The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria
Abstract
:1. Introduction
2. Bacterial Heat Shock Proteins
2.1. Heat Shock Proteins of Plant Pathogenic Bacteria
2.1.1. Heat Shock Proteins Levels Are Regulated in Response to In Vitro Stress Factors
2.1.2. The Expression Levels of hsp Genes and Hsp Chaperones Are Altered During the Process of Plant Infection
2.1.3. Heat Shock Proteins Are Identified in Extracellular Milieu or on the Bacterial Surface
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | adenosine diphosphate |
ATP | adenosine triphosphate |
CFU | colony forming unit |
Csp | cold shock protein |
CVC | citrus variegated chlorosis |
dpi | day post infection |
eDNA | Extracellular DNA |
EPS | exopolysaccharides |
HR | hypersensitive response |
hrp | hypersensitive reaction and pathogenicity genes |
Hsp | heat shock protein |
sHsp | small heat shock protein |
MS | mass spectrometry |
MV | membrane vesicle |
O-IMV | outer–inner membrane vesicles |
OMV | outer membrane vesicle |
PAMP | pathogen-associated molecular pattern |
PTM | post-translational modification |
SBD | substrate-binding domain |
T-DNA | transferred DNA |
T2SS | type II secretion system |
T3SS | type III secretion system |
T4SS | type IV secretion system |
T6SS | type VI secretion system |
WT | wild-type |
References
- World’s First International Plant Health Conference to Set Global Agenda on Biosecurity and Address Challenges in Plant Health. Available online: https://www.gov.uk/government/news/worlds-first-international-plant-health-conference-to-set-global-agenda-on-biosecurity-and-address-challenges-in-plant-health (accessed on 23 November 2024).
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R.; Pérombelon, M.C.M.; van Veen, J.A.; van der Wolf, J.M. Control of Blackleg and Tuber Soft Rot of Potato Caused by Pectobacterium and Dickeya Species: A Review. Plant Pathol. 2011, 60, 999–1013. [Google Scholar] [CrossRef]
- Islam, T.; Haque, M.A.; Barai, H.R.; Istiaq, A.; Kim, J.-J. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. Plants 2024, 13, 1135. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Zafar, S.; Shahzadi, M.; Bukhari, S.M.A.U.S.; Khan, N.; Shah, A.A.; Badshah, M.; Khan, S. Bacteriophages: An Overview of the Control Strategies against Phytopathogens. Egypt. J. Biol. Pest Control 2023, 33, 108. [Google Scholar] [CrossRef]
- Reverchon, S.; Nasser, W. Dickeya Ecology, Environment Sensing and Regulation of Virulence Programme. Environ. Microbiol. Rep. 2013, 5, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Kay, W.T.; Fones, H.N. Life on a Leaf: The Epiphyte to Pathogen Continuum and Interplay in the Phyllosphere. BMC Biol. 2024, 22, 168. [Google Scholar] [CrossRef]
- Figaj, D.; Ambroziak, P.; Przepiora, T.; Skorko-Glonek, J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int. J. Mol. Sci. 2019, 20, 672. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, C.; Plassard, C.; Cookson, S.J.; Tardieu, F.; Simonneau, T. Do pH Changes in the Leaf Apoplast Contribute to Rapid Inhibition of Leaf Elongation Rate by Water Stress? Comparison of Stress Responses Induced by Polyethylene Glycol and down-Regulation of Root Hydraulic Conductivity. Plant Cell Environ. 2011, 34, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Sobeih, W.Y.; Dodd, I.C.; Bacon, M.A.; Grierson, D.; Davies, W.J. Long-Distance Signals Regulating Stomatal Conductance and Leaf Growth in Tomato (Lycopersicon esculentum) Plants Subjected to Partial Root-Zone Drying. J. Exp. Bot. 2004, 55, 2353–2363. [Google Scholar] [CrossRef] [PubMed]
- Wojtaszek, P. Oxidative Burst: An Early Plant Response to Pathogen Infection. Biochem. J. 1997, 322, 681–692. [Google Scholar] [CrossRef]
- Reverchon, S.; Muskhelisvili, G.; Nasser, W. Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. In Progress in Molecular Biology and Translational Science; San Francisco, M., San Francisco, B., Eds.; Host-Microbe Interactions; Academic Press: Cambridge, MA, USA, 2016; Volume 142, pp. 51–92. [Google Scholar]
- Melotto, M.; Kunkel, B.N. Virulence Strategies of Plant Pathogenic Bacteria. In The Prokaryotes: Prokaryotic Physiology and Biochemistry; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–82. ISBN 978-3-642-30141-4. [Google Scholar]
- Lindquist, S.; Craig, E.A. The Heat-Shock Proteins. Annu. Rev. Genet. 1988, 22, 631–677. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat Shock Proteins: Biological Functions, Pathological Roles, and Therapeutic Opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef] [PubMed]
- Grossman, A.D.; Erickson, J.W.; Gross, C.A. The htpR Gene Product of E. coli Is a Sigma Factor for Heat-Shock Promoters. Cell 1984, 38, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, H.; Koike-Takeshita, A. In Vivo Client Proteins of the Chaperonin GroEL-GroES Provide Insight into the Role of Chaperones in Protein Evolution. Front. Mol. Biosci. 2023, 10, 1091677. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Adato, O.; Horovitz, A.; Unger, R. Comparative Genomic Analysis of Mollicutes with and without a Chaperonin System. PLoS ONE 2018, 13, e0192619. [Google Scholar] [CrossRef] [PubMed]
- Kerner, M.J.; Naylor, D.J.; Ishihama, Y.; Maier, T.; Chang, H.-C.; Stines, A.P.; Georgopoulos, C.; Frishman, D.; Hayer-Hartl, M.; Mann, M.; et al. Proteome-Wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli. Cell 2005, 122, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.M.S.; Chugh, K.; Dutta, A.; Mahamkali, V.; Bose, T.; Mande, S.S.; Mande, S.C.; Lund, P.A. Chaperonin Abundance Enhances Bacterial Fitness. Front. Mol. Biosci. 2021, 8, 669996. [Google Scholar] [CrossRef]
- Hayer-Hartl, M.; Bracher, A.; Hartl, F.U. The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding. Trends Biochem. Sci. 2016, 41, 62–76. [Google Scholar] [CrossRef]
- Tyagi, N.K.; Fenton, W.A.; Horwich, A.L. GroEL/GroES Cycling: ATP Binds to an Open Ring before Substrate Protein Favoring Protein Binding and Production of the Native State. Proc. Natl. Acad. Sci. USA 2009, 106, 20264–20269. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 Chaperone Network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Szabo, A.; Langer, T.; Schröder, H.; Flanagan, J.; Bukau, B.; Hartl, F.U. The ATP Hydrolysis-Dependent Reaction Cycle of the Escherichia coli Hsp70 System DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 1994, 91, 10345–10349. [Google Scholar] [CrossRef]
- Schröder, H.; Langer, T.; Hartl, F.U.; Bukau, B. DnaK, DnaJ and GrpE Form a Cellular Chaperone Machinery Capable of Repairing Heat-Induced Protein Damage. EMBO J. 1993, 12, 4137–4144. [Google Scholar] [CrossRef]
- Kędzierska-Mieszkowska, S.; Zolkiewski, M. Hsp100 Molecular Chaperone ClpB and Its Role in Virulence of Bacterial Pathogens. Int. J. Mol. Sci. 2021, 22, 5319. [Google Scholar] [CrossRef]
- Acebrón, S.P.; Martín, I.; del Castillo, U.; Moro, F.; Muga, A. DnaK-Mediated Association of ClpB to Protein Aggregates. A Bichaperone Network at the Aggregate Surface. FEBS Lett. 2009, 583, 2991–2996. [Google Scholar] [CrossRef] [PubMed]
- Schlee, S.; Beinker, P.; Akhrymuk, A.; Reinstein, J. A Chaperone Network for the Resolubilization of Protein Aggregates: Direct Interaction of ClpB and DnaK. J. Mol. Biol. 2004, 336, 275–285. [Google Scholar] [CrossRef]
- Wickner, S.; Nguyen, T.-L.L.; Genest, O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu. Rev. Microbiol. 2021, 75, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Grindle, M.P.; Carter, B.; Alao, J.P.; Connors, K.; Tehver, R.; Kravats, A.N. Structural Communication between the E. coli Chaperones DnaK and Hsp90. Int. J. Mol. Sci. 2021, 22, 2200. [Google Scholar] [CrossRef] [PubMed]
- Shiau, A.K.; Harris, S.F.; Southworth, D.R.; Agard, D.A. Structural Analysis of E. coli Hsp90 Reveals Dramatic Nucleotide-Dependent Conformational Rearrangements. Cell 2006, 127, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Jakob, U.; Lilie, H.; Meyer, I.; Buchner, J. Transient Interaction of Hsp90 with Early Unfolding Intermediates of Citrate Synthase: IMPLICATIONS FOR HEAT SHOCK IN VIVO(∗). J. Biol. Chem. 1995, 270, 7288–7294. [Google Scholar] [CrossRef] [PubMed]
- Mogk, A.; Ruger-Herreros, C.; Bukau, B. Cellular Functions and Mechanisms of Action of Small Heat Shock Proteins. Annu. Rev. Microbiol. 2019, 73, 89–110. [Google Scholar] [CrossRef]
- Ratajczak, E.; Ziętkiewicz, S.; Liberek, K. Distinct Activities of Escherichia coli Small Heat Shock Proteins IbpA and IbpB Promote Efficient Protein Disaggregation. J. Mol. Biol. 2009, 386, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Piróg, A.; Cantini, F.; Nierzwicki, Ł.; Obuchowski, I.; Tomiczek, B.; Czub, J.; Liberek, K. Two Bacterial Small Heat Shock Proteins, IbpA and IbpB, Form a Functional Heterodimer. J. Mol. Biol. 2021, 433, 167054. [Google Scholar] [CrossRef]
- Bianco, M.I.; Toum, L.; Yaryura, P.M.; Mielnichuk, N.; Gudesblat, G.E.; Roeschlin, R.; Marano, M.R.; Ielpi, L.; Vojnov, A.A. Xanthan Pyruvilation Is Essential for the Virulence of Xanthomonas campestris Pv. Campestris. Mol. Plant-Microbe Interact. MPMI 2016, 29, 688–699. [Google Scholar] [CrossRef]
- Büttner, D.; Bonas, U. Regulation and Secretion of Xanthomonas Virulence Factors. FEMS Microbiol. Rev. 2010, 34, 107–133. [Google Scholar] [CrossRef]
- Timilsina, S.; Potnis, N.; Newberry, E.A.; Liyanapathiranage, P.; Iruegas-Bocardo, F.; White, F.F.; Goss, E.M.; Jones, J.B. Xanthomonas Diversity, Virulence and Plant-Pathogen Interactions. Nat. Rev. Microbiol. 2020, 18, 415–427. [Google Scholar] [CrossRef]
- Malnoy, M.; Martens, S.; Norelli, J.L.; Barny, M.-A.; Sundin, G.W.; Smits, T.H.M.; Duffy, B. Fire Blight: Applied Genomic Insights of the Pathogen and Host. Annu. Rev. Phytopathol. 2012, 50, 475–494. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.-S.; Beer, S.V. Molecular Genetics of Erwinia amylovora Involved in the Development of Fire Blight. FEMS Microbiol. Lett. 2005, 253, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Piqué, N.; Miñana-Galbis, D.; Merino, S.; Tomás, J.M. Virulence Factors of Erwinia Amylovora: A Review. Int. J. Mol. Sci. 2015, 16, 12836–12854. [Google Scholar] [CrossRef]
- Schachterle, J.K.; Gdanetz, K.; Pandya, I.; Sundin, G.W. Identification of Novel Virulence Factors in Erwinia amylovora through Temporal Transcriptomic Analysis of Infected Apple Flowers under Field Conditions. Mol. Plant Pathol. 2022, 23, 855–869. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Zhao, Y.; Liu, F.; Fu, Z.Q. Pseudomonas syringae Pathovars. Trends Microbiol. 2022, 30, 912–913. [Google Scholar] [CrossRef]
- Huang, J.; Yao, C.; Sun, Y.; Ji, Q.; Deng, X. Virulence-Related Regulatory Network of Pseudomonas syringae. Comput. Struct. Biotechnol. J. 2022, 20, 6259–6270. [Google Scholar] [CrossRef]
- Xin, X.-F.; Kvitko, B.; He, S.Y. Pseudomonas syringae: What It Takes to Be a Pathogen. Nat. Rev. Microbiol. 2018, 16, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Ingel, B.; Castro, C.; Burbank, L.; Her, N.; De Anda, N.I.; Way, H.; Wang, P.; Roper, M.C. Xylella fastidiosa Requires the Type II Secretion System for Pathogenicity and Survival in Grapevine. Mol. Plant-Microbe Interact. MPMI 2023, 36, 636–646. [Google Scholar] [CrossRef]
- Rapicavoli, J.; Ingel, B.; Blanco-Ulate, B.; Cantu, D.; Roper, C. Xylella fastidiosa: An Examination of a Re-emerging Plant Pathogen. Mol. Plant Pathol. 2018, 19, 786–800. [Google Scholar] [CrossRef]
- Jiang, X.; Zghidi-Abouzid, O.; Oger-Desfeux, C.; Hommais, F.; Greliche, N.; Muskhelishvili, G.; Nasser, W.; Reverchon, S. Global Transcriptional Response of Dickeya Dadantii to Environmental Stimuli Relevant to the Plant Infection. Environ. Microbiol. 2016, 18, 3651–3672. [Google Scholar] [CrossRef]
- Hikichi, Y.; Yoshimochi, T.; Tsujimoto, S.; Shinohara, R.; Nakaho, K.; Kanda, A.; Kiba, A.; Ohnishi, K. Global Regulation of Pathogenicity Mechanism of Ralstonia solanacearum. Plant Biotechnol. 2007, 24, 149–154. [Google Scholar] [CrossRef]
- Vailleau, F.; Genin, S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. Annu. Rev. Phytopathol. 2023, 61, 25–47. [Google Scholar] [CrossRef]
- Brown, P.J.B.; Chang, J.H.; Fuqua, C. Agrobacterium tumefaciens: A Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. J. Bacteriol. 2023, 205, e00005-23. [Google Scholar] [CrossRef] [PubMed]
- Escobar, M.A.; Dandekar, A.M. Agrobacterium tumefaciens as an Agent of Disease. Trends Plant Sci. 2003, 8, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Ageichik, A.V.; Evtushenkov, A.N.; Nikolaichik, Y.A. The Role of Type III Secretion System in Erwinia carotovora Subsp. Atroseptica Virulence. Plant Prot. Sci. 2002, 38, 523–527. [Google Scholar] [CrossRef]
- Chatterjee, A.; Cui, Y.; Chakrabarty, P.; Chatterjee, A.K. Regulation of Motility in Erwinia carotovora Subsp. Carotovora: Quorum-Sensing Signal Controls FlhDC, the Global Regulator of Flagellar and Exoprotein Genes, by Modulating the Production of RsmA, an RNA-Binding Protein. Mol. Plant-Microbe Interact. MPMI 2010, 23, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, P.R.; Kariola, T.; Niemi, O.; Palva, T. Pathogenicity of and Plant Immunity to Soft Rot Pectobacteria. Front. Plant Sci. 2013, 4, 191. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, V.; Parfirova, O.; Petrova, O.; Gogoleva, N.; Kovtunov, E.; Vorob’ev, V.; Gogolev, Y. The Knockout of Enterobactin-Related Gene in Pectobacterium Atrosepticum Results in Reduced Stress Resistance and Virulence towards the Primed Plants. Int. J. Mol. Sci. 2021, 22, 9594. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, F.; Boshoff, A.; Blatch, G.L. Rational Mutagenesis of a 40 kDa Heat Shock Protein from Agrobacterium tumefaciens Identifies Amino Acid Residues Critical to Its in Vivo Function. Int. J. Biochem. Cell Biol. 2005, 37, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Boshoff, A.; Stephens, L.L.; Blatch, G.L. The Agrobacterium tumefaciens DnaK: ATPase Cycle, Oligomeric State and Chaperone Properties. Int. J. Biochem. Cell Biol. 2008, 40, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-L.; Chiang, Y.-R.; Narberhaus, F.; Baron, C.; Lai, E.-M. The Small Heat-Shock Protein HspL Is a VirB8 Chaperone Promoting Type IV Secretion-Mediated DNA Transfer. J. Biol. Chem. 2010, 285, 19757–19766. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lee, C.-N.; Lin, J.-W.; Tsai, W.-J.; Wang, S.-W.; Weng, S.-F.; Tseng, Y.-H. Characterization of Xanthomonas campestris Pv. Campestris Heat Shock Protein A (HspA), Which Possesses an Intrinsic Ability to Reactivate Inactivated Proteins. Appl. Microbiol. Biotechnol. 2010, 88, 699–709. [Google Scholar] [CrossRef]
- Balsiger, S.; Ragaz, C.; Baron, C.; Narberhaus, F. Replicon-Specific Regulation of Small Heat Shock Genes in Agrobacterium tumefaciens. J. Bacteriol. 2004, 186, 6824–6829. [Google Scholar] [CrossRef]
- Lai, E.-M.; Shih, H.-W.; Wen, S.-R.; Cheng, M.-W.; Hwang, H.-H.; Chiu, S.-H. Proteomic Analysis of Agrobacterium tumefaciens Response to the Vir Gene Inducer Acetosyringone. Proteomics 2006, 6, 4130–4136. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Wang, M.-H.; Gao, C.; Klüsener, S.; Baron, C.; Narberhaus, F.; Lai, E.-M. Small Heat-Shock Protein HspL Is Induced by VirB Protein(s) and Promotes VirB/D4-Mediated DNA Transfer in Agrobacterium tumefaciens. Microbiology 2009, 155, 3270–3280. [Google Scholar] [CrossRef] [PubMed]
- Segal, G.; Ron, E.Z. The groESL Operon of Agrobacterium tumefaciens: Evidence for Heat Shock-Dependent mRNA Cleavage. J. Bacteriol. 1995, 177, 750–757. [Google Scholar] [CrossRef]
- Nakahigashi, K.; Ron, E.Z.; Yanagi, H.; Yura, T. Differential and Independent Roles of a Sigma(32) Homolog (RpoH) and an HrcA Repressor in the Heat Shock Response of Agrobacterium tumefaciens. J. Bacteriol. 1999, 181, 7509–7515. [Google Scholar] [CrossRef]
- Segal, G.; Ron, E.Z. The dnaKJ Operon of Agrobacterium tumefaciens: Transcriptional Analysis and Evidence for a New Heat Shock Promoter. J. Bacteriol. 1995, 177, 5952–5958. [Google Scholar] [CrossRef] [PubMed]
- Segal, G.; Ron, E.Z. Heat Shock Transcription of the groESL Operon of Agrobacterium tumefaciens May Involve a Hairpin-Loop Structure. J. Bacteriol. 1993, 175, 3083–3088. [Google Scholar] [CrossRef] [PubMed]
- Mantis, N.J.; Winans, S.C. Characterization of the Agrobacterium tumefaciens Heat Shock Response: Evidence for a Sigma 32-like Sigma Factor. J. Bacteriol. 1992, 174, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; Büttner, K.; Schmid, R.; Hecker, M.; Ron, E.Z. Stress-Induced Proteins of Agrobacterium tumefaciens. FEMS Microbiol. Ecol. 2001, 35, 277–285. [Google Scholar] [CrossRef]
- Yuan, Z.-C.; Liu, P.; Saenkham, P.; Kerr, K.; Nester, E.W. Transcriptome Profiling and Functional Analysis of Agrobacterium tumefaciens Reveals a General Conserved Response to Acidic Conditions (pH 5.5) and a Complex Acid-Mediated Signaling Involved in Agrobacterium-Plant Interactions. J. Bacteriol. 2008, 190, 494–507. [Google Scholar] [CrossRef]
- Ahmed, B.; Jailani, A.; Lee, J.-H.; Lee, J. Inhibition of Growth, Biofilm Formation, Virulence, and Surface Attachment of Agrobacterium tumefaciens by Cinnamaldehyde Derivatives. Front. Microbiol. 2022, 13, 1001865. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.; Suh, D.H.; Lee, C.H.; Yoo, S.M.; Lee, S.Y.; Yoon, S.H. Heat-Responsive and Time-Resolved Transcriptome and Metabolome Analyses of Escherichia coli Uncover Thermo-Tolerant Mechanisms. Sci. Rep. 2020, 10, 17715. [Google Scholar] [CrossRef] [PubMed]
- Keith, L.M.; Partridge, J.E.; Bender, C.L. dnaK and the Heat Stress Response of Pseudomonas syringae Pv. Glycinea. Mol. Plant-Microbe Interact. MPMI 1999, 12, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Tran Thi Ngoc, A.; Nguyen Van, K.; Lee, Y.H. DnaJ, a Heat Shock Protein 40 Family Member, Is Essential for the Survival and Virulence of Plant Pathogenic Pseudomonas Cichorii JBC1. Res. Microbiol. 2023, 174, 104094. [Google Scholar] [CrossRef] [PubMed]
- Arvizu-Gómez, J.L.; Hernández-Morales, A.; Aguilar, J.R.P.; Álvarez-Morales, A. Transcriptional Profile of P. Syringae Pv. Phaseolicola NPS3121 at Low Temperature: Physiology of Phytopathogenic Bacteria. BMC Microbiol. 2013, 13, 81. [Google Scholar] [CrossRef]
- Geng, X.; Jin, L.; Shimada, M.; Kim, M.G.; Mackey, D. The Phytotoxin Coronatine Is a Multifunctional Component of the Virulence Armament of Pseudomonas syringae. Planta 2014, 240, 1149–1165. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Ishiga, Y.; Fujikawa, T. Phytotoxin Synthesis Genes and Type III Effector Genes of Pseudomonas syringae Pv. Actinidiae Biovar 6 Are Regulated by Culture Conditions. PeerJ 2020, 8, e9697. [Google Scholar] [CrossRef]
- Weng, S.-F.; Tai, P.-M.; Yang, C.-H.; Wu, C.-D.; Tsai, W.-J.; Lin, J.-W.; Tseng, Y.-H. Characterization of Stress-Responsive Genes, hrcA-grpE-dnaK-dnaJ, from Phytopathogenic Xanthomonas campestris. Arch. Microbiol. 2001, 176, 121–128. [Google Scholar] [CrossRef]
- Martins, D.; Astua-Monge, G.; Coletta-Filho, H.D.; Winck, F.V.; Baldasso, P.A.; De Oliveira, B.M.; Marangoni, S.; Machado, M.A.; Novello, J.C.; Smolka, M.B. Absence of Classical Heat Shock Response in the Citrus Pathogen Xylella fastidiosa. Curr. Microbiol. 2007, 54, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Figaj, D.; Czaplewska, P.; Przepióra, T.; Ambroziak, P.; Potrykus, M.; Skorko-Glonek, J. Lon Protease Is Important for Growth under Stressful Conditions and Pathogenicity of the Phytopathogen, Bacterium Dickeya Solani. Int. J. Mol. Sci. 2020, 21, 3687. [Google Scholar] [CrossRef] [PubMed]
- Przepiora, T.; Figaj, D.; Radzinska, M.; Apanowicz (Bukrejewska), M.; Sieradzka, M.; Ambroziak, P.; Hugouvieux-Cotte-Pattat, N.; Lojkowska, E.; Skorko-Glonek, J. Effects of Stressful Physico-Chemical Factors on the Fitness of the Plant Pathogenic Bacterium Dickeya Solani. Eur. J. Plant Pathol. 2020, 156, 519–535. [Google Scholar] [CrossRef]
- Przepiora, T.; Figaj, D.; Bogucka, A.; Fikowicz-Krosko, J.; Czajkowski, R.; Hugouvieux-Cotte-Pattat, N.; Skorko-Glonek, J. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya Solani. Int. J. Mol. Sci. 2022, 23, 697. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Jaquet, V.; Lemeille, S.; Bonetti, E.-J.; Cambet, Y.; François, P.; Krause, K.-H. Transcriptomic Analysis of E. coli after Exposure to a Sublethal Concentration of Hydrogen Peroxide Revealed a Coordinated Up-Regulation of the Cysteine Biosynthesis Pathway. Antioxidants 2022, 11, 655. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, X.; Templeton, L.J.; Smulski, D.R.; LaRossa, R.A.; Storz, G. DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide. J. Bacteriol. 2001, 183, 4562–4570. [Google Scholar] [CrossRef] [PubMed]
- Koide, T.; Vêncio, R.Z.N.; Gomes, S.L. Global Gene Expression Analysis of the Heat Shock Response in the Phytopathogen Xylella fastidiosa. J. Bacteriol. 2006, 188, 5821–5830. [Google Scholar] [CrossRef] [PubMed]
- da Silva Neto, J.F.; Koide, T.; Gomes, S.L.; Marques, M.V. Global Gene Expression under Nitrogen Starvation in Xylella fastidiosa: Contribution of the Σ54 Regulon. BMC Microbiol. 2010, 10, 231. [Google Scholar] [CrossRef]
- Dourado, M.N.; Pierry, P.M.; Feitosa-Junior, O.R.; Uceda-Campos, G.; Barbosa, D.; Zaini, P.A.; Dandekar, A.M.; da Silva, A.M.; Araújo, W.L. Transcriptome and Secretome Analyses of Endophyte Methylobacterium mesophilicum and Pathogen Xylella fastidiosa Interacting Show Nutrient Competition. Microorganisms 2023, 11, 2755. [Google Scholar] [CrossRef]
- Yang, L.; Wei, Z.; Li, S.; Xiao, R.; Xu, Q.; Ran, Y.; Ding, W. Plant Secondary Metabolite, Daphnetin Reduces Extracellular Polysaccharides Production and Virulence Factors of Ralstonia solanacearum. Pestic. Biochem. Physiol. 2021, 179, 104948. [Google Scholar] [CrossRef]
- Zhao, Y.; Blumer, S.E.; Sundin, G.W. Identification of Erwinia amylovora Genes Induced during Infection of Immature Pear Tissue. J. Bacteriol. 2005, 187, 8088–8103. [Google Scholar] [CrossRef]
- Holtappels, M.; Vrancken, K.; Noben, J.P.; Remans, T.; Schoofs, H.; Deckers, T.; Valcke, R. The in Planta Proteome of Wild Type Strains of the Fire Blight Pathogen, Erwinia Amylovora. J. Proteom. 2016, 139, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gross, C.A. Cold Shock Response in Bacteria. Annu. Rev. Genet. 2021, 55, 377–400. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.G.; Dangl, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Holtappels, M.; Noben, J.-P.; Van Dijck, P.; Valcke, R. Fire Blight Host-Pathogen Interaction: Proteome Profiles of Erwinia amylovora Infecting Apple Rootstocks. Sci. Rep. 2018, 8, 11689. [Google Scholar] [CrossRef]
- Puławska, J.; Kałużna, M.; Warabieda, W.; Mikiciński, A. Comparative Transcriptome Analysis of a Lowly Virulent Strain of Erwinia amylovora in Shoots of Two Apple Cultivars—Susceptible and Resistant to Fire Blight. BMC Genom. 2017, 18, 868. [Google Scholar] [CrossRef]
- Hack, C.J. Integrated Transcriptome and Proteome Data: The Challenges Ahead. Brief. Funct. Genom. Proteomic 2004, 3, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-L.; Chiang, Y.-R.; Wu, C.-F.; Narberhaus, F.; Lai, E.-M. One out of Four: HspL but No Other Small Heat Shock Protein of Agrobacterium tumefaciens Acts as Efficient Virulence-Promoting VirB8 Chaperone. PLoS ONE 2012, 7, e49685. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; Matthysse, A.G.; Becher, D.; Biran, D.; Yura, T.; Hecker, M.; Ron, E.Z. Proteome Analysis of Plant-Induced Proteins of Agrobacterium tumefaciens. FEMS Microbiol. Ecol. 2003, 44, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Caruso Bavisotto, C.; Alberti, G.; Vitale, A.M.; Paladino, L.; Campanella, C.; Rappa, F.; Gorska, M.; Conway de Macario, E.; Cappello, F.; Macario, A.J.L.; et al. Hsp60 Post-Translational Modifications: Functional and Pathological Consequences. Front. Mol. Biosci. 2020, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Arora, G.; Bothra, A.; Prosser, G.; Arora, K.; Sajid, A. Role of Post-Translational Modifications in the Acquisition of Drug Resistance in Mycobacterium Tuberculosis. FEBS J. 2021, 288, 3375–3393. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Yao, Q.; Justice, N.B.; Ahn, T.-H.; Xu, D.; Hettich, R.L.; Banfield, J.F.; Pan, C. Diverse and Divergent Protein Post-Translational Modifications in Two Growth Stages of a Natural Microbial Community. Nat. Commun. 2014, 5, 4405. [Google Scholar] [CrossRef] [PubMed]
- Seeger, M.; Osorio, G.; Jerez, C.A. Phosphorylation of GroEL, DnaK and Other Proteins from Thiobacillus Ferrooxidans Grown under Different Conditions. FEMS Microbiol. Lett. 1996, 138, 129–134. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Mande, S.C. A Glimpse Into the Structure and Function of Atypical Type I Chaperonins. Front. Mol. Biosci. 2018, 5, 31. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, M.; Sun, L. Edwardsiella tarda DnaJ Is a Virulence-Associated Molecular Chaperone with Immunoprotective Potential. Fish Shellfish Immunol. 2011, 31, 182–188. [Google Scholar] [CrossRef]
- Cui, J.; Ma, C.; Ye, G.; Shi, Y.; Xu, W.; Zhong, L.; Wang, J.; Yin, Y.; Zhang, X.; Wang, H. DnaJ (Hsp40) of Streptococcus Pneumoniae Is Involved in Bacterial Virulence and Elicits a Strong Natural Immune Reaction via PI3K/JNK. Mol. Immunol. 2017, 83, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Sakata, N.; Usuki, G.; Ishiga, T.; Hashimoto, Y.; Ishiga, Y. Multiple Virulence Factors Regulated by AlgU Contribute to the Pathogenicity of Pseudomonas Savastanoi Pv. Glycinea in Soybean. PeerJ 2021, 9, e12405. [Google Scholar] [CrossRef]
- Dang, W.; Hu, Y.; Sun, L. HtpG Is Involved in the Pathogenesis of Edwardsiella tarda. Vet. Microbiol. 2011, 152, 394–400. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; Pretre, G.; Bartpho, T.; Sermswan, R.W.; Toma, C.; Suzuki, T.; Eshghi, A.; Picardeau, M.; Adler, B.; Murray, G.L. High-Temperature Protein G Is an Essential Virulence Factor of Leptospira Interrogans. Infect. Immun. 2014, 82, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Garcie, C.; Tronnet, S.; Garénaux, A.; McCarthy, A.J.; Brachmann, A.O.; Pénary, M.; Houle, S.; Nougayrède, J.-P.; Piel, J.; Taylor, P.W.; et al. The Bacterial Stress-Responsive Hsp90 Chaperone (HtpG) Is Required for the Production of the Genotoxin Colibactin and the Siderophore Yersiniabactin in Escherichia coli. J. Infect. Dis. 2016, 214, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Zimaro, T.; Thomas, L.; Marondedze, C.; Sgro, G.G.; Garofalo, C.G.; Ficarra, F.A.; Gehring, C.; Ottado, J.; Gottig, N. The Type III Protein Secretion System Contributes to Xanthomonas citri Subsp. Citri Biofilm Formation. BMC Microbiol. 2014, 14, 96. [Google Scholar] [CrossRef]
- Lemos, J.A.; Luzardo, Y.; Burne, R.A. Physiologic Effects of Forced Down-Regulation of dnaK and groEL Expression in Streptococcus mutans. J. Bacteriol. 2007, 189, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Syring, M.; Singh, A.; Singhal, K.; Dalecki, A.; Johansson, T. An Insight into the Significance of the DnaK Heat Shock System in Staphylococcus Aureus. Int. J. Med. Microbiol. IJMM 2012, 302, 242–252. [Google Scholar] [CrossRef]
- Vivien, E.; Megessier, S.; Pieretti, I.; Cociancich, S.; Frutos, R.; Gabriel, D.W.; Rott, P.C.; Royer, M. Xanthomonas albilineans HtpG Is Required for Biosynthesis of the Antibiotic and Phytotoxin Albicidin. FEMS Microbiol. Lett. 2005, 251, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Távora, F.T.P.K.; Santos, C.; Maximiano, M.R.; Murad, A.M.; Oliveira-Neto, O.B.; Megias, E.; Reis Junior, F.B.; Franco, O.L.; Mehta, A. Pan Proteome of Xanthomonas campestris Pv. Campestris Isolates Contrasting in Virulence. Proteomics 2019, 19, e1900082. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cho, Y.-J.; Song, E.-S.; Lee, S.H.; Kim, J.-G.; Kang, L.-W. Time-Resolved Pathogenic Gene Expression Analysis of the Plant Pathogen Xanthomonas Oryzae Pv. Oryzae. BMC Genom. 2016, 17, 345. [Google Scholar] [CrossRef] [PubMed]
- Puławska, J.; Kałużna, M.; Warabieda, W.; Pothier, J.F.; Gétaz, M.; van der Wolf, J.M. Transcriptome Analysis of Xanthomonas fragariae in Strawberry Leaves. Sci. Rep. 2020, 10, 20582. [Google Scholar] [CrossRef] [PubMed]
- H. D. Sagawa, C.; de A. B. Assis, R.; Zaini, P.A.; Wilmarth, P.A.; Phinney, B.S.; Moreira, L.M.; Dandekar, A.M. Proteome Analysis of Walnut Bacterial Blight Disease. Int. J. Mol. Sci. 2020, 21, 7453. [Google Scholar] [CrossRef]
- Artier, J.; da Silva Zandonadi, F.; de Souza Carvalho, F.M.; Pauletti, B.A.; Leme, A.F.P.; Carnielli, C.M.; Selistre-de-Araujo, H.S.; Bertolini, M.C.; Ferro, J.A.; Belasque Júnior, J.; et al. Comparative Proteomic Analysis of Xanthomonas citri Ssp. Citri Periplasmic Proteins Reveals Changes in Cellular Envelope Metabolism during in Vitro Pathogenicity Induction. Mol. Plant Pathol. 2018, 19, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Okinaka, Y.; Yang, C.-H.; Perna, N.T.; Keen, N.T. Microarray Profiling of Erwinia Chrysanthemi 3937 Genes That Are Regulated during Plant Infection. Mol. Plant-Microbe Interact. MPMI 2002, 15, 619–629. [Google Scholar] [CrossRef]
- Silva, M.S.; De Souza, A.A.; Takita, M.A.; Labate, C.A.; Machado, M.A. Analysis of the Biofilm Proteome of Xylella fastidiosa. Proteome Sci. 2011, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.A.; Takita, M.A.; Coletta-Filho, H.D.; Caldana, C.; Yanai, G.M.; Muto, N.H.; de Oliveira, R.C.; Nunes, L.R.; Machado, M.A. Gene Expression Profile of the Plant Pathogen Xylella fastidiosa during Biofilm Formation in Vitro. FEMS Microbiol. Lett. 2004, 237, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Pidot, S.J.; Porter, J.L.; Tobias, N.J.; Anderson, J.; Catmull, D.; Seemann, T.; Kidd, S.; Davies, J.K.; Reynolds, E.; Dashper, S.; et al. Regulation of the 18 kDa Heat Shock Protein in Mycobacterium ulcerans: An Alpha-Crystallin Orthologue That Promotes Biofilm Formation. Mol. Microbiol. 2010, 78, 1216–1231. [Google Scholar] [CrossRef]
- Kuczyńska-Wiśnik, D.; Matuszewska, E.; Laskowska, E. Escherichia coli Heat-Shock Proteins IbpA and IbpB Affect Biofilm Formation by Influencing the Level of Extracellular Indole. Microbiology 2010, 156, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Fan, Y.; Wang, X.; Li, P.; Huang, Y.; Jiao, J.; Zhao, C.; Li, Y.; Wang, S.; Du, X. Characterization of Molecular Chaperone GroEL as a Potential Virulence Factor in Cronobacter Sakazakii. Foods 2023, 12, 3404. [Google Scholar] [CrossRef] [PubMed]
- Vinod Kumar, K.; Lall, C.; Vimal Raj, R.; Vedhagiri, K.; Kartick, C.; Surya, P.; Natarajaseenivasan, K.; Vijayachari, P. Overexpression of Heat Shock GroEL Stress Protein in Leptospiral Biofilm. Microb. Pathog. 2017, 102, 8–11. [Google Scholar] [CrossRef] [PubMed]
- de Souza, J.B.; Almeida-Souza, H.O.; Zaini, P.A.; Alves, M.N.; de Souza, A.G.; Pierry, P.M.; da Silva, A.M.; Goulart, L.R.; Dandekar, A.M.; Nascimento, R. Xylella fastidiosa Subsp. Pauca Strains Fb7 and 9a5c from Citrus Display Differential Behavior, Secretome, and Plant Virulence. Int. J. Mol. Sci. 2020, 21, 6769. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.S.; Santiago, A.S.; Toledo, M.A.S.; Horta, M.A.C.; de Souza, A.A.; Tasic, L.; de Souza, A.P. In Vitro Determination of Extracellular Proteins from Xylella fastidiosa. Front. Microbiol. 2016, 7, 2090. [Google Scholar] [CrossRef]
- Yu, F.; Dong, C.; Zhang, Y.; Che, R.; Xie, C.; Liu, Y.; Zhang, Z.; Li, L.; Chen, X.; Cai, X.; et al. GrpE and ComD Contribute to the Adherence, Biofilm Formation, and Pathogenicity of Streptococcus Suis. Arch. Microbiol. 2023, 205, 159. [Google Scholar] [CrossRef]
- Gétaz, M.; Puławska, J.; Smits, T.H.M.; Pothier, J.F. Host–Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × Ananassa Investigated with a Dual RNA-Seq Analysis. Microorganisms 2020, 8, 1253. [Google Scholar] [CrossRef]
- Kastelein, P.; Krijger, M.; Czajkowski, R.; van der Zouwen, P.S.; van der Schoor, R.; Jalink, H.; van der Wolf, J.M. Development of Xanthomonas fragariae Populations and Disease Progression in Strawberry Plants after Spray-Inoculation of Leaves. Plant Pathol. 2014, 63, 255–263. [Google Scholar] [CrossRef]
- Bocsanczy, A.M.; Achenbach, U.C.M.; Mangravita-Novo, A.; Chow, M.; Norman, D.J. Proteomic Comparison of Ralstonia solanacearum Strains Reveals Temperature Dependent Virulence Factors. BMC Genom. 2014, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Bocsanczy, A.M.; Achenbach, U.C.M.; Mangravita-Novo, A.; Yuen, J.M.F.; Norman, D.J. Comparative Effect of Low Temperature on Virulence and Twitching Motility of Ralstonia solanacearum Strains Present in Florida. Phytopathology 2012, 102, 185–194. [Google Scholar] [CrossRef]
- Brown, D.G.; Allen, C. Ralstonia solanacearum Genes Induced during Growth in Tomato: An inside View of Bacterial Wilt. Mol. Microbiol. 2004, 53, 1641–1660. [Google Scholar] [CrossRef] [PubMed]
- Braun, P.G.; Hildebrand, P.D. Infection, Carbohydrate Utilization, and Protein Profiles of Apple, Pear, and Raspberry Isolates of Erwinia Amylovora. Can. J. Plant Pathol. 2005, 27, 338–346. [Google Scholar] [CrossRef]
- Nissinen, R.M.; Ytterberg, A.J.; Bogdanove, A.J.; Van Wijk, K.J.; Beer, S.V. Analyses of the Secretomes of Erwinia amylovora and Selected Hrp Mutants Reveal Novel Type III Secreted Proteins and an Effect of HrpJ on Extracellular Harpin Levels. Mol. Plant Pathol. 2007, 8, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, J.; Waite, C.J.; Bennett, M.H.; Perez, M.F.; Shethi, K.; Buck, M. Differential Secretome Analysis of Pseudomonas syringae Pv Tomato Using Gel-Free MS Proteomics. Front. Plant Sci. 2014, 5, 242. [Google Scholar] [CrossRef]
- McMillan, H.M.; Kuehn, M.J. Proteomic Profiling Reveals Distinct Bacterial Extracellular Vesicle Subpopulations with Possibly Unique Functionality. Appl. Environ. Microbiol. 2023, 89, e0168622. [Google Scholar] [CrossRef]
- Leduc, M.; Kasra, R.; van Heijenoort, J. Induction and Control of the Autolytic System of Escherichia coli. J. Bacteriol. 1982, 152, 26–34. [Google Scholar] [CrossRef]
- Carnielli, C.M.; Artier, J.; de Oliveira, J.C.F.; Novo-Mansur, M.T.M. Xanthomonas citri Subsp. Citri Surface Proteome by 2D-DIGE: Ferric Enterobactin Receptor and Other Outer Membrane Proteins Potentially Involved in Citric Host Interaction. J. Proteom. 2017, 151, 251–263. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Moreira, L.M.; Ferro, J.A.; Soares, M.R.R.; Laia, M.L.; Varani, A.M.; de Oliveira, J.C.F.; Ferro, M.I.T. Unravelling Potential Virulence Factor Candidates in Xanthomonas citri. Subsp. Citri by Secretome Analysis. PeerJ 2016, 4, e1734. [Google Scholar] [CrossRef] [PubMed]
- González, J.F.; Degrassi, G.; Devescovi, G.; De Vleesschauwer, D.; Höfte, M.; Myers, M.P.; Venturi, V. A Proteomic Study of Xanthomonas Oryzae Pv. Oryzae in Rice Xylem Sap. J. Proteom. 2012, 75, 5911–5919. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kim, S.G.; Wu, J.; Huh, H.-H.; Lee, S.-J.; Rakwal, R.; Agrawal, G.K.; Park, Z.-Y.; Young Kang, K.; Kim, S.T. Secretome Analysis of the Rice Bacterium Xanthomonas Oryzae (Xoo) Using in Vitro and in Planta Systems. Proteomics 2013, 13, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Pour, N.; Condemine, G.; Hugouvieux-Cotte-Pattat, N. The Secretome of the Plant Pathogenic Bacterium Erwinia Chrysanthemi. Proteomics 2004, 4, 3177–3186. [Google Scholar] [CrossRef]
- Jonca, J.; Waleron, M.; Czaplewska, P.; Bogucka, A.; Steć, A.; Dziomba, S.; Jasiecki, J.; Rychłowski, M.; Waleron, K. Membrane Vesicles of Pectobacterium as an Effective Protein Secretion System. Int. J. Mol. Sci. 2021, 22, 12574. [Google Scholar] [CrossRef]
- Mattinen, L.; Nissinen, R.; Riipi, T.; Kalkkinen, N.; Pirhonen, M. Host-Extract Induced Changes in the Secretome of the Plant Pathogenic Bacterium Pectobacterium Atrosepticum. Proteomics 2007, 7, 3527–3537. [Google Scholar] [CrossRef]
- Cruz, L.F.; Cobine, P.A.; De La Fuente, L. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility. Appl. Environ. Microbiol. 2012, 78, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Guilhabert, M.R.; Kirkpatrick, B.C. Identification of Xylella fastidiosa Antivirulence Genes: Hemagglutinin Adhesins Contribute to X. Fastidiosa Biofilm Maturation and Colonization and Attenuate Virulence. Mol. Plant-Microbe Interactions® 2005, 18, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Massier, S.; Robin, B.; Mégroz, M.; Wright, A.; Harper, M.; Hayes, B.; Cosette, P.; Broutin, I.; Boyce, J.D.; Dé, E.; et al. Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Front. Microbiol. 2021, 12, 738780. [Google Scholar] [CrossRef]
- Nascimento, R.; Gouran, H.; Chakraborty, S.; Gillespie, H.W.; Almeida-Souza, H.O.; Tu, A.; Rao, B.J.; Feldstein, P.A.; Bruening, G.; Goulart, L.R.; et al. The Type II Secreted Lipase/Esterase LesA Is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines. Sci. Rep. 2016, 6, 18598. [Google Scholar] [CrossRef]
- Henderson, B.; Fares, M.A.; Lund, P.A. Chaperonin 60: A Paradoxical, Evolutionarily Conserved Protein Family with Multiple Moonlighting Functions. Biol. Rev. Camb. Philos. Soc. 2013, 88, 955–987. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.W.; Tillier, E.R.M. Loss and Gain of GroEL in the Mollicutes. Biochem. Cell Biol. Biochim. Biol. Cell. 2010, 88, 185–194. [Google Scholar] [CrossRef]
- MoonProt—A Database for Moonlighting Proteins. Available online: http://www.moonlightingproteins.org/ (accessed on 28 December 2024).
- Ho, J.D.; Takara, L.E.M.; Monaris, D.; Gonçalves, A.P.; Souza-Filho, A.F.; de Souza, G.O.; Heinemann, M.B.; Ho, P.L.; Abreu, P.A.E. GroEL Protein of the Leptospira Spp. Interacts with Host Proteins and Induces Cytokines Secretion on Macrophages. BMC Microbiol. 2021, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, T.; Mori, S.; Miyanaga, K.; Yamamoto, N. GroEL Secreted from Bacillus Subtilis Natto Exerted a Crucial Role for Anti-Inflammatory IL-10 Induction in THP-1 Cells. Microorganisms 2023, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, L.; Gründel, A.; Jacobs, E.; Dumke, R. The Surface-Displayed Chaperones GroEL and DnaK of Mycoplasma pneumoniae Interact with Human Plasminogen and Components of the Extracellular Matrix. Pathog. Dis. 2017, 75, ftx017. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Liu, B.; Yu, Y.; Yuan, T.; Wei, Y.; Gan, Y.; Shao, J.; Shao, G.; Feng, Z.; et al. DnaK Functions as a Moonlighting Protein on the Surface of Mycoplasma hyorhinis Cells. Front. Microbiol. 2022, 13, 842058. [Google Scholar] [CrossRef]
- Zella, D.; Curreli, S.; Benedetti, F.; Krishnan, S.; Cocchi, F.; Latinovic, O.S.; Denaro, F.; Romerio, F.; Djavani, M.; Charurat, M.E.; et al. Mycoplasma Promotes Malignant Transformation in Vivo, and Its DnaK, a Bacterial Chaperone Protein, Has Broad Oncogenic Properties. Proc. Natl. Acad. Sci. USA 2018, 115, E12005–E12014. [Google Scholar] [CrossRef]
Genus | Species Examples | Major Hosts | Disease Symptoms | Example Sets of Virulence Traits | References |
---|---|---|---|---|---|
Xanthomonas | X. oryzae X. campestris X. axonopodis X. citri | Rice, citrus, cabbage, broadleaf, carpetgrass | Bacterial blight, citrus canker, black rot | Ax21 protein, motility, biofilm formation, exopolysaccharides (EPS)- xanthan, type III secretion system (T3SS), plant cell wall degrading enzymes (PCWDEs) | [2,36,37,38] |
Erwinia | E. amylovora | Apple, pear | Fire blight | EPS (amylovoran, levan), motility, biofilm formation, T3SS, catalase activity, PrtA protease, siderophores | [2,39,40,41,42] |
Pseudomonas | P. syringae P. cichorii P. savastanoi | Tomato, tobacco, soy, olive, chicory | Bacterial leaf spot, bacterial blight, plant canker (tumor) | T3SS, biofilm formation, siderophores, motility, EPS (alginate, levan), PCWDEs, coronatine toxin | [2,43,44,45] |
Xylella | X. fastidiosa | Coffee, grapevine, olive tree, citrus | Pierce’s diseases, citrus variegated chlorosis (CVC), coffee leaf scorch | Type II secretion system (T2SS), biofilm formation, afimbrial haemagglutinin adhesins, EPS, type IV-pili-based motility | [2,46,47] |
Dickeya | D. dadantii D. solani | Potato, cabbage, chicory | Soft rot, black leg | PCWDEs, chemotactic motility, siderophores | [2,6,12,48] |
Ralstonia | R. solanacearum | Potato, tobacco, peanut | Bacterial wilt | T3SS, EPS, biofilm formation, motility, PCWDEs | [2,49,50] |
Agrobacterium | A. tumefaciens | Grapevine, plum, peach | Crown gall, hairy root | Transferred DNA (T-DNA) transfer via type IV secretion system (T4SS) chemotactic motility, Vir proteins | [2,51,52] |
Pectobacterium | P. atrosepticum P. carotovorum | Potato, carrot, tomato, celery | Black leg, soft rot, aerial stem rot | PCWDEs, T3SS, siderophores, motility | [2,53,54,55,56] |
Genus | Hsp (Eat Shock Protein) | Elevated Temperature | Ethanol | Acidic pH | Oxidative Stress | Ionic Osmotic Stress | Non-Ionic Osmotic Stress | Antibiotics | Heavy Metals | Antimicrobial Compounds | Co-Culture with Other Bacteria | In Planta | Mimicking In Planta Conditions | Biofilm Formation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agrobacterium | GroEL | + | + | + | + | |||||||||
GroES | + | + | ||||||||||||
DnaK | + | + | + | + | + | |||||||||
DnaJ | ||||||||||||||
GrpE | ||||||||||||||
HtpG | ||||||||||||||
ClpB | + | |||||||||||||
Small Hsp | + | + | + | |||||||||||
Pseudomonas | GroEL | + | ||||||||||||
GroES | ||||||||||||||
DnaK | + | |||||||||||||
DnaJ | + | + | ||||||||||||
GrpE | + | |||||||||||||
HtpG | ||||||||||||||
ClpB | + | |||||||||||||
Small Hsp | + | |||||||||||||
Xanthomonas | GroEL | |||||||||||||
GroES | + | |||||||||||||
DnaK | + | + | + | |||||||||||
DnaJ | + | |||||||||||||
GrpE | + | + | ||||||||||||
HtpG | ||||||||||||||
ClpB | ||||||||||||||
Small Hsp | + | |||||||||||||
Dickeya | GroEL | + | + | + | + | |||||||||
GroES | + | |||||||||||||
DnaK | + | + | + | + | ||||||||||
DnaJ | + | + | + | + | ||||||||||
GrpE | + | |||||||||||||
HtpG | ||||||||||||||
ClpB | + | + | ||||||||||||
Small Hsp | + | + | + | |||||||||||
Xylella | GroEL | + | + | + | ||||||||||
GroES | + | + | ||||||||||||
DnaK | + | + | ||||||||||||
DnaJ | + | |||||||||||||
GrpE | + | + | + | |||||||||||
HtpG | ||||||||||||||
ClpB | + | + | ||||||||||||
Small Hsp | + | + | ||||||||||||
Ralstonia | GroEL | + | ||||||||||||
GroES | + | |||||||||||||
DnaK | + | |||||||||||||
DnaJ | ||||||||||||||
GrpE | + | |||||||||||||
HtpG | + | |||||||||||||
ClpB | + | |||||||||||||
Small Hsp | ||||||||||||||
Erwinia | GroEL | |||||||||||||
GroES | ||||||||||||||
DnaK | + | |||||||||||||
DnaJ | + | |||||||||||||
GrpE | + | |||||||||||||
HtpG | + | |||||||||||||
ClpB | + | |||||||||||||
Small Hsp | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figaj, D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int. J. Mol. Sci. 2025, 26, 528. https://doi.org/10.3390/ijms26020528
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. International Journal of Molecular Sciences. 2025; 26(2):528. https://doi.org/10.3390/ijms26020528
Chicago/Turabian StyleFigaj, Donata. 2025. "The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria" International Journal of Molecular Sciences 26, no. 2: 528. https://doi.org/10.3390/ijms26020528
APA StyleFigaj, D. (2025). The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. International Journal of Molecular Sciences, 26(2), 528. https://doi.org/10.3390/ijms26020528