Phosphate Uptake and Its Relation to Arsenic Toxicity in Lactobacilli
Abstract
:1. Introduction
2. Results
2.1. As(V) and As(III) Incorporation by Lactobacilli Strains
2.2. Mutation of pst Genes Coding for ABC Phosphate Transporters Impacts As(V) Uptake and Toxicity
2.3. Mutations in the phoPR TCS Result in Increased As(III) Resistance in Lc. paracasei
2.4. No Differences in As(III) Oxidation Are Observed in Lc. paracasei phoP or phoR Mutants
3. Discussion
4. Materials and Methods
4.1. Bacterial Culture Conditions
4.2. Construction of Strains Mutated in pst and pho Genes
4.3. Strain Complementation
4.4. As Toxicity, Incorporation, and Speciation Assays
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Arsenic Fact Sheet; WHO: Geneva, Switzerland, 2012; No. 372. [Google Scholar]
- Mayne, S.T. The FDA’s action plan to reduce dietary exposure to arsenic, lead, cadmium, and mercury for infants and young children. Am. J. Clin. Nutr. 2023, 117, 647–648. [Google Scholar] [CrossRef] [PubMed]
- Monachese, M.; Burton, J.P.; Reid, G. Bioremediation and tolerance of humans to heavy metals through microbial processes: A potential role for probiotics? Appl. Environ. Microbiol. 2012, 78, 6397–6404. [Google Scholar] [CrossRef] [PubMed]
- Chiocchetti, G.M.; Jadán-Piedra, C.; Monedero, V.; Zúñiga, M.; Vélez, D.; Devesa, V. Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity. Crit. Rev. Food Sci. Nutr. 2019, 59, 1534–1545. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, J.; Ren, Q.; Liu, Z.; Zhang, X.; Wu, Z. The Involvement of lactic acid bacteria and their exopolysaccharides in the biosorption and detoxication of heavy metals in the gut. Biol. Trace Elem. Res. 2024, 202, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Gu, S.; Liu, D.; Zhao, L.; Xia, S.; He, X.; Chen, H.; Ge, J. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-kappaB signaling cascades. Front. Microbiol. 2018, 9, 2425. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yu, L.; Shen, X.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Protective effects of Lactobacillus plantarum CCFM8610 against acute toxicity caused by different food-derived forms of cadmium in mice. Int. J. Mol. Sci. 2021, 22, 11045. [Google Scholar] [CrossRef] [PubMed]
- Bisanz, J.E.; Enos, M.K.; Mwanga, J.R.; Changalucha, J.P.; Burton, J.; Gloor, G.B.; Reid, G. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. mBio 2014, 5, e01580-14. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Protano, C.; Schiavi, E.; Marconi, E.; Capobianco, D.; Massimi, L.; Ristorini, M.; Baldassarre, M.E.; Laforgia, N.; Vitali, M.; et al. A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: In-vitro study and biomonitoring of breast milk and infant stools. Environ. Int. 2019, 130, 104818. [Google Scholar] [CrossRef] [PubMed]
- Dashtbanei, S.; Keshtmand, Z. A mixture of multi-strain probiotics (Lactobacillus rhamnosus, Lactobacillus helveticus, and Lactobacillus casei) had anti-inflammatory, anti-apoptotic, and anti-oxidative effects in oxidative injuries induced by cadmium in small intestine and lung. Probiotics Antimicrob. Proteins 2022, 15, 226–238. [Google Scholar] [CrossRef]
- Chen, Z.; Leng, X.; Zhou, F.; Shen, W.; Zhang, H.; Yu, Q.; Meng, X.; Fan, H.; Qin, M. Screening and identification of probiotic lactobacilli from the infant gut microbiota to Alleviate Lead Toxicity. Probiotics Antimicrob. Proteins 2022, 15, 821–831. [Google Scholar] [CrossRef]
- Domene, A.; Orozco, H.; Rodríguez-Viso, P.; Monedero, V.; Zúñiga, M.; Vélez, D.; Devesa, V. Lactobacillus strains reduce the toxic effects of a subchronic exposure to arsenite through drinking water. Environ. Res. 2024, 245, 117989. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Jain, R.; Jain, S.K. Assessment of Lactobacillus rhamnosus mediated protection against arsenic-induced toxicity in zebrafish: A qPCR-based analysis of Firmicutes and Bacteroidetes groups and embryonic development. Arch. Microbiol. 2023, 205, 316. [Google Scholar] [CrossRef] [PubMed]
- Bora, S.; Lakshman, M.; Madhuri, D.; Kalakumar, B.; Udayakumar, M. Protective effect of Lactobacillus sporogenes against arsenic-induced hematological alterations in male albino Wistar rats. Biol. Trace Elem. Res. 2022, 200, 4744–4749. [Google Scholar] [CrossRef] [PubMed]
- Elsanhoty, R.M.; Al-Turki, I.A.; Ramadan, M.F. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Sci. Technol. 2016, 74, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.J.; Vivó, M.d.L.; Puig, S.; Zúñiga, M.; Monedero, V.; Devesa, V.; Vélez, D. In vitro evaluation of the efficacy of lactobacilli and yeasts in reducing bioavailability of inorganic arsenic. LWT 2020, 126, 109272. [Google Scholar] [CrossRef]
- Rosen, B.P. Biochemistry of arsenic detoxification. FEBS Lett. 2002, 529, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Isokpehi, R.D.; Udensi, U.K.; Simmons, S.S.; Hollman, A.L.; Cain, A.E.; Olofinsae, S.A.; Hassan, O.A.; Kashim, Z.A.; Enejoh, O.A.; Fasesan, D.E.; et al. Evaluative profiling of arsenic sensing and regulatory systems in the human microbiome project genomes. Microbiol. Insights 2014, 7, MBI.S18076–34. [Google Scholar] [CrossRef] [PubMed]
- Gustaw, K.; Koper, P.; Polak-Berecka, M.; Rachwał, K.; Skrzypczak, K.; Waśko, A. Genome and pangenome analysis of Lactobacillus hilgardii FLUB—A new strain isolated from mead. Int. J. Mol. Sci. 2021, 22, 3780. [Google Scholar] [CrossRef] [PubMed]
- Villa-Bellosta, R.; Sorribas, V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol. Appl. Pharmacol. 2008, 232, 125–134. [Google Scholar] [CrossRef]
- Hsieh, Y.-J.; Wanner, B.L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 2010, 13, 198–203. [Google Scholar] [CrossRef]
- Gardner, S.G.; Johns, K.D.; Tanner, R.; McCleary, W.R. The PhoU protein from Escherichia coli Interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J. Bacteriol. 2014, 196, 1741–1752. [Google Scholar] [CrossRef]
- Gardner, S.G.; McCleary, W.R. Control of the phoBR regulon in Escherichia coli. EcoSal Plus 2019, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Alcántara, C.; Revilla-Guarinos, A.; Zúñiga, M. Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions. Appl. Environ. Microbiol. 2011, 77, 1516–1519. [Google Scholar] [CrossRef]
- Botas, J.; del Río, R.; Giner-Lamia, J.; Huerta-Cepas, J. GeCoViz: Genomic context visualisation of prokaryotic genes from a functional and evolutionary perspective. Nucleic Acids Res. 2022, 50, W352–W357. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Boekhorst, J.; Van Kranenburg, R.; Molenaar, D.; Kuipers, O.P.; Leer, R.; Tarchini, R.; Peters, S.A.; Sandbrink, H.M.; Fiers, M.W.E.J.; et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003, 100, 1990–1995. [Google Scholar] [CrossRef]
- Cesena, C.; Morelli, L.; Alander, M.; Siljander, T.; Tuomola, E.; Salminen, S.; Mattila-Sandholm, T.; Vilpponen-Salmela, T.; von Wright, A. Lactobacillus crispatus and its nonaggregating mutant in human colonization trials. J. Dairy. Sci. 2001, 84, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Buschiazzo, A.; Trajtenberg, F. Two-component sensing and regulation: How do histidine kinases talk with response regulators at the molecular level? Ann. Rev. Microbiol. 2019, 73, 507–528. [Google Scholar] [CrossRef]
- Halttunen, T.; Finell, M.; Salminen, S. Arsenic removal by native and chemically modified lactic acid bacteria. Int. J. Food Microbiol. 2007, 120, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H. Patulin removal from synbiotic apple juice using Lactobacillus plantarum ATCC 8014. J. Appl. Microbiol. 2018, 126, 1149–1160. [Google Scholar] [CrossRef]
- Jadán-Piedra, C.; Alcántara, C.; Monedero, V.; Zúñiga, M.; Vélez, D.; Devesa, V. The use of lactic acid bacteria to reduce mercury bioaccessibility. Food Chem. 2017, 228, 158–166. [Google Scholar] [CrossRef]
- Atalla, A.; Schumann, W. The pst operon of Bacillus subtilis is specifically induced by alkali stress. J. Bacteriol. 2003, 185, 5019–5022. [Google Scholar] [CrossRef] [PubMed]
- Morohoshi, T.; Maruo, T.; Shirai, Y.; Kato, J.; Ikeda, T.; Takiguchi, N.; Ohtake, H.; Kuroda, A. Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 2002, 68, 4107–4110. [Google Scholar] [CrossRef]
- Garbinski, L.D.; Rosen, B.P.; Chen, J. Pathways of arsenic uptake and efflux. Environ. Int. 2019, 126, 585–597. [Google Scholar] [CrossRef]
- Yan, G.; Chen, X.; Du, S.; Deng, Z.; Wang, L.; Chen, S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 2018, 65, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Cao, Y.; Wei, S.; Li, Y.; Li, X.; Wang, Q.; Wang, G. Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1. Front. Microbiol. 2015, 6, 923. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Z.; Shi, M.; Zhang, Y.; Wang, G. Regulation of antimonite oxidation and resistance by the phosphate regulator PhoB in Agrobacterium tumefaciens GW4. Microbiol. Res. 2019, 226, 10–18. [Google Scholar] [CrossRef]
- Santos-Beneit, F. The Pho regulon: A huge regulatory network in bacteria. Front. Microbiol. 2015, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Leloup, L.; Ehrlich, S.D.; Zagorec, M.; Morel-Deville, F. Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl. Environ. Microbiol. 1997, 63, 2117–2123. [Google Scholar] [CrossRef]
- Aukrust, T.; Blom, H. Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res. Int. 1992, 25, 253–261. [Google Scholar] [CrossRef]
- Posno, M.; Leer, R.J.; van Luijk, N.; van Giezen, M.J.F.; Heuvelmans, P.T.H.M.; Lokman, B.C.; Pouwels, P.H. Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 1991, 57, 1822–1828. [Google Scholar] [CrossRef]
- Schotte, L.; Steidler, L.; Vandekerckhove, J.; Remaut, E. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzym. Microb. Technol. 2000, 27, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Holo, H.; Nes, I.F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Env. Microbiol. 1989, 55, 3119–3123. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.J.; Devesa, V.; Vélez, D. In vitro reduction of arsenic bioavailability using dietary strategies. J. Agric. Food Chem. 2017, 65, 3956–3964. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-H.; Ilgen, G.; Fecher, P. Quantitative chemical extraction for arsenic speciation in rice grains. J. Anal. At. Spectrom. 2010, 25, 800–802. [Google Scholar] [CrossRef]
- Domínguez-González, M.R.; Barciela-Alonso, M.C.; Calvo-Millán, V.G.; Herbello-Hermelo, P.; Bermejo-Barrera, P. The bioavailability of arsenic species in rice. Anal. Bioanal. Chem. 2020, 412, 3253–3259. [Google Scholar] [CrossRef]
Strain Designation and Collection Code | % As(III) Retention | % As(V) Retention | % DMA Retention |
---|---|---|---|
BL7 Levilactobacillus brevis DSMZ a 1268 | 0.48 ± 0.08 | 0.06 ± 0.01 | 0.09 ± 0.02 |
BL10 Lactobacillus acidophilus ATCC b 9224 | 3.28 ± 1.40 | 0.80 ± 0.18 | 0.74 ± 0.13 |
BL17 Lactobacillus acidophilus ATCC b 4356 | 3.99 ± 0.95 | 0.41 ± 0.27 | 0.88 ± 0.27 |
BL23 Lacticaseibacillus paracasei CECT c 5275 | 0.08 ± 0.07 | 0.09 ± 0.03 | 0.03 ± 0.02 |
BL36 Levilactobacillus brevis ATCC b 14869 | 3.01 ± 0.19 | 2.92 ± 0.05 | 0.35 ± 0.01 |
BL73 Lactobacillus acidophilus CNRZ d 55 | 2.60 ± 0.32 | 0.77 ± 0.42 | 0.83 ± 0.35 |
BL75 Lactobacillus acidophilus CNRZ d 21 | 3.27 ± 0.06 | 0.49 ± 0.12 | 0.51 ± 0.35 |
BL166 Lactiplantibacillus plantarum WCFS1 e | 1.26 ± 0.12 | 0.01 ± 0.03 | 0.47 ± 0.05 |
BL221 Lactobacillus crispatus M247 f | 1.20 ± 0.10 | 0.36 ± 0.14 | 0.24 ± 0.08 |
BL278 Lactobacillus crispatus DSMZ a 20584 | 1.38 ± 0.04 | 0.27 ±0.01 | 0.37 ± 0.04 |
BL279 Lactobacillus acidophilus CECT c 4529 | 1.25 ± 0.12 | 0.20 ± 0.09 | 0.41 ± 0.10 |
BL280 Lactobacillus acidophilus CECT c 4179 | 2.41 ± 0.15 | 0.41 ± 0.13 | 0.76 ± 0.41 |
Lpp+ Lactiplantibacillus plantarum g | 2.55 ± 0.16 | 5.70 ± 0.16 | 1.12 ± 0.09 |
Strain | Genotype | Reference |
---|---|---|
Lp. plantarum WCFS1 | wild-type | [26] |
Lp. plantarum DC421 | WCFS1 pstC::pRV300; eryR a | This work |
Lp. plantarum DC423 | WCFS1 phoP::pRV300; eryR | This work |
Lp. plantarum DC425 | WCFS1 phoU::pRV300; eryR | This work |
Lp. plantarum Lpp+ | wild-type | Laboratory stock |
Lp. plantarum DC424 | Lpp+ pstC::pRV300; eryR | This work |
Lc. paracasei BL23 | wild-type | CECT 5275 |
Lc. paracasei DC399 | BL23 pstC::pRV300; eryR | This work |
Lc. paracasei TC04 | BL23 phoP::pRV300; eryR | [24] |
Lc. paracasei DC398 | BL23 phoU::pRV300; eryR | This work |
Lc. paracasei DC487 | BL23 ΔphoP | This work |
Lc. paracasei DC488 | BL23 ΔphoP [pT1phoP]; eryR | This work |
Lc. paracasei DC489 | BL23 ΔphoR | This work |
Lc. paracasei DC490 | BL23 ΔphoR [pT1phoR]; eryR | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrales, D.; Alcántara, C.; Clemente, M.J.; Vélez, D.; Devesa, V.; Monedero, V.; Zúñiga, M. Phosphate Uptake and Its Relation to Arsenic Toxicity in Lactobacilli. Int. J. Mol. Sci. 2024, 25, 5017. https://doi.org/10.3390/ijms25095017
Corrales D, Alcántara C, Clemente MJ, Vélez D, Devesa V, Monedero V, Zúñiga M. Phosphate Uptake and Its Relation to Arsenic Toxicity in Lactobacilli. International Journal of Molecular Sciences. 2024; 25(9):5017. https://doi.org/10.3390/ijms25095017
Chicago/Turabian StyleCorrales, Daniela, Cristina Alcántara, María Jesús Clemente, Dinoraz Vélez, Vicenta Devesa, Vicente Monedero, and Manuel Zúñiga. 2024. "Phosphate Uptake and Its Relation to Arsenic Toxicity in Lactobacilli" International Journal of Molecular Sciences 25, no. 9: 5017. https://doi.org/10.3390/ijms25095017
APA StyleCorrales, D., Alcántara, C., Clemente, M. J., Vélez, D., Devesa, V., Monedero, V., & Zúñiga, M. (2024). Phosphate Uptake and Its Relation to Arsenic Toxicity in Lactobacilli. International Journal of Molecular Sciences, 25(9), 5017. https://doi.org/10.3390/ijms25095017