali, P.; Brengman, J.; Engel, A.G.; Sine, S.M. Acetylcholine receptor M3 domain: Stereochemical and volume contributions to channel gating. Nat. Neurosci. 1999, 2, 226–233. [Google Scholar] [CrossRef]
- Otero-Cruz, J.D.; Baez-Pagan, C.A.; Caraballo-Gonzalez, I.M.; Lasalde-Dominicci, J.A. Tryptophan-scanning mutagenesis in the alphaM3 transmembrane domain of the muscle-type acetylcholine receptor. A spring model revealed. J. Biol. Chem. 2007, 282, 9162–9171. [Google Scholar] [CrossRef] [PubMed]
- da Costa Couto, A.; Price, K.L.; Mesoy, S.; Capes, E.; Lummis, S.C.R. The M4 Helix Is Involved in alpha7 nACh Receptor Function. ACS Chem. Neurosci. 2020, 11, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Hagelsieb, G.; Vitug, B.; Medrano-Soto, A.; Saier, M.H., Jr. The Membrane Attack Complex/Perforin Superfamily. J. Mol. Microbiol. Biotechnol. 2017, 27, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Medrano-Soto, A.; Moreno-Hagelsieb, G.; McLaughlin, D.; Ye, Z.S.; Hendargo, K.J.; Saier, M.H., Jr. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS ONE 2018, 13, e0192851. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Davejan, P.; Hendargo, K.J.; Javadi-Razaz, I.; Chou, A.; Yee, D.C.; Ghazi, F.; Lam, K.J.K.; Conn, A.M.; Madrigal, A.; et al. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183277. [Google Scholar] [CrossRef] [PubMed]
- Medrano-Soto, A.; Ghazi, F.; Hendargo, K.J.; Moreno-Hagelsieb, G.; Myers, S.; Saier, M.H., Jr. Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS ONE 2020, 15, e0231085. [Google Scholar] [CrossRef]
- Tyler, D.; Hendargo, K.J.; Medrano-Soto, A.; Saier, M.H. Discovery and Characterization of the Phospholemman/SIMP/Viroporin Superfamily. Microb. Physiol. 2022, 32, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Hendargo, K.J.; Patel, A.O.; Chukwudozie, O.S.; Moreno-Hagelsieb, G.; Christen, J.A.; Medrano-Soto, A.; Saier, M.H., Jr. Sequence Similarity among Structural Repeats in the Piezo Family of Mechanosensitive Ion Channels. Microb. Physiol. 2023, 33, 49–62. [Google Scholar] [CrossRef]
- Lauber, T.; Schulz, A.; Schweimer, K.; Adermann, K.; Marx, U.C. Homologous proteins with different folds: The three-dimensional structures of domains 1 and 6 of the multiple Kazal-type inhibitor LEKTI. J. Mol. Biol. 2003, 328, 205–219. [Google Scholar] [CrossRef]
- Goh, C.S.; Milburn, D.; Gerstein, M. Conformational changes associated with protein-protein interactions. Curr. Opin. Struct. Biol. 2004, 14, 104–109. [Google Scholar] [CrossRef]
- Gerstein, M.; Echols, N. Exploring the range of protein flexibility, from a structural proteomics perspective. Curr. Opin. Chem. Biol. 2004, 8, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, M.; Kolodny, R. Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins 2008, 71, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.; Ziegler, C.; Schneider, D. When two turn into one: Evolution of membrane transporters from half modules. Biol. Chem. 2014, 395, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, A.; Lummis, S.C.R.; Pasini, D.; Mehregan, A.; Brams, M.; Kambara, K.; Bertrand, D.; Lindahl, E.; Howard, R.J.; Ulens, C. Regulation of a pentameric ligand-gated ion channel by a semiconserved cationic lipid-binding site. J. Biol. Chem. 2021, 297, 100899. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Hamada, T.; Gao, J.; Zhao, G.; Sun, D.; Shi, W. MrBayes tgMC(3)++: A High Performance and Resource-Efficient GPU-Oriented Phylogenetic Analysis Method. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 13, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Kemena, C.; Notredame, C. Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 2009, 25, 2455–2465. [Google Scholar] [CrossRef]
- Ranwez, V.; Chantret, N. Strengths and Limits of Multiple Sequence Alignment and Filtering Methods. In Phylogenetics in the Genomic Era; Scornavacca, C., Delsuc, F., Galtier, N., Eds.; 2020; pp. 2.2:1–2.2:36. Available online: https://hal.science/hal-02535389v2 (accessed on 5 April 2024).
- Sobolevsky, A.I.; Beck, C.; Wollmuth, L.P. Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 2002, 33, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Long, S.B.; Campbell, E.B.; Mackinnon, R. Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science 2005, 309, 903–908. [Google Scholar] [CrossRef]
- Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005, 33, D501–D504. [Google Scholar] [CrossRef]
- UniProt, C. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; et al. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023, 51, D488–D508. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Dobson, L.; Szekeres, L.I.; Gerdan, C.; Lango, T.; Zeke, A.; Tusnady, G.E. TmAlphaFold database: Membrane localization and evaluation of AlphaFold2 predicted alpha-helical transmembrane protein structures. Nucleic Acids Res. 2023, 51, D517–D522. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.C.; Maurer-Stroh, S.; Eisenhaber, F. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins. Biol. Direct 2011, 6, 57. [Google Scholar] [CrossRef]
- Wong, W.C.; Maurer-Stroh, S.; Schneider, G.; Eisenhaber, F. Transmembrane helix: Simple or complex. Nucleic Acids Res. 2012, 40, W370–W375. [Google Scholar] [CrossRef]
- Reddy, V.S.; Saier, M.H., Jr. BioV Suite—A collection of programs for the study of transport protein evolution. FEBS J. 2012, 279, 2036–2046. [Google Scholar] [CrossRef]
- Pearson, W.R. Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics 1991, 11, 635–650. [Google Scholar] [CrossRef]
- Tusnady, G.E.; Simon, I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001, 17, 849–850. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed]
- Rozewicki, J.; Li, S.; Amada, K.M.; Standley, D.M.; Katoh, K. MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Res. 2019, 47, W5–W10. [Google Scholar] [CrossRef] [PubMed]
- Fourment, M.; Holmes, E.C. Seqotron: A user-friendly sequence editor for Mac OS X. BMC Res. Notes 2016, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Steinegger, M.; Meier, M.; Mirdita, M.; Vohringer, H.; Haunsberger, S.J.; Soding, J. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinform. 2019, 20, 473. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Pearson, W.R. Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 1998, 276, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Buchfink, B.; Reuter, K.; Drost, H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
TCID | Name | Abbreviation |
---|---|---|
The Voltage-gated Ion Channel (VIC) Superfamily | ||
1.A.1 | The Voltage-gated Ion Channel Superfamily | VIC |
1.A.2 | The Inward Rectifier K+ Channel Family * | IRK-C |
1.A.3 | The Ryanodine-Inositol 1,4,5-trisphosphate Receptor Ca2+ Channel Family | RIR-CaC |
1.A.4 | The Transient Receptor Potential Ca2+ Channel Family | TRP-CC |
1.A.10 | The Glutamate-gated Ion Channel Family of Neurotransmitter Receptors | GIC |
1.A.51 | The Voltage-gated Proton Channel Family * | VPC |
2.A.38 | The K+ Transporter Family | Trk |
Candidate new family | ||
1.A.9 | The Neurotransmitter Receptor Cys loop Ligand-gated Ion Channel Family | pLIC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubey, A.; Baxter, M.; Hendargo, K.J.; Medrano-Soto, A.; Saier, M.H., Jr. The Pentameric Ligand-Gated Ion Channel Family: A New Member of the Voltage Gated Ion Channel Superfamily? Int. J. Mol. Sci. 2024, 25, 5005. https://doi.org/10.3390/ijms25095005
Dubey A, Baxter M, Hendargo KJ, Medrano-Soto A, Saier MH Jr. The Pentameric Ligand-Gated Ion Channel Family: A New Member of the Voltage Gated Ion Channel Superfamily? International Journal of Molecular Sciences. 2024; 25(9):5005. https://doi.org/10.3390/ijms25095005
Chicago/Turabian StyleDubey, Aditi, Madison Baxter, Kevin J. Hendargo, Arturo Medrano-Soto, and Milton H. Saier, Jr. 2024. "The Pentameric Ligand-Gated Ion Channel Family: A New Member of the Voltage Gated Ion Channel Superfamily?" International Journal of Molecular Sciences 25, no. 9: 5005. https://doi.org/10.3390/ijms25095005
APA StyleDubey, A., Baxter, M., Hendargo, K. J., Medrano-Soto, A., & Saier, M. H., Jr. (2024). The Pentameric Ligand-Gated Ion Channel Family: A New Member of the Voltage Gated Ion Channel Superfamily? International Journal of Molecular Sciences, 25(9), 5005. https://doi.org/10.3390/ijms25095005