Next Article in Journal
The Ocular Surface and the Anterior Segment of the Eye in the Pseudoexfoliation Syndrome: A Comprehensive Review
Previous Article in Journal
Neohesperidin Mitigates High-Fat-Diet-Induced Colitis In Vivo by Modulating Gut Microbiota and Enhancing SCFAs Synthesis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Residual Traditional Risk in Non-Traditional Atherosclerotic Diseases

by
Federico Biscetti
1,2,*,†,
Giorgia Polito
1,†,
Maria Margherita Rando
1,
Maria Anna Nicolazzi
1,
Luis H. Eraso
3,
Paul J. DiMuzio
3,
Massimo Massetti
4,5,
Antonio Gasbarrini
2,6 and
Andrea Flex
1,2
1
Cardiovascular Internal Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
2
Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
3
Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
4
Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
5
Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
6
Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2025, 26(2), 535; https://doi.org/10.3390/ijms26020535
Submission received: 10 December 2024 / Revised: 5 January 2025 / Accepted: 8 January 2025 / Published: 10 January 2025
(This article belongs to the Section Molecular Endocrinology and Metabolism)

Abstract

:
Individuals with chronic inflammatory and immune disorders are at an increased risk of atherosclerotic events and premature cardiovascular (CV) disease. Despite extensive literature exploring the relationship between “non-traditional” atherosclerotic conditions and CV risk, many aspects remain unresolved, including the underlying mechanisms promoting the “non-traditional CV risk”, the development of an innovative and comprehensive CV risk assessment tool, and recommendations for tailored interventions. This review aims to evaluate the available evidence on key “non-traditional” CV risk-enhancer conditions, with a focus on assessing and managing CV risk factors. We conducted a comprehensive review of 412 original articles, narrative and systematic reviews, and meta-analyses addressing the CV risk associated with “non-traditional” atherosclerotic conditions. The analysis examined the underlying mechanisms of these relationships and identified strategies for assessing and mitigating elevated risk. A major challenge highlighted is the difficulty in quantifying the contribution of individual risk factors and disease-specific elements to CV risk. While evidence supports the cardiovascular benefits of statins beyond lipid lowering, such as pleiotropic and endothelial effects, current guidelines lack specific recommendations for the use of statins or other therapies targeting non-traditional CV risk factors. Additionally, the absence of validated cardiovascular risk scores that incorporate non-traditional risk factors hinders accurate CV risk evaluation and management. The growing prevalence of “non-traditional CV risk-enhancer conditions” underscores the need for improved awareness of CV risk assessment and management. A thorough understanding of all contributing factors, including disease-specific elements, is crucial for accurate prediction of cardiovascular disease (CVD) risk. This represents an essential foundation for informed decision-making in primary and secondary prevention. We advocate for future research to focus on developing innovative, disease-specific CV risk assessment tools that incorporate non-traditional risk factors, recognizing this as a promising avenue for translational and clinical outcome research.

1. Introduction

The term atherosclerotic cardiovascular diseases (ASCVDs) refers to a spectrum of conditions affecting blood vessels and the heart, characterized by the accumulation of plaque predominantly driven by lipid-related processes [1]. ASCVDs are the leading cause of mortality worldwide and a major contributor to global morbidity, accounting for nearly one-third of all annual deaths and impacting over 500 million individuals globally [2,3,4]. Over recent decades, the incidence and prevalence of ASCVDs have risen steadily, making them one of the most common chronic medical conditions worldwide [4,5]. Similar to other chronic disorders, ASCVDs not only pose significant health challenges but also impose a substantial economic burden [6]. These trends highlight the severe threat posed by cardiovascular diseases, which continue to be a critical concern for global health systems, as well as social and economic stability.
The European Society of Cardiology (ESC) guidelines identify serum apolipoprotein-B-containing lipoproteins, hypertension, diabetes mellitus, obesity, and smoking as the primary risk factors for ASCVDs [7]. Recognizing the heterogeneity of patients, current guidelines emphasize the use of specific biomarkers (e.g., low-density lipoprotein, glycated hemoglobin, body mass index) to aid in individualized risk assessment, guide management strategies, and intensify treatment when necessary [7]. However, translating cardiovascular disease risk into treatment thresholds remains challenging. No fixed threshold mandates treatment for cardiovascular (CV) risk, nor does any lower limit exclude intervention for risk factors [7]. Given the pandemic scale of cardiovascular disease (CVD), a holistic approach that extends beyond lifestyle modifications and therapeutic targets is essential. This underscores the importance of early initiation and titration of pharmacological prevention strategies, such as aspirin and lipid-lowering therapies [8,9,10,11].
The formation and progression of atherosclerotic plaques are primarily driven by the deposition of low-density lipoprotein cholesterol (LDL-C) and other apolipoprotein-B-containing lipoproteins within the arterial walls [7,12]. Consequently, lipid-lowering therapy is fundamental for reducing serum cholesterol levels, stabilizing atherosclerotic plaques, and preventing their progression or rupture. Currently, lipid-lowering therapies are the cornerstone of both primary and secondary prevention of ASCVDs [13,14]. Guidelines utilize LDL-C as a key biomarker for risk stratification and treatment adjustments, with progressively lower therapeutic targets recommended for individuals at higher risk [7,15]. Emerging evidence suggests that reducing LDL-C levels below the current targets provides additional benefits, paving the way for further refinement of lipid-lowering strategies [16].
Lifestyle interventions remain pivotal; however, pharmacological management of dyslipidemia has long relied on inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, commonly known as statins [17]. Statins not only effectively lower LDL-C levels but also exhibit pleiotropic effects, including anti-inflammatory and antioxidant properties, offering added cardiovascular benefits [18,19]. Nonetheless, many patients struggle to achieve optimal LDL-C targets or tolerate the high statin doses often required [17].
To address these limitations, the spectrum of available lipid-lowering therapies has expanded beyond statins. Options now include cholesterol absorption inhibitors (e.g., ezetimibe), cholesterol synthesis inhibitors (e.g., bempedoic acid), bile acid sequestrants, proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors (e.g., evolocumab, alirocumab), interfering RNA molecules (e.g., inclisiran), and triglyceride-lowering agents (e.g., icosapent ethyl) [15,20]. These therapies aim to meet the increasingly stringent LDL-C targets while accommodating patients who are statin intolerant or resistant to standard regimens [20].
However, these advances represent only part of the challenge. The ESC guidelines also highlight a range of “non-traditional” atherosclerotic conditions associated with elevated CV risk [15,21]. These include autoimmune, auto-inflammatory, neoplastic, and infectious diseases, each presenting unique therapeutic challenges. In some cases, the underlying disease accelerates the atherosclerotic process, while in others, standard treatments may inadvertently exacerbate ASCVD risk [15,21]. Current cardiovascular risk scores often underestimate risk in these populations, leading to suboptimal stratification and management strategies [22,23,24,25,26,27,28,29]. Therefore, with the growing prevalence and spread of these non-traditional atherosclerotic conditions, even among individuals traditionally considered part of the “ASCVD population”, addressing these gaps is critical.
This review focuses on key immune-mediated conditions and HIV infection, examining their inflammatory risk profiles and the necessity for long-term therapies in affected individuals. By highlighting these challenges, we aim to emphasize the need for more tailored prevention and management strategies, paving the way for improved outcomes in this diverse patient population.

2. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune and inflammatory disorder characterized by the progressive degeneration of synovial membranes in joints, leading to joint damage and deformities [30]. The emerging concept of “vascular rheumatology” highlights the critical role of chronic inflammatory burden (CIB) in promoting atherosclerotic processes in RA and similar conditions [31,32,33]. This inflammatory state is associated with pro-atherosclerotic alterations in lipoprotein profiles (e.g., elevated triglycerides and lipoprotein (a), reduced high-density lipoprotein-cholesterol), disruptions in cholesterol trafficking, increased oxidative stress, and endothelial dysfunction. As a result, RA patients face significantly heightened cardiovascular (CV) risk, contributing to increased morbidity and mortality [34,35,36].
Despite recognizing RA patients as a high-risk group for ASCVDs, current guidelines often underestimate their CV risk and fail to appropriately stratify patients into suitable risk categories [22,34]. Tools like the Cardiovascular Risk Score (QRISK2), the Expanded CVR Score for RA, the TransAtlantic Cardiovascular Risk Calculator for Rheumatoid Arthritis (ATACC-RA), and the Reynolds Score, as well as traditional risk calculators adjusted with a risk coefficient, have shown inconsistencies in estimating CV risk in this population [22,23].
The ESC position paper on lipid management in RA emphasizes the importance of stratifying patients based on disease-specific factors such as activity and severity, categorizing them into low-risk RA (LR-RA) and high-risk RA (HR-RA) groups [22]. For HR-RA patients, reclassification into higher ESC CV risk categories is recommended, with corresponding adjustments to low-density lipoprotein-cholesterol (LDL-C) targets to reflect their elevated risk [22].
The European League Against Rheumatism (EULAR) guidelines advocate for statins as the first-line lipid-lowering therapy in RA when optimal lipid control cannot be achieved through non-pharmacological measures [33,34]. Randomized controlled trials have demonstrated that statins not only improve lipid profiles but also reduce the incidence of major cardiovascular events in RA patients [37,38]. Beyond LDL-C reduction, statins exhibit anti-inflammatory, antithrombotic, and antioxidant effects, acting directly on atherosclerotic plaques and vessel walls, which contribute to their cardioprotective properties [39,40].
Thanks to their pleiotropic effects, statins are increasingly viewed not only as CV risk modifiers but also as adjunctive therapies for RA disease control [38,41,42,43]. For patients who fail to reach LDL-C targets or cannot tolerate statins, non-statin therapies such as ezetimibe and PCSK9 inhibitors offer effective alternatives [34]. Ezetimibe, in addition to inhibiting cholesterol absorption, has demonstrated anti-inflammatory properties and potential benefits in reducing RA disease activity, akin to statins [44]. Low levels of PCSK9, correlated with higher remission rates in RA patients receiving anti-tumor necrosis factor (TNF)-α therapy, further suggest a role for PCSK9 inhibitors in managing disease activity and CV risk [45].
The interplay between inflammation and CV risk also shapes the effects of antirheumatic drugs on lipid profiles and CV outcomes [34]. Traditional disease-modifying antirheumatic drugs (DMARDs), including methotrexate (MTX), hydroxychloroquine (HCQ), and sulfasalazine (SSZ), possess anti-inflammatory properties and have demonstrated protective effects against cardiovascular disease (CVD) [34,46,47]. Among biologics, anti-TNF-α agents and interleukin-6 (IL-6) inhibitors have been associated with changes in lipid levels, while the Janus kinase (JAK) inhibitor tofacitinib has shown similar effects [46,48,49,50,51]. Importantly, none of these treatments have been linked to increased CV risk; on the contrary, evidence suggests they reduce CV morbidity and events [52,53,54,55]. Limited data exist for other biologics, such as rituximab, abatacept, and anakinra, though rituximab has shown some benefits on lipid profiles [56,57].
Despite the growing understanding of RA-associated CV risk, optimal management remains challenging. Accurately quantifying disease-related risk and appropriately stratifying patients are ongoing issues. Encouragingly, the protective effects of DMARDs on CV risk suggest that suppressing inflammation outweighs the potential drawbacks of lipid changes. Furthermore, the pleiotropic benefits of lipid-lowering therapies like statins highlight their critical role in reducing CV risk while contributing to comprehensive disease control (Table 1).

3. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by inflammation of connective tissues, capable of affecting nearly any organ or system in the body [58]. Cardiovascular involvement is a well-recognized complication of SLE [59], driven by both traditional and disease-specific risk factors, including prolonged disease duration, active disease, organ damage, autoantibodies, and medications [60,61]. Dyslipidemia in SLE, marked by low and dysfunctional high-density lipoproteins (HDL), elevated triglycerides, and oxidized LDL-C, accelerates atherosclerosis and intensifies autoimmune and inflammatory responses, negatively influencing long-term outcomes [61,62,63,64]. Accelerated atherosclerosis increases the prevalence of peripheral artery disease (PAD) and premature coronary artery calcification, significantly contributing to morbidity and mortality [65,66,67,68,69].
SLE is considered an independent risk factor for CVD and is treated as a “CVD risk equivalent” due to the elevated cardiovascular morbidity and mortality observed in patients, beyond what traditional risk factors alone can explain [70]. This underscores the urgent need to enhance risk estimation models by incorporating biomarkers and disease-specific factors [23]. Early approaches, such as doubling the Framingham Risk Score (FRS), failed to capture disease activity-related heterogeneity, limiting their sensitivity for high-risk individuals [23,71,72,73]. A new SLE-specific risk score, incorporating variables like global activity score, lupus anticoagulant, and low complement C3, has been proposed to address these gaps [73]. Despite limitations in evidence, EULAR guidelines emphasize identifying and managing traditional risk factors in SLE patients [71].
While an SLE diagnosis alone does not mandate treatment, EULAR guidelines recommend lipid-lowering therapy for primary prevention according to general population guidelines [71]. Emerging evidence supports the use of statins in SLE patients, demonstrating favorable effects on CV risk, morbidity, and mortality [23,55,74,75,76,77,78]. Beyond modulating lipid profiles, statins mitigate SLE-associated atherogenesis by improving endothelial function, reducing carotid intima-media thickness, and exerting immunomodulatory effects [75,79,80,81,82,83]. However, the impact of statins on SLE disease activity remains unclear, with studies yielding inconsistent findings [76]. Observed reductions in high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor receptor levels, and antiphospholipid antibodies suggest potential benefits for disease activity [74,76,84,85].
The interplay between inflammation and atherosclerosis in SLE highlights the potential of targeting specific inflammatory pathways to reduce cardiovascular risk in SLE patients [86,87,88]. Rituximab, a B-cell-targeted therapy, has shown promise in improving lipid profiles by reducing inflammation [89,90]. Additionally, targeting the interferon-1 (INF-1) pathway, a key contributor to atherosclerosis, with novel therapies may help control disease activity while improving cardiovascular outcomes [91,92,93,94].
Given SLE’s classification as a CV risk equivalent, preventive measures and aggressive therapeutic interventions must be integral to disease management. As research evolves, focusing on immune and inflammatory mediators as potential therapeutic targets offers promising avenues for preventing and treating cardiovascular complications in SLE patients (Table 2).

4. Systemic Sclerosis

Systemic sclerosis (SSc) is a chronic autoimmune disorder characterized by excessive collagen deposition, leading to widespread tissue fibrosis and vasculopathy [96,97]. While microvascular dysfunction is a hallmark of SSc, the extent and impact of macrovascular disease, commonly observed in other autoimmune rheumatic conditions, are less well defined [98,99]. Nonetheless, the increasing prevalence of cardiovascular-related deaths and premature mortality among SSc patients in recent decades has raised concerns about an elevated risk of CVD in this population [98,99,100,101].
Epidemiological studies have documented a higher prevalence of macrovascular conditions, including PAD, cerebrovascular disease, and coronary artery disease, in SSc patients [102,103,104,105,106,107,108,109,110,111]. However, unlike other autoimmune diseases where accelerated atherosclerosis predominantly drives cardiovascular risk, SSc involves a complex interplay of microvascular and macrovascular pathologies. This dual involvement complicates the understanding of the mechanisms underlying CVD in SSc [99,106].
Given this complexity, a comprehensive approach to cardiovascular risk assessment is essential. This includes consideration of “non-traditional” factors such as microvascular dysfunction, which may significantly contribute to CVD development and progression in SSc patients [24]. Despite this, current guidelines recommend using general population-based tools for cardiovascular risk stratification, with the management of traditional risk factors, such as dyslipidemia, following standard guidelines for the general population [71].
Endothelial injury plays a central role in both atherosclerosis and the vasculopathy associated with SSc, driving fibrosis and pathological collagen deposition [112,113]. Evidence suggests that statins may offer benefits in mitigating endothelial dysfunction, although their specific therapeutic role in SSc remains unclear [114,115,116,117].
The unique pathophysiological characteristics of SSc present challenges in accurately estimating cardiovascular risk and stratifying patients appropriately. This gap highlights the need for tailored recommendations for cardiovascular prevention and risk factor management in SSc. Further research is warranted to explore the potential of statins as a disease-modifying therapy, particularly their ability to address both endothelial dysfunction and the fibrotic processes inherent to SSc (Table 3).

5. Psoriasis and Psoriatic Arthritis

Psoriasis, a chronic immune-mediated inflammatory disorder primarily affecting the skin and its appendages, has evolved from being considered solely a dermatological condition [118] to being recognized as a multisystem disease with a wide range of extracutaneous manifestations. These include psoriatic arthritis (PsA), inflammatory bowel disease (IBD), other immune disorders, and CVD [119,120,121].
Patients with psoriasis and PsA exhibit a significantly higher prevalence of CVD compared to the general population [122,123,124,125]. This increased risk is partially explained by traditional cardiovascular risk factors, such as diabetes, dyslipidemia, obesity, hypertension, metabolic syndrome, and smoking [126,127,128,129,130,131,132,133,134,135,136,137,138,139]. Moreover, psoriasis itself has emerged as an independent risk factor for CVD, with a severity-dependent relationship demonstrated in several studies [118,138,140,141,142]. Patients with severe psoriasis, as assessed by measures like the psoriasis area severity index (PASI) or body surface area (BSA), show a higher prevalence of hypertension, dyslipidemia, diabetes, metabolic syndrome, and major adverse cardiovascular events (MACE) [136,143,144,145,146].
The relationship between psoriasis and CVD is deeply intertwined, with shared immune-mediated inflammatory mechanisms playing a key role. Emerging evidence points to the involvement of IL-17 cytokines as a critical link [147,148], alongside other mechanisms such as cytokine dysregulation, platelet hyper-responsiveness, oxidative stress, endothelial dysfunction, and disruptions in skin barrier integrity [148,149,150].
The Joint American Academy of Dermatology (AAD) recommends comprehensive cardiovascular risk assessment for all psoriasis patients, advocating for the inclusion of both traditional and non-traditional risk factors. The AAD highlights the need for more frequent screening and adjustments to risk-scoring tools, particularly for patients undergoing systemic treatments or with a BSA > 10% [26,121]. In contrast, the American Heart Association (AHA) suggests evaluating subclinical atherosclerosis and biomarkers for enhanced risk assessment without establishing specific psoriasis severity thresholds [151,152]. According to the AHA guidelines, incorporating psoriasis as a risk factor may influence preventive strategies, including the initiation or intensification of statin therapy [151,153,154].
ESC and EULAR take a slightly different approach, recommending a multiplication factor of 1.5 to general population-based risk scores for patients with psoriasis, thereby promoting more standardized and consistent management [153,154].
Statins, with their pleiotropic and anti-inflammatory properties, hold promise for influencing psoriasis activity and severity [26]. By modulating vascular endothelial growth factor (VEGF), statins may inhibit vascular proliferation, a hallmark of psoriasis [155]. Some studies report improvements in psoriasis severity and progression with statin use [156,157,158,159], but others have observed no benefit or even worsening of psoriatic lesions [160,161,162,163,164,165,166]. This inconsistency underscores the need for further research into the role of lipid-lowering therapy in managing psoriasis and PsA.
Conversely, anti-psoriatic drugs are being actively investigated for their potential cardiovascular benefits. Non-biologic therapies like methotrexate [167,168] and apremilast [169,170] have demonstrated reductions in cardiovascular risk and CVD incidence. Among biologic therapies, TNF-α inhibitors have shown various cardioprotective effects, including improvements in cardiovascular biomarkers [171,172,173], traditional CV risk factors [169], and a reduced risk of MACE [174,175,176,177,178]. JAK inhibitors have shown minimal effects on MACE and no adverse impact on CV risk factors [179]. However, IL-12 and IL-23 inhibitors have yielded inconsistent results, raising concerns about their safety profiles [169,180].
Although IL-17 inhibitors were initially anticipated to have significant cardiovascular benefits due to the central role of the Th17 pathway in both psoriatic pathogenesis and CVD, recent evidence suggests that these agents do not substantially reduce the risk of cardiovascular events [181]. However, Elnabawi et al. [182] suggest that anti-IL-17 agents may offer the most favorable effects on plaque burden among biologic therapies, highlighting their potential for broader applications. Despite the growing recognition of the association between psoriasis and CVD, significant knowledge gaps persist. Effective patient stratification, integrating disease-related risk factors into cardiovascular risk assessment tools, remains a priority. Improved awareness of the psoriasis-CVD link could enable earlier diagnosis and treatment of comorbidities, ultimately improving morbidity and mortality outcomes. Further research is essential to refine therapeutic strategies and optimize patient management (Table 4).

6. Ankylosing Spondylitis

Ankylosing spondylitis (AS) is a systemic rheumatic disease primarily affecting the axial skeleton, often accompanied by extra-articular manifestations such as anterior uveitis, psoriasis, and IBD [183]. Patients with AS are at a significantly increased risk of CVD, with higher rates of CVD incidence, hospitalization, and mortality compared to the general population [184,185,186,187,188]. Numerous studies have highlighted the elevated prevalence of atherosclerotic risk factors and metabolic syndrome among AS patients [124,189,190,191,192]. While traditional cardiovascular risk factors play a role, disease-specific factors, including chronic inflammation and sustained disease activity, are critical contributors to the heightened CVD risk in AS [192,193,194].
AS is associated with an atherogenic lipid profile, characterized by reduced levels of HDL-C, elevated triglycerides, a higher LDL/HDL ratio, and an increased presence of small-dense LDL (sdLDL) particles [195,196,197,198]. This dyslipidemic profile is influenced directly by disease activity, as supported by Mendelian randomization studies [199]. The EULAR acknowledges AS as a condition with an increased cardiovascular risk. However, disease-specific CV risk prediction tools are not yet available, and current recommendations suggest using national guidelines or the SCORE model for CV risk assessment [154].
Although there are no established treatment thresholds for LDL-C or specific guidelines for dyslipidemia management in AS, emerging evidence supports the cardiovascular benefits of statins beyond their lipid-lowering effects [200,201,202,203,204]. Statins have demonstrated improvements in arterial wall inflammation, endothelial function, and atherosclerosis. Some studies also suggest their potential as adjunctive therapy for controlling AS-related disease activity [204,205,206].
Non-steroidal anti-inflammatory drugs (NSAIDs) remain the first-line treatment for pain and stiffness in AS. However, their use requires caution in patients with pre-existing CV risk factors or documented CVD [154,207]. Anti-TNF-α therapies have shown promise in reducing CV morbidity and mortality in AS patients, with evidence suggesting their role in mitigating subclinical atherosclerosis through anti-inflammatory mechanisms [208,209,210,211].
In summary, heightened awareness and proactive management of cardiovascular risk in AS patients are critical. Addressing both traditional and disease-related factors may improve cardiovascular outcomes and potentially contribute to better control of AS disease activity. Further research is warranted to optimize risk stratification and explore the broader therapeutic benefits of statins and anti-inflammatory treatments in this population (Table 5).

7. Systemic Vasculitis

Systemic vasculitis encompasses a spectrum of inflammatory and immune-mediated diseases that affect blood vessels of varying types, sizes, and locations, leading to diverse clinical manifestations [212,213]. CV complications associated with vasculitis include myocardial ischemia, heart failure, valvular disorders, myocarditis, pericarditis, pulmonary hypertension, stroke, and thromboembolic events [213,214,215]. Patients with vasculitis, particularly those with ANCA-associated vasculitis (AAV), face markedly elevated CV morbidity and mortality, with an overall CV risk approximately 65% higher than that of the general population [213,216,217,218,219,220,221,222].
The increased CV disease burden in vasculitis arises from both traditional and disease-specific risk factors, though their relative contributions remain poorly defined [71,223]. Mechanisms underlying CV events in vasculitis include active vasculitis, vascular damage with endothelial dysfunction and procoagulant states, and accelerated atherosclerosis [224,225]. Microvascular damage and impaired microvascular function further amplify CV risk, emphasizing the critical role of microcirculation in these patients [226].
Current guidelines recommend traditional CV risk assessment tools such as the FRS, QRISK3, or SCORE. However, FRS has been shown to underestimate CV risk in AAV patients, prompting suggestions for the application of a multiplication factor to account for this limitation [25,216,227]. Additionally, the Birmingham Vasculitis Activity Score has been correlated with CV events in AAV patients, underscoring the relevance of disease-specific factors in risk stratification [228,229,230,231]. The European Vasculitis Society also advocates for the use of disease-specific risk models to enhance CV risk prediction and management [71,232].
Statins, with their anti-inflammatory and endothelial-repairing properties, hold promise for reducing CV risk in vasculitis patients [233,234]. Promising results have been observed in certain vasculitis subtypes, although evidence specific to AAV remains inconclusive, pending the outcomes of ongoing trials [235,236,237,238,239].
Achieving disease remission has been associated with reduced CV risk, highlighting the importance of effective treatment strategies for vasculitis [225]. Glucocorticoids remain the cornerstone of AAV treatment, but efforts are ongoing to mitigate their cardiometabolic side effects through dose-reduction strategies [240]. Other immunosuppressive agents show potential in managing vasculitis, but their impact on CV outcomes requires further study [241,242,243].
Despite growing recognition of the interplay between vasculitis and CV disease, additional research is essential to develop disease-specific tools for CV risk assessment, refine interventions targeting traditional risk factors, and evaluate the long-term effects of current and novel therapies on CV risk and outcomes in this patient population (Table 6).

8. Inflammatory Bowel Disease

IBD, encompassing Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic systemic immune-mediated condition characterized by relapsing and remitting intestinal inflammation, often accompanied by a range of extraintestinal manifestations [244,245,246]. Although traditional CV risk factors are not overrepresented in IBD patients compared to the general population, these individuals face a significantly elevated risk of CV events [247,248,249,250]. This increased risk is attributed to a combination of chronic systemic inflammation, endothelial dysfunction, immune dysregulation, and gut microbiota dysbiosis [247,248,251].
Chronic inflammation in IBD plays a pivotal role in the development and progression of CVD [252]. Elevated levels of pro-inflammatory biomarkers, including interleukins, TNF-α, CRP, and serum amyloid A, have been consistently observed in IBD patients and are closely associated with increased atherosclerosis and heightened CV risk [251,252,253]. Furthermore, microvascular and macrovascular endothelial dysfunction in IBD contributes to the pathogenesis of atherosclerotic cardiovascular diseases through mechanisms such as platelet aggregation, arterial stiffening, and coagulation imbalance [251,252,254,255]. Microbiota dysbiosis, another hallmark of IBD, exacerbates CV risk by altering the composition of gut microbiota and promoting the production of proatherogenic metabolites, such as trimethylamine-N-oxide (TMAO), which play a direct role in the progression of atherosclerosis [251,256,257,258].
IBD is now recognized as a non-traditional risk factor for CV disease, necessitating accurate risk estimation that accounts for disease-specific factors, including the frequency and severity of disease flares, the extent of intestinal inflammation, and the location of disease involvement [259,260]. However, current CV risk assessment guidelines lack specific recommendations for integrating these IBD-related modifiers, which may lead to an underestimation of CV risk in this population [22,260]. While the ESC acknowledges the importance of CV risk assessment in IBD patients, specific recommendations for risk prediction remain lacking. This gap highlights the need to consider IBD patients as a high-risk group for CV complications [7,260].
Among cardiovascular medications, statins have shown potential benefits in IBD patients, including reductions in systemic inflammation, lower oral steroid requirements, and decreased colorectal cancer risk [261,262,263,264,265]. However, conflicting evidence exists regarding the effects of statins on IBD activity and flares, with some studies suggesting protective effects while others indicating no benefit or even potential adverse effects [266,267,268]. Despite their safety and reported benefits, as highlighted by the ESC, general recommendations supporting the routine use of statins for CV prevention or IBD treatment are currently unavailable due to insufficient evidence [252,269,270,271].
The impact of IBD treatments on CV risk remains complex and varies among therapeutic classes. Anti-inflammatory drugs, such as 5-aminosalicylates (5-ASA) and corticosteroids, have shown inconclusive effects on CV risk, with potential adverse outcomes including increased aortic stiffness and cardiometabolic alterations, particularly with long-term corticosteroid use [271,272,273,274,275,276,277,278,279]. Anti-TNF-α agents have demonstrated promising effects in reducing CV risk, thromboembolic events, and overall mortality in IBD patients, although their influence on lipid profiles remains uncertain [269,275,277,280,281]. Similarly, JAK inhibitors have been associated with modest and reversible lipid alterations but appear safe with respect to CV and thromboembolic risk [282,283,284,285,286].
Emerging therapies such as interleukin inhibitors (e.g., ustekinumab) and the α4β7 integrin monoclonal antibody vedolizumab have not shown a significant increase in CV events among IBD patients, although long-term data on their cardiovascular safety remain limited [287,288,289,290,291,292,293].
Overall, while the evidence confirms an increased CV risk in IBD patients, comprehensive recommendations for risk assessment and management remain sparse. A better understanding of the interplay between IBD and CV disease is crucial to developing effective primary prevention strategies. Promising avenues for investigation include therapeutic approaches targeting gut microbiota and the further evaluation of IBD-specific drugs for their potential to address both intestinal inflammation and associated cardiovascular complications (Table 7).

9. Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS)

Acquired Immunodeficiency Syndrome (AIDS) represents the advanced stage of human immunodeficiency virus (HIV) infection, characterized by progressive immunodeficiency and increased vulnerability to opportunistic infections and malignancies [294]. Early initiation of antiretroviral therapy (ART) following HIV diagnosis is critical for reducing morbidity, mortality, and transmission [295]. While ART has significantly lowered mortality and new infection rates, it has also increased the prevalence of HIV due to prolonged survival [296,297], making clinicians increasingly aware of HIV-associated cardiovascular (CV) complications and ART-related CV risk [296,298,299,300]. People living with HIV (PLWHIV) have an elevated risk of CV conditions, including heart failure, atrial fibrillation, myocardial infarction, and PAD [301,302,303,304,305,306].
Despite the high prevalence of traditional CV risk factors such as smoking, hypertension, diabetes, and dyslipidemia in PLWHIV, CV risk remains elevated even after adjusting for these factors [296,304,305,307,308]. HIV-specific factors, including latent infection, immunodeficiency, cytomegalovirus co-infection, gut microbial translocation, and chronic inflammation, exacerbate this risk [296,309,310,311]. Emerging evidence links ART to CV risk, emphasizing the need for strategies to predict and mitigate this risk [312]. Traditional CV risk assessment tools often underestimate risk in HIV patients, leading to calls for models that incorporate both traditional and HIV-related factors for more accurate predictions [27,313,314].
ART regimens, particularly those containing protease inhibitors and certain nucleoside reverse transcriptase inhibitors (NRTIs), are associated with increased CV risk, necessitating careful regimen selection [315,316,317]. Additionally, ART-associated metabolic complications—such as altered lipid profiles, insulin resistance, changes in body composition, and metabolic syndrome—contribute to heightened CV risk [296,308]. Although research on ART-related CV risk is ongoing, evidence remains inconclusive [296].
Effective management strategies for PLWHIV include smoking cessation, lifestyle modifications, and aggressive management of traditional CV risk factors [308,318,319]. The 2019 ACC/AHA guidelines recognize HIV infection as a CVD risk-enhancing factor [320], but consensus on lipid-lowering therapy for PLWHIV not meeting statin therapy indications remains elusive [321]. The ESC guidelines for dyslipidemia management recommend LDL-C targets defined for high-risk patients, with statins as the preferred first-line therapy [22]. Pravastatin, fluvastatin, pitavastatin, and rosuvastatin have demonstrated favorable effects in PLWHIV, provided potential drug interactions are managed [22]. Statins exhibit anti-inflammatory and immunomodulatory effects in PLWHIV, including reductions in vascular inflammation markers and diminished T-cell and monocyte activation [318,319,320,321]. However, further research is needed to determine their impact on CV risk modulation [322,323,324,325,326]. For patients intolerant to statins or unable to achieve LDL-C targets, Ezetimibe may be a viable option despite its limited efficacy [327]. PCSK9 inhibitors offer a safe and effective alternative for high-risk patients unable to reach therapeutic goals [328], while fibrates and fish oils are reserved for managing hypertriglyceridemia [329,330].
In conclusion, PLWHIV face a significantly higher CV risk that requires comprehensive stratification and management. Understanding the interplay between traditional and HIV-associated CV risk factors is critical for accurate risk prediction and targeted prevention strategies. Proactive management of modifiable risk factors, early initiation of lipid-lowering therapy, and careful selection of ART regimens with favorable CV profiles are essential to mitigating cardiovascular disease in PLWHIV (Table 8).

10. Cancer

Cancer represents a diverse group of malignancies characterized by the uncontrolled proliferation of genetically altered cells, leading to local invasion and metastasis [331].
Alongside CVD, cancer imposes a significant global burden, contributing to high rates of morbidity and mortality [332]. Cancer patients not only face the challenges of their malignancy but also exhibit a heightened risk of developing CVD and experiencing CVD-related mortality compared to the general population [333,334,335,336,337]. Advances in cancer therapies have improved survival rates but have also increased the competing risk of CVD-related deaths [21,335].
Emerging evidence highlights a bidirectional interplay between cancer and CVD, positioning cancer as a non-traditional risk factor for CVD [21]. Shared pathogenic mechanisms include traditional CVD risk factors (e.g., diet, physical inactivity, hypertension, diabetes, obesity, smoking, and social determinants of health) and dysregulated processes such as inflammation, immune response, oxidative stress, metabolism, hormonal changes, gut microbiome alterations, and genetic factors [21,338,339,340,341,342,343,344,345,346,347].
Effective CV risk stratification in cancer patients is crucial for managing risk factors, implementing preventive strategies, and tailoring follow-up programs. However, current CV risk assessment tools often fail to account for cancer and its treatments, resulting in underestimation of overall CV risk [28,29,348,349]. This gap highlights the need for cancer-specific CV risk stratification models and corresponding therapeutic guidelines, particularly for tailored lipid-lowering strategies [7,22].
Statins, traditionally used for their CV benefits, have shown promise in cancer prevention and adjunctive treatment. Dyslipidemia is linked to carcinogenic processes, including tissue invasion and metastasis, making cholesterol biosynthesis inhibition a potential anti-cancer mechanism of statins [350,351,352,353,354]. Beyond cholesterol-related pathways, statins exhibit pleiotropic effects [350,352,355,356,357,358], including modulation of proliferation, apoptosis, autophagy, angiogenesis, tumor metastasis, the tumor microenvironment, and drug resistance [350,359,360,361,362,363,364,365,366,367]. Studies have reported positive associations between statin use and cancer outcomes, such as reduced cancer risk [368,369,370,371], lower cancer grade and stage at diagnosis [372,373], and improved survival rates, including reduced overall and progression-free mortality [374,375,376,377,378].
Despite these promising findings, the evidence on statins as anti-cancer agents remains inconsistent, and well-designed clinical trials are needed to clarify their role [356,379,380,381].
The well-documented relationship between cancer and CVD underscores the urgent need for comprehensive and targeted CV risk assessment in oncology patients. While the repurposing of statins as part of cancer treatment is gaining attention, the magnitude of their benefit remains debated. Further research is essential to refine CV risk management and explore the therapeutic potential of statins in cancer care (Table 9).

11. Discussion

Despite substantial advancements in preventing and treating traditional CV risk factors through the use of highly effective clinical tools and evidence-based therapeutic strategies, CV events continue to represent a major challenge in patients with atherosclerotic diseases [382,383]. This phenomenon, referred to as residual CV risk, highlights the persistence of CV events even when treatment goals for traditional risk factors are achieved. A significant component of this residual risk is residual inflammatory risk (RIR), characterized by an ongoing pro-inflammatory response that contributes to the progression of atherosclerosis and CV events [384,385,386]. As a result, targeting inflammatory pathways has emerged as a promising approach to achieving more comprehensive CV risk control [387,388,389].
Patients with “non-traditional” atherosclerotic conditions, such as RA, SLE, SSc, ankylosing AS, systemic vasculitis, psoriasis, and HIV infection, are at an increased risk of CV events, morbidity, and mortality [21,22]. While these patients exhibit a higher prevalence of traditional atherosclerotic risk factors, including hypertension, dyslipidemia, diabetes, and smoking, these factors alone do not fully explain the heightened CV risk observed in these populations [21,34,36,60,71,99,106,118,152,192,225,299,308,390]. Chronic inflammation plays a central role in driving and sustaining atherosclerosis in these conditions, often interacting synergistically with traditional risk factors to exacerbate the inflammatory burden. This interplay creates a vicious cycle that significantly amplifies CV risk [31,62,192,252,338,339,391].
In addition to chronic inflammation, a variety of disease-specific factors contribute to the elevated CV risk seen in “non-traditional” atherosclerotic diseases. For example, microvascular dysfunction and impaired microvascular dynamics in systemic sclerosis and systemic vasculitis are key contributors. IBD and cancer are associated with microbiota dysbiosis, which promotes CV risk by altering the gut microbiome and generating pro-atherogenic metabolites. Cancer is further complicated by oxidative stress, metabolic and hormonal dysregulation, and immune system alterations. Similarly, in HIV infection, ART contributes to CV risk through metabolic changes and persistent inflammation, despite its life-saving benefits [99,106,224,251,299,341,344,345,347]. Moreover, for almost the whole of the aforementioned conditions, a disease activity- and severity-dependent relationship with CV risk has been recognized [22,73,138,142,228,229,230].
Given the multitude and the complexity of involved factors, a multidisciplinary approach including immunologists, gastroenterologists, rheumatologists, and infectious disease specialists is the cornerstone for the management of this heterogeneous population. All clinicians should support the cardiologist in developing tailored interventions to enhance patient outcomes.
Despite the increased CVD risk in “non-traditional” atherosclerotic diseases, more and more attention has been paid by the scientific community to the absence of specific guidelines for CV risk management in these conditions, which often leads to suboptimal care [7,22,23,28,29,71,121,153,154,216]. Specifically, two core improvement areas can be identified: CV risk estimation and CV risk factor treatment.
Current risk assessment tools, which rely on traditional risk factors, frequently underestimate CV risk in these populations, underscoring the need for disease-specific models that account for disease-related variables [22,28,29,73,260,313]. In RA, LES, and systemic vasculitis and psoriasis patients, the attempt to apply a multiplication factor to compensate for the traditional tools is documented to result in a CV risk underestimation [23,121,153,216]. Therefore, disease-specific tools, including disease-related variables, particularly those regarding disease activity and severity, have been proposed [22,73,260,313]. However, due to limited evidence and their pending validation, guidelines recommend performing CV risk stratification making use of general population-aimed tools [7,71,121,154]. The only exceptions are the ESC position paper on lipid management in rheumatoid arthritis and the European Vasculitis Society model for systemic vasculitis [22,71].
Advanced imaging and novel biomarkers may be key to overturning CV risk stratification and treatment, ultimately reducing CV morbidity and mortality. Systemic inflammation markers, including hsCRP (high-sensitivity C-reactive protein), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α), provide incremental prognostic information on top of clinical risk models [392,393,394,395,396,397,398]. However, due to the lack of specificity and direct causal association with CV disease, they appear to have limited predictive power. The advent of more advanced imaging technologies, including 18F-FDG (18F-fluorodeoxyglucose) for glucose uptake, 68Ga-DOTATATE (gallium-68 DOTATATE) for M1 macrophages, 18FNaF (18F-sodium fluoride), PCATa (pericoronary adipose tissue attenuation), and CCTA-HRP (coronary computed tomography angiography–high-risk plaque), offers alternative ways to quantify vascular inflammation and maximize the prognostic value of biomarkers [399,400,401,402,403,404,405,406,407,408,409].
Optimal CV risk factor treatment stems from accurate risk factor stratification: estimating CVD risk provides mandatory information for tailored intervention. The lack of clear indications regarding risk stratification and traditional risk factor prevention and treatment results in a new paradox that could be defined as “Residual Traditional Risk” (RTR).
In terms of prevention and lipid management, with the sole exception of HR-RA patients, no disease-specific dyslipidemia recommendations or LDL-c disease-specific targets have been identified. The overall benefits recorded with statin therapy appear to be greater than what could be expected from the sole change in lipid profile, therefore advocating for “cholesterol-independent” effects. As a result, in line with a growing body of evidence suggesting a potential effect on disease activity, a new paradigm for statin therapy has been advocated, and statin therapy is now experiencing a new burst in “non-traditional” atherosclerotic conditions [26,38,41,42,43,74,76,84,85,114,115,116,203,205,206,239,261,322,323].
As discussed above, part of the overall residual CV risk can be attributed to residual inflammatory risk [384,385,386]. This raises the question of whether the anti-inflammatory action of disease-specific medications results in a reduced CV risk. Although disease-specific treatments may have anti-inflammatory effects with the potential to lower CV risk, evidence supporting their efficacy for this purpose remains limited [46,89,90,167,169,174,179,208,210,240,241,242,243,269,272,275,282,285,287,288,289,410]. However, controlling inflammation has been shown to standardize CV risk and improve prevention and treatment outcomes [46,89,90,167,169,174,179,208,210,240,241,242,243,269,272,275,282,285,287,288,289,392]. In light of the above, disease therapy should be considered as a CV risk modulator advocating a new paradigm for disease-specific medications too.
For patients with HIV, ART is essential for managing the infection but increases CV risk due to its effects on metabolism and inflammation [308,411,412]. Despite this, the overall benefits of ART outweigh the associated CV risks, although monitoring CV risk and prioritizing “lipid-friendly” ART regimens are essential strategies [319].
The interplay between these factors in amplifying CV risk is represented in Figure 1.

12. Conclusions

In recent decades, the scope of conditions requiring meticulous management of CV risk factors has broadened, now encompassing several “non-traditional CV risk-enhancer conditions”. While traditional risk factors have historically been the cornerstone of CV prevention strategies for “traditional atherosclerotic conditions”, the growing recognition of inflammation’s critical role in atherosclerosis has shifted focus toward residual inflammatory risk as a major contributor to overall CV risk. In contrast, for “non-traditional atherosclerotic conditions”, inflammation has always been central to disease-specific treatments, though the elevated CV risk associated with these conditions has only recently been fully appreciated.
Despite increased clinical research in this area, significant gaps remain regarding the interplay between traditional and disease-specific risk factors, the accurate assessment of overall CV risk, and the optimal management of traditional risk factors in these conditions. In “non-traditional CV risk-enhancer conditions”, traditional risk factors function as residual risk contributors, much like the residual “traditional” risk observed in patients with traditional atherosclerotic conditions.
Unlike patients with “traditional atherosclerotic conditions”, those with “non-traditional” conditions often have their first medical encounter well before a CV event occurs. This early engagement provides a unique opportunity to implement tailored interventions during the subclinical stages of CV disease. As such, clinician awareness of “non-traditional CV risk-enhancer conditions” is essential for achieving a holistic understanding of these conditions and ensuring effective CV risk management.
With the provoking introduction of the concept of “Residual traditional risk”, this review aims to stimulate debate within the scientific community and foster dialogue among clinicians in order to identify solutions to address the emerging needs and update clinical guidelines and public health policies.
Future research should focus on developing comprehensive CV risk prediction models that integrate disease-specific risk factors alongside traditional ones. The identification of disease-specific risk factors, the assessment of each risk factor’s magnitude, and how disease-specific risk factors influence the underlying CV risk represent key elements of their development roadmap.
Accurate CV risk estimation in these populations could lead to more targeted and effective management strategies, ultimately reducing CV morbidity and mortality. By bridging existing knowledge gaps and enhancing risk prediction, these efforts have the potential to transform the care of patients with “non-traditional CV risk-enhancer conditions”.

Author Contributions

All the authors contributed to the accomplishment of the work. In particular, conceptualization, G.P. and F.B.; methodology, F.B.; data curation, G.P.; writing—original draft preparation, G.P.; writing—review and editing F.B., L.H.E., P.J.D., M.M.R. and M.A.N.; supervision, F.B., A.F., M.M. and A.G.; project administration, F.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors thank the Italian Ministry of Health—Ricerca Corrente 2025.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Pahwa, R.; Jialal, I. Atherosclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  2. Vasan, R.S.; Enserro, D.M.; Xanthakis, V.; Beiser, A.S.; Seshadri, S. Temporal Trends in the Remaining Lifetime Risk of Cardiovascular Disease Among Middle-Aged Adults Across 6 Decades: The Framingham Study. Circulation 2022, 145, 1324–1338. [Google Scholar] [CrossRef] [PubMed]
  3. World Heart Federation. World Heart Report 2023: Full Report; World Heart Federation: Geneva, Switzerland, 2003. [Google Scholar]
  4. Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef] [PubMed]
  5. Writing Committee; Birtcher, K.K.; Allen, L.A.; Anderson, J.L.; Bonaca, M.P.; Gluckman, T.J.; Hussain, A.; Kosiborod, M.; Mehta, L.S.; Virani, S.S. 2022 ACC Expert Consensus Decision Pathway for Integrating Atherosclerotic Cardiovascular Disease and Multimorbidity Treatment: A Framework for Pragmatic, Patient-Centered Care: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2023, 81, 292–317. [Google Scholar] [CrossRef] [PubMed]
  6. Dunbar, S.B.; Khavjou, O.A.; Bakas, T.; Hunt, G.; Kirch, R.A.; Leib, A.R.; Morrison, R.S.; Poehler, D.C.; Roger, V.L.; Whitsel, L.P.; et al. Projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: A Policy Statement from the American Heart Association. Circulation 2018, 137, e558–e577. [Google Scholar] [CrossRef] [PubMed]
  7. Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
  8. Mallick, S.; Shroff, G.R.; Linzer, M. Aspirin for Primary Prevention of Cardiovascular Disease: What Do the Current USPSTF Guidelines Say? Cleve Clin. J. Med. 2023, 90, 287–291. [Google Scholar] [CrossRef]
  9. Berger, J.S. Aspirin for Primary Prevention-Time to Rethink Our Approach. JAMA Netw. Open 2022, 5, e2210144. [Google Scholar] [CrossRef]
  10. Oynotkinova, O.S.; Matskeplishvili, S.T.; Maslennikova, O.M.; Pavlov, A.I.; Poberezhskaya, A.G. Acetylsalicylic acid in primary and secondary prevention of atherosclerotic cardiovascular disease. Zh Nevrol Psikhiatr Im S S Korsakova 2023, 123, 58–64. [Google Scholar] [CrossRef]
  11. Martin, S.S.; Blumenthal, R.S.; Miller, M. LDL Cholesterol: The Lower the Better. Med. Clin. North. Am. 2012, 96, 13–26. [Google Scholar] [CrossRef] [PubMed]
  12. Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
  13. US Preventive Services Task Force; Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; et al. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2022, 328, 746–753. [Google Scholar] [CrossRef]
  14. Banach, M.; Penson, P.E. Statins and LDL-C in Secondary Prevention-So Much Progress, So Far to Go. JAMA Netw. Open 2020, 3, e2025675. [Google Scholar] [CrossRef] [PubMed]
  15. ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [PubMed]
  16. Sabatine, M.S.; Wiviott, S.D.; Im, K.; Murphy, S.A.; Giugliano, R.P. Efficacy and Safety of Further Lowering of Low-Density Lipoprotein Cholesterol in Patients Starting with Very Low Levels: A Meta-Analysis. JAMA Cardiol. 2018, 3, 823–828. [Google Scholar] [CrossRef]
  17. Bardolia, C.; Amin, N.S.; Turgeon, J. Emerging Non-Statin Treatment Options for Lowering Low-Density Lipoprotein Cholesterol. Front. Cardiovasc. Med. 2021, 8, 789931. [Google Scholar] [CrossRef] [PubMed]
  18. Davignon, J. Beneficial Cardiovascular Pleiotropic Effects of Statins. Circulation 2004, 109, III39–III43. [Google Scholar] [CrossRef]
  19. Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef]
  20. Beshir, S.A.; Hussain, N.; Elnor, A.A.; Said, A.S.A. Umbrella Review on Non-Statin Lipid-Lowering Therapy. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 437–452. [Google Scholar] [CrossRef]
  21. Wilcox, N.S.; Amit, U.; Reibel, J.B.; Berlin, E.; Howell, K.; Ky, B. Cardiovascular Disease and Cancer: Shared Risk Factors and Mechanisms. Nat. Rev. Cardiol. 2024, 21, 617–631. [Google Scholar] [CrossRef] [PubMed]
  22. Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
  23. Colaco, K.; Ocampo, V.; Ayala, A.P.; Harvey, P.; Gladman, D.D.; Piguet, V.; Eder, L. Predictive Utility of Cardiovascular Risk Prediction Algorithms in Inflammatory Rheumatic Diseases: A Systematic Review. J. Rheumatol. 2020, 47, 928–938. [Google Scholar] [CrossRef]
  24. Moschetti, L.; Piantoni, S.; Vizzardi, E.; Sciatti, E.; Riccardi, M.; Franceschini, F.; Cavazzana, I. Endothelial Dysfunction in Systemic Lupus Erythematosus and Systemic Sclerosis: A Common Trigger for Different Microvascular Diseases. Front. Med. 2022, 9, 849086. [Google Scholar] [CrossRef] [PubMed]
  25. Berti, A.; Matteson, E.L.; Crowson, C.S.; Specks, U.; Cornec, D. Risk of Cardiovascular Disease and Venous Thromboembolism Among Patients with Incident ANCA-Associated Vasculitis: A 20-Year Population-Based Cohort Study. Mayo Clin. Proc. 2018, 93, 597–606. [Google Scholar] [CrossRef] [PubMed]
  26. Masson, W.; Lobo, M.; Molinero, G. Psoriasis and Cardiovascular Risk: A Comprehensive Review. Adv. Ther. 2020, 37, 2017–2033. [Google Scholar] [CrossRef]
  27. Feinstein, M.J. Cardiovascular Disease Risk Assessment in HIV: Navigating Data-Sparse Zones. Heart 2016, 102, 1157–1158. [Google Scholar] [CrossRef] [PubMed]
  28. Law, W.; Johnson, C.; Rushton, M.; Dent, S. The Framingham Risk Score Underestimates the Risk of Cardiovascular Events in the HER2-Positive Breast Cancer Population. Curr. Oncol. 2017, 24, e348–e353. [Google Scholar] [CrossRef] [PubMed]
  29. Feldman, D.R.; Ardeshir-Rouhani-Fard, S.; Monahan, P.; Sesso, H.D.; Fung, C.; Williams, A.M.; Hamilton, R.J.; Vaughn, D.J.; Beard, C.J.; Cook, R.; et al. Predicting Cardiovascular Disease Among Testicular Cancer Survivors After Modern Cisplatin-Based Chemotherapy: Application of the Framingham Risk Score. Clin. Genitourin. Cancer 2018, 16, e761–e769. [Google Scholar] [CrossRef] [PubMed]
  30. Chauhan, K.; Jandu, J.S.; Brent, L.H.; Al-Dhahir, M.A. Rheumatoid Arthritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  31. Manzi, S.; Wasko, M.C. Inflammation-Mediated Rheumatic Diseases and Atherosclerosis. Ann. Rheum. Dis. 2000, 59, 321–325. [Google Scholar] [CrossRef] [PubMed]
  32. Szekanecz, Z.; Koch, A.E. Vascular Involvement in Rheumatic Diseases: “Vascular Rheumatology”. Arthritis Res. Ther. 2008, 10, 224. [Google Scholar] [CrossRef] [PubMed]
  33. Peters, M.J.L.; Symmons, D.P.M.; McCarey, D.; Dijkmans, B.A.C.; Nicola, P.; Kvien, T.K.; McInnes, I.B.; Haentzschel, H.; Gonzalez-Gay, M.A.; Provan, S.; et al. EULAR Evidence-Based Recommendations for Cardiovascular Risk Management in Patients with Rheumatoid Arthritis and Other Forms of Inflammatory Arthritis. Ann. Rheum. Dis. 2010, 69, 325–331. [Google Scholar] [CrossRef]
  34. Hollan, I.; Ronda, N.; Dessein, P.; Agewall, S.; Karpouzas, G.; Tamargo, J.; Niessner, A.; Savarese, G.; Rosano, G.; Kaski, J.C.; et al. Lipid Management in Rheumatoid Arthritis: A Position Paper of the Working Group on Cardiovascular Pharmacotherapy of the European Society of Cardiology. Eur. Heart J. Cardiovasc. Pharmacother. 2020, 6, 104–114. [Google Scholar] [CrossRef] [PubMed]
  35. Aviña-Zubieta, J.A.; Choi, H.K.; Sadatsafavi, M.; Etminan, M.; Esdaile, J.M.; Lacaille, D. Risk of Cardiovascular Mortality in Patients with Rheumatoid Arthritis: A Meta-Analysis of Observational Studies. Arthritis Rheum. 2008, 59, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
  36. England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased Cardiovascular Risk in Rheumatoid Arthritis: Mechanisms and Implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef] [PubMed]
  37. Kitas, G.D.; Nightingale, P.; Armitage, J.; Sattar, N.; Belch, J.J.F.; Symmons, D.P.M.; TRACE RA Consortium. A Multicenter, Randomized, Placebo-Controlled Trial of Atorvastatin for the Primary Prevention of Cardiovascular Events in Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
  38. McCarey, D.W.; McInnes, I.B.; Madhok, R.; Hampson, R.; Scherbakov, O.; Ford, I.; Capell, H.A.; Sattar, N. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2004, 363, 2015–2021. [Google Scholar] [CrossRef]
  39. Soulaidopoulos, S.; Nikiphorou, E.; Dimitroulas, T.; Kitas, G.D. The Role of Statins in Disease Modification and Cardiovascular Risk in Rheumatoid Arthritis. Front. Med. 2018, 5, 24. [Google Scholar] [CrossRef]
  40. Aminifar, E.; Tavakkol Afshari, H.S.; Sathyapalan, T.; Abbasifard, M.; Sahebkar, A. The Pleiotropic Effects of Statins in Rheumatoid Arthritis. J. Pharm. Pharmacol. 2023, 75, 910–920. [Google Scholar] [CrossRef]
  41. Mowla, K.; Rajai, E.; Ghorbani, A.; Dargahi-Malamir, M.; Bahadoram, M.; Mohammadi, S. Effect of Atorvastatin on the Disease Activity and Severity of Rheumatoid Arthritis: Double-Blind Randomized Controlled Trial. J. Clin. Diagn. Res. 2016, 10, OC32–OC36. [Google Scholar] [CrossRef]
  42. McInnes, I.B.; Kim, H.-Y.; Lee, S.-H.; Mandel, D.; Song, Y.-W.; Connell, C.A.; Luo, Z.; Brosnan, M.J.; Zuckerman, A.; Zwillich, S.H.; et al. Open-Label Tofacitinib and Double-Blind Atorvastatin in Rheumatoid Arthritis Patients: A Randomised Study. Ann. Rheum. Dis. 2014, 73, 124–131. [Google Scholar] [CrossRef] [PubMed]
  43. Xing, B.; Yin, Y.-F.; Zhao, L.-D.; Wang, L.; Zheng, W.-J.; Chen, H.; Wu, Q.-J.; Tang, F.-L.; Zhang, F.-C.; Shan, G.; et al. Effect of 3-Hydroxy-3-Methylglutaryl-Coenzyme a Reductase Inhibitor on Disease Activity in Patients with Rheumatoid Arthritis: A Meta-Analysis. Medicine 2015, 94, e572. [Google Scholar] [CrossRef]
  44. Mäki-Petäjä, K.M.; Booth, A.D.; Hall, F.C.; Wallace, S.M.L.; Brown, J.; McEniery, C.M.; Wilkinson, I.B. Ezetimibe and Simvastatin Reduce Inflammation, Disease Activity, and Aortic Stiffness and Improve Endothelial Function in Rheumatoid Arthritis. J. Am. Coll. Cardiol. 2007, 50, 852–858. [Google Scholar] [CrossRef]
  45. Frostegård, J.; Ahmed, S.; Hafström, I.; Ajeganova, S.; Rahman, M. Low Levels of PCSK9 Are Associated with Remission in Patients with Rheumatoid Arthritis Treated with Anti-TNF-α: Potential Underlying Mechanisms. Arthritis Res. Ther. 2021, 23, 32. [Google Scholar] [CrossRef] [PubMed]
  46. Choy, E.; Ganeshalingam, K.; Semb, A.G.; Szekanecz, Z.; Nurmohamed, M. Cardiovascular Risk in Rheumatoid Arthritis: Recent Advances in the Understanding of the Pivotal Role of Inflammation, Risk Predictors and the Impact of Treatment. Rheumatology 2014, 53, 2143–2154. [Google Scholar] [CrossRef]
  47. van Halm, V.P.; Nurmohamed, M.T.; Twisk, J.W.R.; Dijkmans, B.A.C.; Voskuyl, A.E. Disease-Modifying Antirheumatic Drugs Are Associated with a Reduced Risk for Cardiovascular Disease in Patients with Rheumatoid Arthritis: A Case Control Study. Arthritis Res. Ther. 2006, 8, R151. [Google Scholar] [CrossRef] [PubMed]
  48. Daïen, C.I.; Duny, Y.; Barnetche, T.; Daurès, J.-P.; Combe, B.; Morel, J. Effect of TNF Inhibitors on Lipid Profile in Rheumatoid Arthritis: A Systematic Review with Meta-Analysis. Ann. Rheum. Dis. 2012, 71, 862–868. [Google Scholar] [CrossRef]
  49. van Sijl, A.M.; Peters, M.J.L.; Knol, D.L.; de Vet, R.H.C.; Sattar, N.; Dijkmans, B.A.C.; Smulders, Y.M.; Nurmohamed, M.T. The Effect of TNF-Alpha Blocking Therapy on Lipid Levels in Rheumatoid Arthritis: A Meta-Analysis. Semin. Arthritis Rheum. 2011, 41, 393–400. [Google Scholar] [CrossRef]
  50. Curtis, J.R.; John, A.; Baser, O. Dyslipidemia and Changes in Lipid Profiles Associated with Rheumatoid Arthritis and Initiation of Anti-Tumor Necrosis Factor Therapy. Arthritis Care Res. 2012, 64, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
  51. Kawashiri, S.; Kawakami, A.; Yamasaki, S.; Imazato, T.; Iwamoto, N.; Fujikawa, K.; Aramaki, T.; Tamai, M.; Nakamura, H.; Ida, H.; et al. Effects of the Anti-Interleukin-6 Receptor Antibody, Tocilizumab, on Serum Lipid Levels in Patients with Rheumatoid Arthritis. Rheumatol. Int. 2011, 31, 451–456. [Google Scholar] [CrossRef]
  52. Westlake, S.L.; Colebatch, A.N.; Baird, J.; Curzen, N.; Kiely, P.; Quinn, M.; Choy, E.; Ostor, A.J.K.; Edwards, C.J. Tumour Necrosis Factor Antagonists and the Risk of Cardiovascular Disease in Patients with Rheumatoid Arthritis: A Systematic Literature Review. Rheumatology 2011, 50, 518–531. [Google Scholar] [CrossRef]
  53. Barnabe, C.; Martin, B.-J.; Ghali, W.A. Systematic Review and Meta-Analysis: Anti-Tumor Necrosis Factor α Therapy and Cardiovascular Events in Rheumatoid Arthritis. Arthritis Care Res. 2011, 63, 522–529. [Google Scholar] [CrossRef] [PubMed]
  54. Genovese, M.C.; Rubbert-Roth, A.; Smolen, J.S.; Kremer, J.; Khraishi, M.; Gómez-Reino, J.; Sebba, A.; Pilson, R.; Williams, S.; Van Vollenhoven, R. Longterm Safety and Efficacy of Tocilizumab in Patients with Rheumatoid Arthritis: A Cumulative Analysis of up to 4.6 Years of Exposure. J. Rheumatol. 2013, 40, 768–780. [Google Scholar] [CrossRef] [PubMed]
  55. Charles-Schoeman, C.; Wicker, P.; Gonzalez-Gay, M.A.; Boy, M.; Zuckerman, A.; Soma, K.; Geier, J.; Kwok, K.; Riese, R. Cardiovascular Safety Findings in Patients with Rheumatoid Arthritis Treated with Tofacitinib, an Oral Janus Kinase Inhibitor. Semin. Arthritis Rheum. 2016, 46, 261–271. [Google Scholar] [CrossRef] [PubMed]
  56. Raterman, H.G.; Levels, H.; Voskuyl, A.E.; Lems, W.F.; Dijkmans, B.A.; Nurmohamed, M.T. HDL Protein Composition Alters from Proatherogenic into Less Atherogenic and Proinflammatory in Rheumatoid Arthritis Patients Responding to Rituximab. Ann. Rheum. Dis. 2013, 72, 560–565. [Google Scholar] [CrossRef]
  57. Kerekes, G.; Soltész, P.; Dér, H.; Veres, K.; Szabó, Z.; Végvári, A.; Szegedi, G.; Shoenfeld, Y.; Szekanecz, Z. Effects of Rituximab Treatment on Endothelial Dysfunction, Carotid Atherosclerosis, and Lipid Profile in Rheumatoid Arthritis. Clin. Rheumatol. 2009, 28, 705–710. [Google Scholar] [CrossRef] [PubMed]
  58. Justiz Vaillant, A.A.; Goyal, A.; Varacallo, M. Systemic Lupus Erythematosus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  59. Nor, M.A.; Ogedegbe, O.J.; Barbarawi, A.; Ali, A.I.; Sheikh, I.M.; Yussuf, F.M.; Adam, S.M.; Hassan, O.A.; Tabowei, G.; Jimoh, A.; et al. Systemic Lupus Erythematosus and Cardiovascular Diseases: A Systematic Review. Cureus 2023, 15, e39284. [Google Scholar] [CrossRef] [PubMed]
  60. Katayama, Y.; Yanai, R.; Itaya, T.; Nagamine, Y.; Tanigawa, K.; Miyawaki, Y. Risk Factors for Cardiovascular Diseases in Patients with Systemic Lupus Erythematosus: An Umbrella Review. Clin. Rheumatol. 2023, 42, 2931–2941. [Google Scholar] [CrossRef]
  61. Oliveira, C.B.; Kaplan, M.J. Cardiovascular Disease Risk and Pathogenesis in Systemic Lupus Erythematosus. Semin. Immunopathol. 2022, 44, 309–324. [Google Scholar] [CrossRef] [PubMed]
  62. Wang, Y.; Yu, H.; He, J. Role of Dyslipidemia in Accelerating Inflammation, Autoimmunity, and Atherosclerosis in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Discov. Med. 2020, 30, 49–56. [Google Scholar] [PubMed]
  63. Frostegård, J. Systemic Lupus Erythematosus and Cardiovascular Disease. J. Intern. Med. 2023, 293, 48–62. [Google Scholar] [CrossRef]
  64. Tselios, K.; Koumaras, C.; Gladman, D.D.; Urowitz, M.B. Dyslipidemia in Systemic Lupus Erythematosus: Just Another Comorbidity? Semin. Arthritis Rheum. 2016, 45, 604–610. [Google Scholar] [CrossRef] [PubMed]
  65. Chuang, Y.-W.; Yu, M.-C.; Lin, C.-L.; Yu, T.-M.; Shu, K.-H.; Kao, C.-H. Risk of Peripheral Arterial Occlusive Disease in Patients with Systemic Lupus Erythematosus: A Nationwide Population-Based Cohort Study. Medicine 2015, 94, e2121. [Google Scholar] [CrossRef] [PubMed]
  66. Richter, P.; Cardoneanu, A.; Rezus, C.; Burlui, A.M.; Rezus, E. Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2022, 23, 12604. [Google Scholar] [CrossRef] [PubMed]
  67. Asanuma, Y.; Oeser, A.; Shintani, A.K.; Turner, E.; Olsen, N.; Fazio, S.; Linton, M.F.; Raggi, P.; Stein, C.M. Premature Coronary-Artery Atherosclerosis in Systemic Lupus Erythematosus. N. Engl. J. Med. 2003, 349, 2407–2415. [Google Scholar] [CrossRef]
  68. Biscetti, F.; Pecorini, G.; Arena, V.; Stigliano, E.; Angelini, F.; Ghirlanda, G.; Ferraccioli, G.; Flex, A. Cilostazol Improves the Response to Ischemia in Diabetic Mice by a Mechanism Dependent on PPARγ. Mol. Cell Endocrinol. 2013, 381, 80–87. [Google Scholar] [CrossRef]
  69. Biscetti, F.; Nardella, E.; Rando, M.M.; Cecchini, A.L.; Gasbarrini, A.; Massetti, M.; Flex, A. Outcomes of Lower Extremity Endovascular Revascularization: Potential Predictors and Prevention Strategies. Int. J. Mol. Sci. 2021, 22, 2002. [Google Scholar] [CrossRef] [PubMed]
  70. Malik, M.; Gor, R.; Siddiqui, N.A.; Gor, D.; Ahmed, K.I. Elucidating the Intriguing Association Between Systemic Lupus Erythematosus and Cardiovascular Disease. Cureus 2021, 13, e15538. [Google Scholar] [CrossRef] [PubMed]
  71. Drosos, G.C.; Vedder, D.; Houben, E.; Boekel, L.; Atzeni, F.; Badreh, S.; Boumpas, D.T.; Brodin, N.; Bruce, I.N.; González-Gay, M.Á.; et al. EULAR Recommendations for Cardiovascular Risk Management in Rheumatic and Musculoskeletal Diseases, Including Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Ann. Rheum. Dis. 2022, 81, 768–779. [Google Scholar] [CrossRef] [PubMed]
  72. Urowitz, M.B.; Ibañez, D.; Su, J.; Gladman, D.D. Modified Framingham Risk Factor Score for Systemic Lupus Erythematosus. J. Rheumatol. 2016, 43, 875–879. [Google Scholar] [CrossRef]
  73. Petri, M.A.; Barr, E.; Magder, L.S. Development of a Systemic Lupus Erythematosus Cardiovascular Risk Equation. Lupus Sci. Med. 2019, 6, e000346. [Google Scholar] [CrossRef] [PubMed]
  74. Ballarano, C.A.; Frishman, W.H. Cardiovascular Disease in Patients with Systemic Lupus Erythematosus: Potential for Improved Primary Prevention with Statins. Cardiol. Rev. 2021, 29, 323–327. [Google Scholar] [CrossRef] [PubMed]
  75. van Leuven, S.I.; Mendez-Fernandez, Y.V.; Stroes, E.S.; Tak, P.P.; Major, A.S. Statin Therapy in Lupus-Mediated Atherogenesis: Two Birds with One Stone? Ann. Rheum. Dis. 2011, 70, 245–248. [Google Scholar] [CrossRef] [PubMed]
  76. Yousef Yengej, F.A.; Limper, M.; Leavis, H.L. Statins for Prevention of Cardiovascular Disease in Systemic Lupus Erythematosus. Neth. J. Med. 2017, 75, 99–105. [Google Scholar] [PubMed]
  77. Yu, H.-H.; Chen, P.-C.; Yang, Y.-H.; Wang, L.-C.; Lee, J.-H.; Lin, Y.-T.; Chiang, B.-L. Statin Reduces Mortality and Morbidity in Systemic Lupus Erythematosus Patients with Hyperlipidemia: A Nationwide Population-Based Cohort Study. Atherosclerosis 2015, 243, 11–18. [Google Scholar] [CrossRef] [PubMed]
  78. Piranavan, P.; Perl, A. Management of Cardiovascular Disease in Patients with Systemic Lupus Erythematosus. Expert. Opin. Pharmacother. 2020, 21, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
  79. Sánchez, P.; Toro-Trujillo, E.; Muñoz-Velandia, O.M.; García, A.A.; Fernández-Ávila, D.G. Therapeutic Impact of Statins on the Lipid Profile and Cardiovascular Risk in Patients with Systemic Lupus Erythematosus: Systematic Review of the Literature and a Meta-Analysis. Reumatol. Clin. 2019, 15, e86–e91. [Google Scholar] [CrossRef]
  80. Ruiz-Limon, P.; Barbarroja, N.; Perez-Sanchez, C.; Aguirre, M.A.; Bertolaccini, M.L.; Khamashta, M.A.; Rodriguez-Ariza, A.; Almadén, Y.; Segui, P.; Khraiwesh, H.; et al. Atherosclerosis and Cardiovascular Disease in Systemic Lupus Erythematosus: Effects of In Vivo Statin Treatment. Ann. Rheum. Dis. 2015, 74, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
  81. Artola, R.T.; Mihos, C.G.; Santana, O. Effects of Statin Therapy in Patients with Systemic Lupus Erythematosus. South. Med. J. 2016, 109, 705–711. [Google Scholar] [CrossRef]
  82. Ferreira, G.A.; Navarro, T.P.; Telles, R.W.; Andrade, L.E.C.; Sato, E.I. Atorvastatin Therapy Improves Endothelial-Dependent Vasodilation in Patients with Systemic Lupus Erythematosus: An 8 Weeks Controlled Trial. Rheumatology 2007, 46, 1560–1565. [Google Scholar] [CrossRef]
  83. Petri, M.A.; Kiani, A.N.; Post, W.; Christopher-Stine, L.; Magder, L.S. Lupus Atherosclerosis Prevention Study (LAPS). Ann. Rheum. Dis. 2011, 70, 760–765. [Google Scholar] [CrossRef]
  84. Ferreira, G.A.; Teixeira, A.L.; Calderaro, D.C.; Sato, E.I. Atorvastatin Reduced Soluble Receptors of TNF-Alpha in Systemic Lupus Erythematosus. Clin. Exp. Rheumatol. 2016, 34, 42–48. [Google Scholar]
  85. Sahebkar, A.; Rathouska, J.; Derosa, G.; Maffioli, P.; Nachtigal, P. Statin Impact on Disease Activity and C-Reactive Protein Concentrations in Systemic Lupus Erythematosus Patients: A Systematic Review and Meta-Analysis of Controlled Trials. Autoimmun. Rev. 2016, 15, 344–353. [Google Scholar] [CrossRef] [PubMed]
  86. Guzmán-Martínez, G.; Marañón, C.; CYTED RIBLES Network. Immune Mechanisms Associated with Cardiovascular Disease in Systemic Lupus Erythematosus: A Path to Potential Biomarkers. Front. Immunol. 2022, 13, 974826. [Google Scholar] [CrossRef] [PubMed]
  87. Appleton, B.D.; Major, A.S. The Latest in Systemic Lupus Erythematosus-Accelerated Atherosclerosis: Related Mechanisms Inform Assessment and Therapy. Curr. Opin. Rheumatol. 2021, 33, 211–218. [Google Scholar] [CrossRef]
  88. Bartoloni, E.; Alunno, A.; Valentini, V.; Luccioli, F.; Valentini, E.; La Paglia, G.M.C.; Leone, M.C.; Cafaro, G.; Marcucci, E.; Gerli, R. Targeting Inflammation to Prevent Cardiovascular Disease in Chronic Rheumatic Diseases: Myth or Reality? Front. Cardiovasc. Med. 2018, 5, 177. [Google Scholar] [CrossRef] [PubMed]
  89. López-Pedrera, C.; Aguirre, M.Á.; Barbarroja, N.; Cuadrado, M.J. Accelerated Atherosclerosis in Systemic Lupus Erythematosus: Role of Proinflammatory Cytokines and Therapeutic Approaches. J. Biomed. Biotechnol. 2010, 2010, 607084. [Google Scholar] [CrossRef] [PubMed]
  90. Robinson, G.; Pineda-Torra, I.; Ciurtin, C.; Jury, E.C. Lipid Metabolism in Autoimmune Rheumatic Disease: Implications for Modern and Conventional Therapies. J. Clin. Investig. 2022, 132, e148552. [Google Scholar] [CrossRef] [PubMed]
  91. McLaren, J.E.; Ramji, D.P. Interferon Gamma: A Master Regulator of Atherosclerosis. Cytokine Growth Factor. Rev. 2009, 20, 125–135. [Google Scholar] [CrossRef]
  92. Lee, P.Y.; Li, Y.; Richards, H.B.; Chan, F.S.; Zhuang, H.; Narain, S.; Butfiloski, E.J.; Sobel, E.S.; Reeves, W.H.; Segal, M.S. Type I Interferon as a Novel Risk Factor for Endothelial Progenitor Cell Depletion and Endothelial Dysfunction in Systemic Lupus Erythematosus. Arthritis Rheum. 2007, 56, 3759–3769. [Google Scholar] [CrossRef] [PubMed]
  93. Denny, M.F.; Thacker, S.; Mehta, H.; Somers, E.C.; Dodick, T.; Barrat, F.J.; McCune, W.J.; Kaplan, M.J. Interferon-Alpha Promotes Abnormal Vasculogenesis in Lupus: A Potential Pathway for Premature Atherosclerosis. Blood 2007, 110, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
  94. Somers, E.C.; Zhao, W.; Lewis, E.E.; Wang, L.; Wing, J.J.; Sundaram, B.; Kazerooni, E.A.; McCune, W.J.; Kaplan, M.J. Type I Interferons Are Associated with Subclinical Markers of Cardiovascular Disease in a Cohort of Systemic Lupus Erythematosus Patients. PLoS ONE 2012, 7, e37000. [Google Scholar] [CrossRef] [PubMed]
  95. Soubrier, M.; Mathieu, S.; Hermet, M.; Makarawiez, C.; Bruckert, E. Do All Lupus Patients Need Statins? Jt. Bone Spine 2013, 80, 244–249. [Google Scholar] [CrossRef]
  96. Volkmann, E.R.; Andréasson, K.; Smith, V. Systemic Sclerosis. Lancet 2023, 401, 304–318. [Google Scholar] [CrossRef]
  97. Ren, H.; Liu, L.; Xiao, Y.; Shi, Y.; Zeng, Z.; Ding, Y.; Zou, P.; Xiao, R. Further Insight into Systemic Sclerosis from the Vasculopathy Perspective. Biomed. Pharmacother. 2023, 166, 115282. [Google Scholar] [CrossRef] [PubMed]
  98. Nussinovitch, U.; Shoenfeld, Y. Atherosclerosis and Macrovascular Involvement in Systemic Sclerosis: Myth or Reality. Autoimmun. Rev. 2011, 10, 259–266. [Google Scholar] [CrossRef] [PubMed]
  99. Cen, X.; Feng, S.; Wei, S.; Yan, L.; Sun, L. Systemic Sclerosis and Risk of Cardiovascular Disease: A PRISMA-Compliant Systemic Review and Meta-Analysis of Cohort Studies. Medicine 2020, 99, e23009. [Google Scholar] [CrossRef] [PubMed]
  100. Tyndall, A.J.; Bannert, B.; Vonk, M.; Airò, P.; Cozzi, F.; Carreira, P.E.; Bancel, D.F.; Allanore, Y.; Müller-Ladner, U.; Distler, O.; et al. Causes and Risk Factors for Death in Systemic Sclerosis: A Study from the EULAR Scleroderma Trials and Research (EUSTAR) Database. Ann. Rheum. Dis. 2010, 69, 1809–1815. [Google Scholar] [CrossRef] [PubMed]
  101. Belch, J.J.F.; McSwiggan, S.; Lau, C. Macrovascular Disease in Systemic Sclerosis: The Tip of an Iceberg? Rheumatology 2008, 47 (Suppl. S5), v16–v17. [Google Scholar] [CrossRef] [PubMed]
  102. Man, A.; Zhu, Y.; Zhang, Y.; Dubreuil, M.; Rho, Y.H.; Peloquin, C.; Simms, R.W.; Choi, H.K. The Risk of Cardiovascular Disease in Systemic Sclerosis: A Population-Based Cohort Study. Ann. Rheum. Dis. 2013, 72, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
  103. Butt, S.A.; Jeppesen, J.L.; Torp-Pedersen, C.; Sam, F.; Gislason, G.H.; Jacobsen, S.; Andersson, C. Cardiovascular Manifestations of Systemic Sclerosis: A Danish Nationwide Cohort Study. J. Am. Heart Assoc. 2019, 8, e013405. [Google Scholar] [CrossRef]
  104. Zeng, Y.; Li, M.; Xu, D.; Hou, Y.; Wang, Q.; Fang, Q.; Sun, Q.; Zhang, S.; Zeng, X. Macrovascular Involvement in Systemic Sclerosis: Evidence of Correlation with Disease Activity. Clin. Exp. Rheumatol. 2012, 30, S76–S80. [Google Scholar] [PubMed]
  105. Youssef, P.; Brama, T.; Englert, H.; Bertouch, J. Limited Scleroderma Is Associated with Increased Prevalence of Macrovascular Disease. J. Rheumatol. 1995, 22, 469–472. [Google Scholar] [PubMed]
  106. Cannarile, F.; Valentini, V.; Mirabelli, G.; Alunno, A.; Terenzi, R.; Luccioli, F.; Gerli, R.; Bartoloni, E. Cardiovascular Disease in Systemic Sclerosis. Ann. Transl. Med. 2015, 3, 8. [Google Scholar] [CrossRef] [PubMed]
  107. Ying, D.; Gianfrancesco, M.A.; Trupin, L.; Yazdany, J.; Greidinger, E.L.; Schmajuk, G. Increased Risk of Ischemic Stroke in Systemic Sclerosis: A National Cohort Study of US Veterans. J. Rheumatol. 2020, 47, 82–88. [Google Scholar] [CrossRef]
  108. Aviña-Zubieta, J.A.; Man, A.; Yurkovich, M.; Huang, K.; Sayre, E.C.; Choi, H.K. Early Cardiovascular Disease After the Diagnosis of Systemic Sclerosis. Am. J. Med. 2016, 129, 324–331. [Google Scholar] [CrossRef] [PubMed]
  109. Ngian, G.-S.; Sahhar, J.; Proudman, S.M.; Stevens, W.; Wicks, I.P.; Van Doornum, S. Prevalence of Coronary Heart Disease and Cardiovascular Risk Factors in a National Cross-Sectional Cohort Study of Systemic Sclerosis. Ann. Rheum. Dis. 2012, 71, 1980–1983. [Google Scholar] [CrossRef] [PubMed]
  110. Chu, S.-Y.; Chen, Y.-J.; Liu, C.-J.; Tseng, W.-C.; Lin, M.-W.; Hwang, C.-Y.; Chen, C.-C.; Lee, D.-D.; Chen, T.-J.; Chang, Y.-T.; et al. Increased Risk of Acute Myocardial Infarction in Systemic Sclerosis: A Nationwide Population-Based Study. Am. J. Med. 2013, 126, 982–988. [Google Scholar] [CrossRef] [PubMed]
  111. Pola, R.; Gaetani, E.; Flex, A.; Gerardino, L.; Aloi, F.; Flore, R.; Serricchio, M.; Pola, P.; Bernabei, R. Lack of Association Between Alzheimer’s Disease and Gln-Arg 192 Q/R Polymorphism of the PON-1 Gene in an Italian Population. Dement. Geriatr. Cogn. Disord. 2003, 15, 88–91. [Google Scholar] [CrossRef] [PubMed]
  112. Ngian, G.-S.; Sahhar, J.; Wicks, I.P.; Van Doornum, S. Cardiovascular Disease in Systemic Sclerosis—An Emerging Association? Arthritis Res. Ther. 2011, 13, 237. [Google Scholar] [CrossRef]
  113. Derk, C.T.; Jimenez, S.A. Statins and the Vasculopathy of Systemic Sclerosis: Potential Therapeutic Agents? Autoimmun. Rev. 2006, 5, 25–32. [Google Scholar] [CrossRef]
  114. Kuwana, M. Potential Benefit of Statins for Vascular Disease in Systemic Sclerosis. Curr. Opin. Rheumatol. 2006, 18, 594–600. [Google Scholar] [CrossRef] [PubMed]
  115. Abou-Raya, A.; Abou-Raya, S.; Helmii, M. Statins as Immunomodulators in Systemic Sclerosis. Ann. N. Y. Acad. Sci. 2007, 1110, 670–680. [Google Scholar] [CrossRef] [PubMed]
  116. Furukawa, S.; Yasuda, S.; Amengual, O.; Horita, T.; Atsumi, T.; Koike, T. Protective Effect of Pravastatin on Vascular Endothelium in Patients with Systemic Sclerosis: A Pilot Study. Ann. Rheum. Dis. 2006, 65, 1118–1120. [Google Scholar] [CrossRef]
  117. Flex, A.; Biscetti, F.; Iachininoto, M.G.; Nuzzolo, E.R.; Orlando, N.; Capodimonti, S.; Angelini, F.; Valentini, C.G.; Bianchi, M.; Larocca, L.M.; et al. Human Cord Blood Endothelial Progenitors Promote Post-Ischemic Angiogenesis in Immunocompetent Mouse Model. Thromb. Res. 2016, 141, 106–111. [Google Scholar] [CrossRef] [PubMed]
  118. Branisteanu, D.E.; Pirvulescu, R.A.; Spinu, A.E.; Porumb, E.A.; Cojocaru, M.; Nicolescu, A.C.; Branisteanu, D.C.; Branisteanu, C.I.; Dimitriu, A.; Alexa, A.I.; et al. Metabolic Comorbidities of Psoriasis (Review). Exp. Ther. Med. 2022, 23, 179. [Google Scholar] [CrossRef] [PubMed]
  119. Daudén, E.; Castañeda, S.; Suárez, C.; García-Campayo, J.; Blasco, A.J.; Aguilar, M.D.; Ferrándiz, C.; Puig, L.; Sánchez-Carazo, J.L.; Working Group on Comorbidity in Psoriasis. Clinical Practice Guideline for an Integrated Approach to Comorbidity in Patients with Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1387–1404. [Google Scholar] [CrossRef]
  120. Papp, K.A.; Gooderham, M.J.; Lynde, C.W.; Poulin, Y.; Beecker, J.; Dutz, J.P.; Hong, C.-H.; Gniadecki, R.; Kirchhof, M.G.; Maari, C.; et al. Practical and Relevant Guidelines for the Management of Psoriasis: An Inference-Based Methodology. Dermatol. Ther. 2022, 12, 253–265. [Google Scholar] [CrossRef] [PubMed]
  121. Elmets, C.A.; Leonardi, C.L.; Davis, D.M.R.; Gelfand, J.M.; Lichten, J.; Mehta, N.N.; Armstrong, A.W.; Connor, C.; Cordoro, K.M.; Elewski, B.E.; et al. Joint AAD-NPF Guidelines of Care for the Management and Treatment of Psoriasis with Awareness and Attention to Comorbidities. J. Am. Acad. Dermatol. 2019, 80, 1073–1113. [Google Scholar] [CrossRef]
  122. Patel, R.V.; Shelling, M.L.; Prodanovich, S.; Federman, D.G.; Kirsner, R.S. Psoriasis and Vascular Disease-Risk Factors and Outcomes: A Systematic Review of the Literature. J. Gen. Intern. Med. 2011, 26, 1036–1049. [Google Scholar] [CrossRef] [PubMed]
  123. Pearce, D.J.; Morrison, A.E.; Higgins, K.B.; Crane, M.M.; Balkrishnan, R.; Fleischer, A.B.; Feldman, S.R. The Comorbid State of Psoriasis Patients in a University Dermatology Practice. J. Dermatol. Treat. 2005, 16, 319–323. [Google Scholar] [CrossRef]
  124. Han, C.; Robinson, D.W.; Hackett, M.V.; Paramore, L.C.; Fraeman, K.H.; Bala, M.V. Cardiovascular Disease and Risk Factors in Patients with Rheumatoid Arthritis, Psoriatic Arthritis, and Ankylosing Spondylitis. J. Rheumatol. 2006, 33, 2167–2172. [Google Scholar]
  125. Ogdie, A.; Yu, Y.; Haynes, K.; Love, T.J.; Maliha, S.; Jiang, Y.; Troxel, A.B.; Hennessy, S.; Kimmel, S.E.; Margolis, D.J.; et al. Risk of Major Cardiovascular Events in Patients with Psoriatic Arthritis, Psoriasis and Rheumatoid Arthritis: A Population-Based Cohort Study. Ann. Rheum. Dis. 2015, 74, 326–332. [Google Scholar] [CrossRef] [PubMed]
  126. Qureshi, A.A.; Choi, H.K.; Setty, A.R.; Curhan, G.C. Psoriasis and the Risk of Diabetes and Hypertension: A Prospective Study of US Female Nurses. Arch. Dermatol. 2009, 145, 379–382. [Google Scholar] [CrossRef]
  127. Armstrong, A.W.; Harskamp, C.T.; Armstrong, E.J. Psoriasis and the Risk of Diabetes Mellitus: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2013, 149, 84–91. [Google Scholar] [CrossRef]
  128. Kaye, J.A.; Li, L.; Jick, S.S. Incidence of Risk Factors for Myocardial Infarction and Other Vascular Diseases in Patients with Psoriasis. Br. J. Dermatol. 2008, 159, 895–902. [Google Scholar] [CrossRef]
  129. Mehta, N.N.; Li, R.; Krishnamoorthy, P.; Yu, Y.; Farver, W.; Rodrigues, A.; Raper, A.; Wilcox, M.; Baer, A.; DerOhannesian, S.; et al. Abnormal Lipoprotein Particles and Cholesterol Efflux Capacity in Patients with Psoriasis. Atherosclerosis 2012, 224, 218–221. [Google Scholar] [CrossRef] [PubMed]
  130. Prodanovich, S.; Kirsner, R.S.; Kravetz, J.D.; Ma, F.; Martinez, L.; Federman, D.G. Association of Psoriasis with Coronary Artery, Cerebrovascular, and Peripheral Vascular Diseases and Mortality. Arch. Dermatol. 2009, 145, 700–703. [Google Scholar] [CrossRef]
  131. Armstrong, A.W.; Harskamp, C.T.; Armstrong, E.J. The Association Between Psoriasis and Obesity: A Systematic Review and Meta-Analysis of Observational Studies. Nutr. Diabetes 2012, 2, e54. [Google Scholar] [CrossRef]
  132. Augustin, M.; Reich, K.; Glaeske, G.; Schaefer, I.; Radtke, M. Co-Morbidity and Age-Related Prevalence of Psoriasis: Analysis of Health Insurance Data in Germany. Acta Derm. Venereol. 2010, 90, 147–151. [Google Scholar] [CrossRef] [PubMed]
  133. Gisondi, P.; Tessari, G.; Conti, A.; Piaserico, S.; Schianchi, S.; Peserico, A.; Giannetti, A.; Girolomoni, G. Prevalence of Metabolic Syndrome in Patients with Psoriasis: A Hospital-Based Case-Control Study. Br. J. Dermatol. 2007, 157, 68–73. [Google Scholar] [CrossRef]
  134. Choudhary, S.; Pradhan, D.; Pandey, A.; Khan, M.K.; Lall, R.; Ramesh, V.; Puri, P.; Jain, A.K.; Thomas, G. The Association of Metabolic Syndrome and Psoriasis: A Systematic Review and Meta-Analysis of Observational Study. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 703–717. [Google Scholar] [CrossRef] [PubMed]
  135. Alsufyani, M.A.; Golant, A.K.; Lebwohl, M. Psoriasis and the Metabolic Syndrome. Dermatol. Ther. 2010, 23, 137–143. [Google Scholar] [CrossRef]
  136. Langan, S.M.; Seminara, N.M.; Shin, D.B.; Troxel, A.B.; Kimmel, S.E.; Mehta, N.N.; Margolis, D.J.; Gelfand, J.M. Prevalence of Metabolic Syndrome in Patients with Psoriasis: A Population-Based Study in the United Kingdom. J. Investig. Dermatol. 2012, 132, 556–562. [Google Scholar] [CrossRef]
  137. Armstrong, A.W.; Harskamp, C.T.; Armstrong, E.J. Psoriasis and Metabolic Syndrome: A Systematic Review and Meta-Analysis of Observational Studies. J. Am. Acad. Dermatol. 2013, 68, 654–662. [Google Scholar] [CrossRef] [PubMed]
  138. Neimann, A.L.; Shin, D.B.; Wang, X.; Margolis, D.J.; Troxel, A.B.; Gelfand, J.M. Prevalence of Cardiovascular Risk Factors in Patients with Psoriasis. J. Am. Acad. Dermatol. 2006, 55, 829–835. [Google Scholar] [CrossRef] [PubMed]
  139. Fortes, C.; Mastroeni, S.; Leffondré, K.; Sampogna, F.; Melchi, F.; Mazzotti, E.; Pasquini, P.; Abeni, D. Relationship Between Smoking and the Clinical Severity of Psoriasis. Arch. Dermatol. 2005, 141, 1580–1584. [Google Scholar] [CrossRef] [PubMed]
  140. Gelfand, J.M.; Neimann, A.L.; Shin, D.B.; Wang, X.; Margolis, D.J.; Troxel, A.B. Risk of Myocardial Infarction in Patients with Psoriasis. JAMA 2006, 296, 1735–1741. [Google Scholar] [CrossRef]
  141. Gelfand, J.M.; Dommasch, E.D.; Shin, D.B.; Azfar, R.S.; Kurd, S.K.; Wang, X.; Troxel, A.B. The Risk of Stroke in Patients with Psoriasis. J. Investig. Dermatol. 2009, 129, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
  142. González-Gay, M.A.; González-Vela, C.; González-Juanatey, C. Psoriasis: A Skin Disease Associated with Increased Cardiovascular Risk. Actas Dermosifiliogr. 2012, 103, 595–598. [Google Scholar] [CrossRef] [PubMed]
  143. Takeshita, J.; Wang, S.; Shin, D.B.; Mehta, N.N.; Kimmel, S.E.; Margolis, D.J.; Troxel, A.B.; Gelfand, J.M. Effect of Psoriasis Severity on Hypertension Control: A Population-Based Study in the United Kingdom. JAMA Dermatol. 2015, 151, 161–169. [Google Scholar] [CrossRef]
  144. Gladman, D.D.; Ang, M.; Su, L.; Tom, B.D.M.; Schentag, C.T.; Farewell, V.T. Cardiovascular Morbidity in Psoriatic Arthritis. Ann. Rheum. Dis. 2009, 68, 1131–1135. [Google Scholar] [CrossRef]
  145. Al-Mutairi, N.; Al-Farag, S.; Al-Mutairi, A.; Al-Shiltawy, M. Comorbidities Associated with Psoriasis: An Experience from the Middle East. J. Dermatol. 2010, 37, 146–155. [Google Scholar] [CrossRef]
  146. Svedbom, A.; Ståhle, M. The Psoriasis Area and Severity Index Is an Independent Risk Factor for Cardiovascular Events: A Prospective Register Study. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1841–1847. [Google Scholar] [CrossRef]
  147. Armstrong, E.J.; Krueger, J.G. Lipoprotein Metabolism and Inflammation in Patients with Psoriasis. Am. J. Cardiol. 2016, 118, 603–609. [Google Scholar] [CrossRef] [PubMed]
  148. Kommoss, K.S.; Enk, A.; Heikenwälder, M.; Waisman, A.; Karbach, S.; Wild, J. Cardiovascular Comorbidity in Psoriasis—Psoriatic Inflammation Is More than Just Skin Deep. J. Dtsch. Dermatol. Ges. 2023, 21, 718–725. [Google Scholar] [CrossRef]
  149. Frieder, J.; Ryan, C. Psoriasis and Cardiovascular Disorders. G. Ital. Dermatol. Venereol. 2016, 151, 678–693. [Google Scholar] [PubMed]
  150. Yim, K.M.; Armstrong, A.W. Updates on Cardiovascular Comorbidities Associated with Psoriatic Diseases: Epidemiology and Mechanisms. Rheumatol. Int. 2017, 37, 97–105. [Google Scholar] [CrossRef] [PubMed]
  151. Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
  152. Garshick, M.S.; Ward, N.L.; Krueger, J.G.; Berger, J.S. Cardiovascular Risk in Patients with Psoriasis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 77, 1670–1680. [Google Scholar] [CrossRef] [PubMed]
  153. Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by Representatives of 10 Societies and by Invited Experts)Developed with the Special Contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
  154. Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.L.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. EULAR Recommendations for Cardiovascular Disease Risk Management in Patients with Rheumatoid Arthritis and Other Forms of Inflammatory Joint Disorders: 2015/2016 Update. Ann. Rheum. Dis. 2017, 76, 17–28. [Google Scholar] [CrossRef] [PubMed]
  155. Wang, J.; Zhang, S.; Xing, M.; Hong, S.; Liu, L.; Ding, X.-J.; Sun, X.-Y.; Luo, Y.; Wang, C.-X.; Zhang, M.; et al. Current Evidence on the Role of Lipid Lowering Drugs in the Treatment of Psoriasis. Front. Med. 2022, 9, 900916. [Google Scholar] [CrossRef] [PubMed]
  156. Brauchli, Y.B.; Jick, S.S.; Meier, C.R. Statin Use and Risk of First-Time Psoriasis Diagnosis. J. Am. Acad. Dermatol. 2011, 65, 77–83. [Google Scholar] [CrossRef] [PubMed]
  157. Ghazizadeh, R.; Tosa, M.; Ghazizadeh, M. Clinical Improvement in Psoriasis with Treatment of Associated Hyperlipidemia. Am. J. Med. Sci. 2011, 341, 394–398. [Google Scholar] [CrossRef]
  158. Chua, S.H.H.; Tioleco, G.M.S.; Dayrit, C.A.F.; Mojica, W.P.; Dofitas, B.L.; Frez, L.F. Atorvastatin as Adjunctive Therapy for Chronic Plaque Type Psoriasis versus Betamethasone Valerate Alone: A Randomized, Double-Blind, Placebo-Controlled Trial. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 441–447. [Google Scholar] [CrossRef] [PubMed]
  159. Socha, M.; Pietrzak, A.; Grywalska, E.; Pietrzak, D.; Matosiuk, D.; Kiciński, P.; Rolinski, J. The Effect of Statins on Psoriasis Severity: A Meta-Analysis of Randomized Clinical Trials. Arch. Med. Sci. 2020, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
  160. Yamamoto, M.; Ikeda, M.; Kodama, H.; Sano, S. Transition of Psoriasiform Drug Eruption to Psoriasis de Novo Evidenced by Histopathology. J. Dermatol. 2008, 35, 732–736. [Google Scholar] [CrossRef] [PubMed]
  161. Faghihi, T.; Radfar, M.; Mehrabian, Z.; Ehsani, A.H.; Rezaei Hemami, M. Atorvastatin for the Treatment of Plaque-Type Psoriasis. Pharmacotherapy 2011, 31, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
  162. Vasiuk, I.A.; Perlamutrov, I.N.; Shkol’nik, M.N.; Shkol’nik, E.L. Possibilities of atorvastatin in complex management of extensive psoriasis in patients with arterial hypertension. Kardiologiia 2010, 50, 37–46. [Google Scholar] [PubMed]
  163. Al Salman, M.; Ghiasi, M.; Farid, A.S.; Taraz, M.; Azizpour, A.; Mahmoudi, H. Oral Simvastatin Combined with Narrowband UVB for the Treatment of Psoriasis: A Randomized Controlled Trial. Dermatol. Ther. 2021, 34, e15075. [Google Scholar] [CrossRef]
  164. Colsman, A.; Sticherling, M. Simvastatin in Psoriasis: Ambiguous Effects. Acta Derm. Venereol. 2010, 90, 411. [Google Scholar] [CrossRef]
  165. Cozzani, E.; Scaparro, M.; Parodi, A. A Case of Psoriasis Worsened by Atorvastatin. J. Dermatol. Case Rep. 2009, 3, 60–61. [Google Scholar] [CrossRef] [PubMed]
  166. Jacobi, T.C.; Highet, A. A Clinical Dilemma While Treating Hypercholesterolaemia in Psoriasis. Br. J. Dermatol. 2003, 149, 1305–1306. [Google Scholar] [CrossRef] [PubMed]
  167. Prodanovich, S.; Ma, F.; Taylor, J.R.; Pezon, C.; Fasihi, T.; Kirsner, R.S. Methotrexate Reduces Incidence of Vascular Diseases in Veterans with Psoriasis or Rheumatoid Arthritis. J. Am. Acad. Dermatol. 2005, 52, 262–267. [Google Scholar] [CrossRef] [PubMed]
  168. Lan, C.-C.E.; Ko, Y.-C.; Yu, H.-S.; Wu, C.-S.; Li, W.-C.; Lu, Y.-W.; Chen, Y.-C.; Chin, Y.-Y.; Yang, Y.-H.; Chen, G.-S. Methotrexate Reduces the Occurrence of Cerebrovascular Events Among Taiwanese Psoriatic Patients: A Nationwide Population-Based Study. Acta Derm. Venereol. 2012, 92, 349–352. [Google Scholar] [CrossRef] [PubMed]
  169. Weber, B.; Merola, J.F.; Husni, M.E.; Di Carli, M.; Berger, J.S.; Garshick, M.S. Psoriasis and Cardiovascular Disease: Novel Mechanisms and Evolving Therapeutics. Curr. Atheroscler. Rep. 2021, 23, 67. [Google Scholar] [CrossRef] [PubMed]
  170. Gelfand, J.M.; Shin, D.B.; Armstrong, A.W.; Tyring, S.K.; Blauvelt, A.; Gottlieb, S.; Lockshin, B.N.; Kalb, R.E.; Fitzsimmons, R.; Rodante, J.; et al. Association of Apremilast with Vascular Inflammation and Cardiometabolic Function in Patients with Psoriasis: The VIP-A Phase 4, Open-Label, Nonrandomized Clinical Trial. JAMA Dermatol. 2022, 158, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
  171. Hjuler, K.F.; Bøttcher, M.; Vestergaard, C.; Bøtker, H.E.; Iversen, L.; Kragballe, K. Association Between Changes in Coronary Artery Disease Progression and Treatment with Biologic Agents for Severe Psoriasis. JAMA Dermatol. 2016, 152, 1114–1121. [Google Scholar] [CrossRef]
  172. Piaserico, S.; Osto, E.; Famoso, G.; Zanetti, I.; Gregori, D.; Poretto, A.; Iliceto, S.; Peserico, A.; Tona, F. Treatment with Tumor Necrosis Factor Inhibitors Restores Coronary Microvascular Function in Young Patients with Severe Psoriasis. Atherosclerosis 2016, 251, 25–30. [Google Scholar] [CrossRef]
  173. Pina, T.; Corrales, A.; Lopez-Mejias, R.; Armesto, S.; Gonzalez-Lopez, M.A.; Gómez-Acebo, I.; Ubilla, B.; Remuzgo-Martínez, S.; Gonzalez-Vela, M.C.; Blanco, R.; et al. Anti-Tumor Necrosis Factor-Alpha Therapy Improves Endothelial Function and Arterial Stiffness in Patients with Moderate to Severe Psoriasis: A 6-Month Prospective Study. J. Dermatol. 2016, 43, 1267–1272. [Google Scholar] [CrossRef]
  174. Famenini, S.; Sako, E.Y.; Wu, J.J. Effect of Treating Psoriasis on Cardiovascular Co-Morbidities: Focus on TNF Inhibitors. Am. J. Clin. Dermatol. 2014, 15, 45–50. [Google Scholar] [CrossRef] [PubMed]
  175. Wu, J.J.; Poon, K.-Y.T.; Channual, J.C.; Shen, A.Y.-J. Association Between Tumor Necrosis Factor Inhibitor Therapy and Myocardial Infarction Risk in Patients with Psoriasis. Arch. Dermatol. 2012, 148, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
  176. Wu, J.J.; Guérin, A.; Sundaram, M.; Dea, K.; Cloutier, M.; Mulani, P. Cardiovascular Event Risk Assessment in Psoriasis Patients Treated with Tumor Necrosis Factor-α Inhibitors versus Methotrexate. J. Am. Acad. Dermatol. 2017, 76, 81–90. [Google Scholar] [CrossRef]
  177. Yang, Z.-S.; Lin, N.-N.; Li, L.; Li, Y. The Effect of TNF Inhibitors on Cardiovascular Events in Psoriasis and Psoriatic Arthritis: An Updated Meta-Analysis. Clin. Rev. Allergy Immunol. 2016, 51, 240–247. [Google Scholar] [CrossRef]
  178. Wu, J.J.; Joshi, A.A.; Reddy, S.P.; Batech, M.; Egeberg, A.; Ahlehoff, O.; Mehta, N.N. Anti-Inflammatory Therapy with Tumour Necrosis Factor Inhibitors Is Associated with Reduced Risk of Major Adverse Cardiovascular Events in Psoriasis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
  179. Wu, J.J.; Strober, B.E.; Hansen, P.R.; Ahlehoff, O.; Egeberg, A.; Qureshi, A.A.; Robertson, D.; Valdez, H.; Tan, H.; Wolk, R. Effects of Tofacitinib on Cardiovascular Risk Factors and Cardiovascular Outcomes Based on Phase III and Long-Term Extension Data in Patients with Plaque Psoriasis. J. Am. Acad. Dermatol. 2016, 75, 897–905. [Google Scholar] [CrossRef] [PubMed]
  180. Tzellos, T.; Kyrgidis, A.; Trigoni, A.; Zouboulis, C.C. Association of Ustekinumab and Briakinumab with Major Adverse Cardiovascular Events: An Appraisal of Meta-Analyses and Industry Sponsored Pooled Analyses to Date. Dermatoendocrinol 2012, 4, 320–323. [Google Scholar] [CrossRef] [PubMed]
  181. Rungapiromnan, W.; Yiu, Z.Z.N.; Warren, R.B.; Griffiths, C.E.M.; Ashcroft, D.M. Impact of Biologic Therapies on Risk of Major Adverse Cardiovascular Events in Patients with Psoriasis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Br. J. Dermatol. 2017, 176, 890–901. [Google Scholar] [CrossRef]
  182. Elnabawi, Y.A.; Dey, A.K.; Goyal, A.; Groenendyk, J.W.; Chung, J.H.; Belur, A.D.; Rodante, J.; Harrington, C.L.; Teague, H.L.; Baumer, Y.; et al. Coronary Artery Plaque Characteristics and Treatment with Biologic Therapy in Severe Psoriasis: Results from a Prospective Observational Study. Cardiovasc. Res. 2019, 115, 721–728. [Google Scholar] [CrossRef] [PubMed]
  183. Wenker, K.J.; Quint, J.M. Ankylosing Spondylitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  184. Szabo, S.M.; Levy, A.R.; Rao, S.R.; Kirbach, S.E.; Lacaille, D.; Cifaldi, M.; Maksymowych, W.P. Increased Risk of Cardiovascular and Cerebrovascular Diseases in Individuals with Ankylosing Spondylitis: A Population-Based Study. Arthritis Rheum. 2011, 63, 3294–3304. [Google Scholar] [CrossRef] [PubMed]
  185. Haroon, N.N.; Paterson, J.M.; Li, P.; Inman, R.D.; Haroon, N. Patients with Ankylosing Spondylitis Have Increased Cardiovascular and Cerebrovascular Mortality: A Population-Based Study. Ann. Intern. Med. 2015, 163, 409–416. [Google Scholar] [CrossRef]
  186. Mathieu, S.; Pereira, B.; Soubrier, M. Cardiovascular Events in Ankylosing Spondylitis: An Updated Meta-Analysis. Semin. Arthritis Rheum. 2015, 44, 551–555. [Google Scholar] [CrossRef]
  187. Lee, D.H.; Choi, Y.J.; Han, I.-B.; Hong, J.B.; Do Han, K.; Choi, J.M.; Sohn, S. Association of Ischemic Stroke with Ankylosing Spondylitis: A Nationwide Longitudinal Cohort Study. Acta Neurochir. 2018, 160, 949–955. [Google Scholar] [CrossRef]
  188. Ozdowska, P.; Wardziak, Ł.; Kruk, M.; Kępka, C.; Kowalik, I.; Szwed, H.; Głuszko, P.; Rupiński, R.; Kwiatkowska, B.; Sikorska-Siudek, K.; et al. Increased Prevalence of Subclinical Coronary Atherosclerosis in Young Patients with Ankylosing Spondylitis. Pol. Arch. Intern. Med. 2018, 128, 455–461. [Google Scholar] [CrossRef] [PubMed]
  189. Liu, M.; Huang, Y.; Huang, Z.; Huang, Q.; Guo, X.; Wang, Y.; Deng, W.; Huang, Z.; Li, T. Prevalence of Metabolic Syndrome and Its Associated Factors in Chinese Patients with Ankylosing Spondylitis. Diabetes Metab. Syndr. Obes. 2019, 12, 477–484. [Google Scholar] [CrossRef] [PubMed]
  190. Malesci, D.; Niglio, A.; Mennillo, G.A.; Buono, R.; Valentini, G.; La Montagna, G. High Prevalence of Metabolic Syndrome in Patients with Ankylosing Spondylitis. Clin. Rheumatol. 2007, 26, 710–714. [Google Scholar] [CrossRef] [PubMed]
  191. Papadakis, J.A.; Sidiropoulos, P.I.; Karvounaris, S.A.; Vrentzos, G.E.; Spanakis, E.K.; Ganotakis, E.S.; Kritikos, H.D.; Mikhailidis, D.P.; Boumpas, D.T. High Prevalence of Metabolic Syndrome and Cardiovascular Risk Factors in Men with Ankylosing Spondylitis on Anti-TNFalpha Treatment: Correlation with Disease Activity. Clin. Exp. Rheumatol. 2009, 27, 292–298. [Google Scholar]
  192. Mok, C.C.; Ko, G.T.C.; Ho, L.Y.; Yu, K.L.; Chan, P.T.; To, C.H. Prevalence of Atherosclerotic Risk Factors and the Metabolic Syndrome in Patients with Chronic Inflammatory Arthritis. Arthritis Care Res. 2011, 63, 195–202. [Google Scholar] [CrossRef] [PubMed]
  193. Ferraz-Amaro, I.; Rueda-Gotor, J.; Genre, F.; Corrales, A.; Blanco, R.; Portilla, V.; González Mazón, I.; Llorca, J.; Expósito, R.; Vicente, E.F.; et al. Potential Relation of Cardiovascular Risk Factors to Disease Activity in Patients with Axial Spondyloarthritis. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211033755. [Google Scholar] [CrossRef] [PubMed]
  194. Medina, G.; Vera-Lastra, O.; Peralta-Amaro, A.L.; Jiménez-Arellano, M.P.; Saavedra, M.A.; Cruz-Domínguez, M.P.; Jara, L.J. Metabolic Syndrome, Autoimmunity and Rheumatic Diseases. Pharmacol. Res. 2018, 133, 277–288. [Google Scholar] [CrossRef] [PubMed]
  195. Masi, A.T.; Fessler, S.L.; Brezka, M.L.; Wang, Y.; Donohue, S.E. Systematic Review and Meta-Analysis of Individual Serum Lipids and Analysis of Lipid Ratios in Ankylosing Spondylitis and Healthy Control Cohorts: Significantly Lower Mean HDL-Cholesterol Level in Ankylosing Spondylitis Cohorts. Clin. Exp. Rheumatol. 2023, 41, 1862–1874. [Google Scholar] [CrossRef]
  196. Ozdowska, P.; Kowalik, I.; Sadowski, K.; Szwed, H.; Głuszko, P.; Rupiński, R.; Kwiatkowska, B.; Sikorska-Siudek, K.; Dąbrowski, R. Patterns of Dyslipidemia in Young Patients with Seronegative Spondyloarthropathies Without Cardiovascular Diseases. Reumatologia 2021, 59, 285–291. [Google Scholar] [CrossRef] [PubMed]
  197. Kucuk, A.; Uğur Uslu, A.; Icli, A.; Cure, E.; Arslan, S.; Turkmen, K.; Toker, A.; Kayrak, M. The LDL/HDL Ratio and Atherosclerosis in Ankylosing Spondylitis. Z. Rheumatol. 2017, 76, 58–63. [Google Scholar] [CrossRef] [PubMed]
  198. Schulte, D.M.; Paulsen, K.; Türk, K.; Brandt, B.; Freitag-Wolf, S.; Hagen, I.; Zeuner, R.; Schröder, J.O.; Lieb, W.; Franke, A.; et al. Small Dense LDL Cholesterol in Human Subjects with Different Chronic Inflammatory Diseases. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1100–1105. [Google Scholar] [CrossRef]
  199. Zhang, G.; Cai, Y.; Liang, J.; Zhang, J.; Jing, Z.; Lv, L.; Zhang, R.; Song, J.; Dang, X.; Song, Q. Causal Relationships Between Rheumatism and Dyslipidemia: A Two-Sample Mendelian Randomization Study. Front. Endocrinol. 2022, 13, 961505. [Google Scholar] [CrossRef]
  200. Rollefstad, S.; Ikdahl, E.; Hisdal, J.; Olsen, I.C.; Holme, I.; Hammer, H.B.; Smerud, K.T.; Kitas, G.D.; Pedersen, T.R.; Kvien, T.K.; et al. Rosuvastatin-Induced Carotid Plaque Regression in Patients with Inflammatory Joint Diseases: The Rosuvastatin in Rheumatoid Arthritis, Ankylosing Spondylitis and Other Inflammatory Joint Diseases Study. Arthritis Rheumatol. 2015, 67, 1718–1728. [Google Scholar] [CrossRef]
  201. van der Valk, F.M.; Bernelot Moens, S.J.; Verweij, S.L.; Strang, A.C.; Nederveen, A.J.; Verberne, H.J.; Nurmohamed, M.T.; Baeten, D.L.; Stroes, E.S.G. Increased Arterial Wall Inflammation in Patients with Ankylosing Spondylitis Is Reduced by Statin Therapy. Ann. Rheum. Dis. 2016, 75, 1848–1851. [Google Scholar] [CrossRef]
  202. Oza, A.; Lu, N.; Schoenfeld, S.R.; Fisher, M.C.; Dubreuil, M.; Rai, S.K.; Zhang, Y.; Choi, H.K. Survival Benefit of Statin Use in Ankylosing Spondylitis: A General Population-Based Cohort Study. Ann. Rheum. Dis. 2017, 76, 1737–1742. [Google Scholar] [CrossRef]
  203. Ikdahl, E.; Hisdal, J.; Rollefstad, S.; Olsen, I.C.; Kvien, T.K.; Pedersen, T.R.; Semb, A.G. Rosuvastatin Improves Endothelial Function in Patients with Inflammatory Joint Diseases, Longitudinal Associations with Atherosclerosis and Arteriosclerosis: Results from the RORA-AS Statin Intervention Study. Arthritis Res. Ther. 2015, 17, 279. [Google Scholar] [CrossRef]
  204. Garg, N.; Krishan, P.; Syngle, A. Rosuvastatin Improves Endothelial Dysfunction in Ankylosing Spondylitis. Clin. Rheumatol. 2015, 34, 1065–1071. [Google Scholar] [CrossRef]
  205. van Denderen, J.C.; Peters, M.J.L.; van Halm, V.P.; van der Horst-Bruinsma, I.E.; Dijkmans, B.a.C.; Nurmohamed, M.T. Statin Therapy Might Be Beneficial for Patients with Ankylosing Spondylitis. Ann. Rheum. Dis. 2006, 65, 695–696. [Google Scholar] [CrossRef]
  206. Zhong, Z.; Feng, X.; Su, G.; Du, L.; Liao, W.; Liu, S.; Li, F.; Zuo, X.; Yang, P. HMG-Coenzyme A Reductase as a Drug Target for the Prevention of Ankylosing Spondylitis. Front. Cell Dev. Biol. 2021, 9, 731072. [Google Scholar] [CrossRef] [PubMed]
  207. van der Heijde, D.; Ramiro, S.; Landewé, R.; Baraliakos, X.; Van den Bosch, F.; Sepriano, A.; Regel, A.; Ciurea, A.; Dagfinrud, H.; Dougados, M.; et al. 2016 Update of the ASAS-EULAR Management Recommendations for Axial Spondyloarthritis. Ann. Rheum. Dis. 2017, 76, 978–991. [Google Scholar] [CrossRef]
  208. Hassan, S.; Feld, J.; Cohen, S.; Zisman, D. The Effect of Biologic Therapy on The Lipid Profile of Rheumatoid Arthritis (Ra), Psoriatic Arthritis (Psa) and Ankylosing Spondylitis (as) Patients. Harefuah 2017, 156, 446–450. [Google Scholar] [PubMed]
  209. Mathieu, S.; Dubost, J.-J.; Tournadre, A.; Malochet-Guinamand, S.; Ristori, J.-M.; Soubrier, M. Effects of 14 Weeks of TNF Alpha Blockade Treatment on Lipid Profile in Ankylosing Spondylitis. Jt. Bone Spine 2010, 77, 50–52. [Google Scholar] [CrossRef] [PubMed]
  210. Atzeni, F.; Nucera, V.; Galloway, J.; Zoltán, S.; Nurmohamed, M. Cardiovascular Risk in Ankylosing Spondylitis and the Effect of Anti-TNF Drugs: A Narrative Review. Expert. Opin. Biol. Ther. 2020, 20, 517–524. [Google Scholar] [CrossRef] [PubMed]
  211. Zardi, E.M.; Pipita, M.E.; Giorgi, C.; Lichinchi, D.; Zardi, D.M.; Afeltra, A. Differences in Carotid Atherosclerosis Between Patients with Ankylosing Spondylitis Treated with Tumor Necrosis Factor-α Antagonists and Healthy Matched Controls. Medicine 2018, 97, e11250. [Google Scholar] [CrossRef]
  212. Ralli, M.; Campo, F.; Angeletti, D.; Minni, A.; Artico, M.; Greco, A.; Polimeni, A.; de Vincentiis, M. Pathophysiology and Therapy of Systemic Vasculitides. EXCLI J. 2020, 19, 817–854. [Google Scholar] [CrossRef]
  213. Vats, V.; Patel, K.; Sharma, D.D.; Almansouri, N.E.; Makkapati, N.S.R.; Nimal, S.; Ramteke, P.; Mohammed Arifuddin, B.; Jagarlamudi, N.S.; Narain, A.; et al. Exploring Cardiovascular Manifestations in Vasculitides: An In-Depth Review. Cureus 2023, 15, e44417. [Google Scholar] [CrossRef]
  214. Misra, D.P.; Shenoy, S.N. Cardiac Involvement in Primary Systemic Vasculitis and Potential Drug Therapies to Reduce Cardiovascular Risk. Rheumatol. Int. 2017, 37, 151–167. [Google Scholar] [CrossRef]
  215. Soulaidopoulos, S.; Madenidou, A.-V.; Daoussis, D.; Melissaropoulos, K.; Mavrogeni, S.; Kitas, G.; Dimitroulas, T. Cardiovascular Disease in the Systemic Vasculitides. Curr. Vasc. Pharmacol. 2020, 18, 463–472. [Google Scholar] [CrossRef]
  216. Houben, E.; Mendel, A.; van der Heijden, J.W.; Simsek, S.; Bax, W.A.; Carette, S.; Voskuyl, A.E.; Pagnoux, C.; Penne, E.L. Prevalence and Management of Cardiovascular Risk Factors in ANCA-Associated Vasculitis. Rheumatology 2019, 58, 2333–2335. [Google Scholar] [CrossRef] [PubMed]
  217. Roubille, C.; Henriquez, S.; Mercuzot, C.; Duflos, C.; Dunogue, B.; Briot, K.; Guillevin, L.; Terrier, B.; Fesler, P. Impact of Cardiovascular Risk Factors on the Occurrence of Cardiovascular Events in Antineutrophil Cytoplasmic Antibody (ANCA)-Associated Vasculitides. J. Clin. Med. 2021, 10, 2299. [Google Scholar] [CrossRef] [PubMed]
  218. Borowiec, A.; Kowalik, I.; Chwyczko, T.; Jankowski, J.; Kandyba, P.; Życińska, K. Predictors of Cardiovascular Events in Patients with Primary Systemic Vasculitis: A 5 Years Prospective Observational Study. Eur. J. Intern. Med. 2021, 91, 70–74. [Google Scholar] [CrossRef] [PubMed]
  219. Dennert, R.M.; van Paassen, P.; Schalla, S.; Kuznetsova, T.; Alzand, B.S.; Staessen, J.A.; Velthuis, S.; Crijns, H.J.; Tervaert, J.W.C.; Heymans, S. Cardiac Involvement in Churg-Strauss Syndrome. Arthritis Rheum. 2010, 62, 627–634. [Google Scholar] [CrossRef] [PubMed]
  220. Ahn, J.K.; Hwang, J.; Choi, C.-B.; Seo, G.H. Risk of Acute Myocardial Infarction, Stroke, and Venous Thromboembolism Among Patients with Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis in South Korea: A Nationwide Population-Based Study. Jt. Bone Spine 2023, 90, 105498. [Google Scholar] [CrossRef] [PubMed]
  221. Ungprasert, P.; Wijarnpreecha, K.; Dejhansathit, S.; Cheungpasitporn, W. Antineutrophil Cytoplasmic Autoantibodies-Associated Vasculitides and Risk of Stroke: A Systematic Review and Meta-Analysis. Neurol. India 2022, 70, 1868–1873. [Google Scholar] [CrossRef]
  222. Houben, E.; Penne, E.L.; Voskuyl, A.E.; van der Heijden, J.W.; Otten, R.H.J.; Boers, M.; Hoekstra, T. Cardiovascular Events in Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis: A Meta-Analysis of Observational Studies. Rheumatology 2018, 57, 555–562. [Google Scholar] [CrossRef]
  223. Karakasis, P.; Patoulias, D.; Stachteas, P.; Lefkou, E.; Dimitroulas, T.; Fragakis, N. Accelerated Atherosclerosis and Management of Cardiovascular Risk in Autoimmune Rheumatic Diseases: An Updated Review. Curr. Probl. Cardiol. 2023, 48, 101999. [Google Scholar] [CrossRef]
  224. Clifford, A.H.; Cohen Tervaert, J.W. Cardiovascular Events and the Role of Accelerated Atherosclerosis in Systemic Vasculitis. Atherosclerosis 2021, 325, 8–15. [Google Scholar] [CrossRef] [PubMed]
  225. Sayer, M.; Chapman, G.B.; Thomas, M.; Dhaun, N. Cardiovascular Disease in Anti-Neutrophil Cytoplasm Antibody-Associated Vasculitis. Curr. Rheumatol. Rep. 2024, 26, 12–23. [Google Scholar] [CrossRef]
  226. Dolgyras, P.; Lazaridis, A.; Anyfanti, P.; Gavriilaki, E.; Koletsos, N.; Triantafyllou, A.; Nikolaidou, B.; Galanapoulou, V.; Douma, S.; Gkaliagkousi, E. Microcirculation Dynamics in Systemic Vasculitis: Evidence of Impaired Microvascular Response Regardless of Cardiovascular Risk Factors. Rheumatology 2023, 62, 2510–2516. [Google Scholar] [CrossRef] [PubMed]
  227. Terrier, B.; Chironi, G.; Pagnoux, C.; Cohen, P.; Puéchal, X.; Simon, A.; Mouthon, L.; Guillevin, L.; French Vasculitis Study Group. Factors Associated with Major Cardiovascular Events in Patients with Systemic Necrotizing Vasculitides: Results of a Longterm Followup Study. J. Rheumatol. 2014, 41, 723–729. [Google Scholar] [CrossRef]
  228. Houben, E.; Mendel, A.; Carette, S.; Voskuyl, A.E.; Penne, E.L.; Pagnoux, C. Predictors of Fatal and Non-Fatal Cardiovascular Events in ANCA-Associated Vasculitis: Data from the Toronto CanVasc Cohort. Jt. Bone Spine 2020, 87, 221–224. [Google Scholar] [CrossRef] [PubMed]
  229. Bai, Y.-H.; Li, Z.-Y.; Chang, D.-Y.; Chen, M.; Kallenberg, C.G.; Zhao, M.-H. The BVAS Is an Independent Predictor of Cardiovascular Events and Cardiovascular Disease-Related Mortality in Patients with ANCA-Associated Vasculitis: A Study of 504 Cases in a Single Chinese Center. Semin. Arthritis Rheum. 2018, 47, 524–529. [Google Scholar] [CrossRef] [PubMed]
  230. Robson, J.; Doll, H.; Suppiah, R.; Flossmann, O.; Harper, L.; Höglund, P.; Jayne, D.; Mahr, A.; Westman, K.; Luqmani, R. Damage in the Anca-Associated Vasculitides: Long-Term Data from the European Vasculitis Study Group (EUVAS) Therapeutic Trials. Ann. Rheum. Dis. 2015, 74, 177–184. [Google Scholar] [CrossRef]
  231. Biscetti, F.; Carbonella, A.; Parisi, F.; Bosello, S.L.; Schiavon, F.; Padoan, R.; Gremese, E.; Ferraccioli, G. The Prognostic Significance of the Birmingham Vasculitis Activity Score (BVAS) with Systemic Vasculitis Patients Transferred to the Intensive Care Unit (ICU). Medicine 2016, 95, e5506. [Google Scholar] [CrossRef]
  232. Suppiah, R.; Judge, A.; Batra, R.; Flossmann, O.; Harper, L.; Höglund, P.; Javaid, M.K.; Jayne, D.; Mukhtyar, C.; Westman, K.; et al. A Model to Predict Cardiovascular Events in Patients with Newly Diagnosed Wegener’s Granulomatosis and Microscopic Polyangiitis. Arthritis Care Res. 2011, 63, 588–596. [Google Scholar] [CrossRef] [PubMed]
  233. Tremoulet, A.H. The Role of Statins in Inflammatory Vasculitides. Autoimmunity 2015, 48, 177–180. [Google Scholar] [CrossRef] [PubMed]
  234. Inanc, M.T.; Kalay, N.; Heyit, T.; Ozdogru, I.; Kaya, M.G.; Dogan, A.; Duran, M.; Kasapkara, H.A.; Gunebakmaz, O.; Borlu, M.; et al. Effects of Atorvastatin and Lisinopril on Endothelial Dysfunction in Patients with Behçet’s Disease. Echocardiography 2010, 27, 997–1003. [Google Scholar] [CrossRef]
  235. Grossman, C.; Barshack, I.; Koren-Morag, N.; Ben-Zvi, I.; Bornstein, G. Risk Factors for Severe Cranial Ischaemic Events in Patients with Giant Cell Arteritis. Clin. Exp. Rheumatol. 2017, 35 (Suppl. 103), 88–93. [Google Scholar] [PubMed]
  236. Narváez, J.; Bernad, B.; Nolla, J.M.; Valverde, J. Statin Therapy Does Not Seem to Benefit Giant Cell Arteritis. Semin. Arthritis Rheum. 2007, 36, 322–327. [Google Scholar] [CrossRef] [PubMed]
  237. Pariente, A.; Guédon, A.; Alamowitch, S.; Thietart, S.; Carrat, F.; Delorme, S.; Capron, J.; Cacciatore, C.; Soussan, M.; Dellal, A.; et al. Ischemic Stroke in Giant-Cell Arteritis: French Retrospective Study. J. Autoimmun. 2019, 99, 48–51. [Google Scholar] [CrossRef]
  238. Pugnet, G.; Sailler, L.; Fournier, J.-P.; Bourrel, R.; Montastruc, J.-L.; Lapeyre-Mestre, M. Predictors of Cardiovascular Hospitalization in Giant Cell Arteritis: Effect of Statin Exposure. A French Population-Based Study. J. Rheumatol. 2016, 43, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
  239. Floyd, L.; Morris, A.D.; Woywodt, A.; Dhaygude, A. Cardiovascular Disease and ANCA-Associated Vasculitis: Are We Missing a Beat? Clin. Kidney J. 2022, 15, 618–623. [Google Scholar] [CrossRef]
  240. Hellmich, B.; Sanchez-Alamo, B.; Schirmer, J.H.; Berti, A.; Blockmans, D.; Cid, M.C.; Holle, J.U.; Hollinger, N.; Karadag, O.; Kronbichler, A.; et al. EULAR Recommendations for the Management of ANCA-Associated Vasculitis: 2022 Update. Ann. Rheum. Dis. 2024, 83, 30–47. [Google Scholar] [CrossRef]
  241. Walsh, M.; Faurschou, M.; Berden, A.; Flossmann, O.; Bajema, I.; Hoglund, P.; Smith, R.; Szpirt, W.; Westman, K.; Pusey, C.D.; et al. Long-Term Follow-up of Cyclophosphamide Compared with Azathioprine for Initial Maintenance Therapy in ANCA-Associated Vasculitis. Clin. J. Am. Soc. Nephrol. 2014, 9, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
  242. Smith, R.M.; Jones, R.B.; Specks, U.; Bond, S.; Nodale, M.; Al-Jayyousi, R.; Andrews, J.; Bruchfeld, A.; Camilleri, B.; Carette, S.; et al. Rituximab versus Azathioprine for Maintenance of Remission for Patients with ANCA-Associated Vasculitis and Relapsing Disease: An International Randomised Controlled Trial. Ann. Rheum. Dis. 2023, 82, 937–944. [Google Scholar] [CrossRef] [PubMed]
  243. Tuin, J.; Stassen, P.M.; Bogdan, D.I.; Broekroelofs, J.; van Paassen, P.; Cohen Tervaert, J.W.; Sanders, J.-S.; Stegeman, C.A. Mycophenolate Mofetil Versus Cyclophosphamide for the Induction of Remission in Nonlife-Threatening Relapses of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: Randomized, Controlled Trial. Clin. J. Am. Soc. Nephrol. 2019, 14, 1021–1028. [Google Scholar] [CrossRef]
  244. McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  245. Malik, T.F.; Aurelio, D.M. Extraintestinal Manifestations of Inflammatory Bowel Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  246. Levine, J.S.; Burakoff, R. Extraintestinal Manifestations of Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2011, 7, 235–241. [Google Scholar]
  247. Kumarapperuma, H.; Wang, R.; Little, P.J.; Kamato, D. Mechanistic Insight: Linking Cardiovascular Complications of Inflammatory Bowel Disease. Trends Cardiovasc. Med. 2023, 34, 203–211. [Google Scholar] [CrossRef]
  248. Singh, S.; Kullo, I.J.; Pardi, D.S.; Loftus, E.V. Epidemiology, Risk Factors and Management of Cardiovascular Diseases in IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 26–35. [Google Scholar] [CrossRef]
  249. Bernstein, C.N.; Wajda, A.; Blanchard, J.F. The Incidence of Arterial Thromboembolic Diseases in Inflammatory Bowel Disease: A Population-Based Study. Clin. Gastroenterol. Hepatol. 2008, 6, 41–45. [Google Scholar] [CrossRef] [PubMed]
  250. Kristensen, S.L.; Ahlehoff, O.; Lindhardsen, J.; Erichsen, R.; Jensen, G.V.; Torp-Pedersen, C.; Nielsen, O.H.; Gislason, G.H.; Hansen, P.R. Disease Activity in Inflammatory Bowel Disease Is Associated with Increased Risk of Myocardial Infarction, Stroke and Cardiovascular Death--a Danish Nationwide Cohort Study. PLoS ONE 2013, 8, e56944. [Google Scholar] [CrossRef]
  251. Dang, A.K.; Gonzalez, D.A.; Kumar, R.; Asif, S.; Bali, A.; Anne, K.K.; Konanur Srinivasa, N.K. Vinculum of Cardiovascular Disease and Inflammatory Bowel Disease: A Narrative Review. Cureus 2022, 14, e26144. [Google Scholar] [CrossRef]
  252. Wu, H.; Hu, T.; Hao, H.; Hill, M.A.; Xu, C.; Liu, Z. Inflammatory Bowel Disease and Cardiovascular Diseases: A Concise Review. Eur. Heart J. Open 2022, 2, oeab029. [Google Scholar] [CrossRef]
  253. Bigeh, A.; Sanchez, A.; Maestas, C.; Gulati, M. Inflammatory Bowel Disease and the Risk for Cardiovascular Disease: Does All Inflammation Lead to Heart Disease? Trends Cardiovasc. Med. 2020, 30, 463–469. [Google Scholar] [CrossRef]
  254. Zanoli, L.; Rastelli, S.; Inserra, G.; Castellino, P. Arterial Structure and Function in Inflammatory Bowel Disease. World J. Gastroenterol. 2015, 21, 11304–11311. [Google Scholar] [CrossRef]
  255. Xiao, Y.; Powell, D.W.; Liu, X.; Li, Q. Cardiovascular Manifestations of Inflammatory Bowel Diseases and the Underlying Pathogenic Mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2023, 325, R193–R211. [Google Scholar] [CrossRef]
  256. Huć, T.; Nowinski, A.; Drapala, A.; Konopelski, P.; Ufnal, M. Indole and Indoxyl Sulfate, Gut Bacteria Metabolites of Tryptophan, Change Arterial Blood Pressure via Peripheral and Central Mechanisms in Rats. Pharmacol. Res. 2018, 130, 172–179. [Google Scholar] [CrossRef] [PubMed]
  257. Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res. 2020, 127, 553–570. [Google Scholar] [CrossRef]
  258. Yoo, J.Y.; Sniffen, S.; McGill Percy, K.C.; Pallaval, V.B.; Chidipi, B. Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms 2022, 10, 108. [Google Scholar] [CrossRef] [PubMed]
  259. Nevulis, M.G.; Baker, C.; Lebovics, E.; Frishman, W.H. Overview of Link Between Inflammatory Bowel Disease and Cardiovascular Disease. Cardiol. Rev. 2018, 26, 287–293. [Google Scholar] [CrossRef] [PubMed]
  260. Sleutjes, J.A.M.; Roeters van Lennep, J.E.; de Vries, A.C. Spotlight on Cardiovascular Risk Assessment in Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2022, 67, 4326–4329. [Google Scholar] [CrossRef]
  261. Grip, O.; Janciauskiene, S.; Bredberg, A. Use of Atorvastatin as an Anti-Inflammatory Treatment in Crohn’s Disease. Br. J. Pharmacol. 2008, 155, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
  262. Crockett, S.D.; Hansen, R.A.; Stürmer, T.; Schectman, R.; Darter, J.; Sandler, R.S.; Kappelman, M.D. Statins Are Associated with Reduced Use of Steroids in Inflammatory Bowel Disease: A Retrospective Cohort Study. Inflamm. Bowel Dis. 2012, 18, 1048–1056. [Google Scholar] [CrossRef]
  263. Ananthakrishnan, A.N.; Cagan, A.; Cai, T.; Gainer, V.S.; Shaw, S.Y.; Churchill, S.; Karlson, E.W.; Murphy, S.N.; Liao, K.P.; Kohane, I. Statin Use Is Associated with Reduced Risk of Colorectal Cancer in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2016, 14, 973–979. [Google Scholar] [CrossRef] [PubMed]
  264. Ungaro, R.; Chang, H.L.; Côté-Daigneault, J.; Mehandru, S.; Atreja, A.; Colombel, J.-F. Statins Associated with Decreased Risk of New Onset Inflammatory Bowel Disease. Am. J. Gastroenterol. 2016, 111, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
  265. Bhagavathula, A.S.; Clark, C.; Rahmani, J. Statin Use and New-Onset of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis of over Ten Million Participants. Eur. J. Pharmacol. 2021, 891, 173750. [Google Scholar] [CrossRef] [PubMed]
  266. Khalil, D.; Boktor, M.; Mortensen, E.M.; Frei, C.R.; Mansi, I. Comparison of Frequency of Inflammatory Bowel Disease and Noninfectious Gastroenteritis Among Statin Users versus Nonusers. Am. J. Cardiol. 2015, 115, 1396–1401. [Google Scholar] [CrossRef]
  267. Dhamija, P.; Hota, D.; Kochhar, R.; Sachdev, A.; Chakrabarti, A. Randomized Clinical Trial: Atorvastatin versus Placebo in Patients with Acute Exacerbation of Mild to Moderate Ulcerative Colitis. Indian J. Gastroenterol. 2014, 33, 151–156. [Google Scholar] [CrossRef] [PubMed]
  268. Shah, S.C.; Glass, J.; Giustino, G.; Hove, J.R.T.; Castaneda, D.; Torres, J.; Kumar, A.; Elman, J.; Ullman, T.A.; Itzkowitz, S.H. Statin Exposure Is Not Associated with Reduced Prevalence of Colorectal Neoplasia in Patients with Inflammatory Bowel Disease. Gut Liver 2019, 13, 54–61. [Google Scholar] [CrossRef] [PubMed]
  269. Sleutjes, J.A.M.; van Lennep, J.E.R.; van der Woude, C.J.; de Vries, A.C. Thromboembolic and Atherosclerotic Cardiovascular Events in Inflammatory Bowel Disease: Epidemiology, Pathogenesis and Clinical Management. Therap Adv. Gastroenterol. 2021, 14, 17562848211032126. [Google Scholar] [CrossRef] [PubMed]
  270. Peppas, S.; Piovani, D.; Peyrin-Biroulet, L.; Danese, S.; Bonovas, S. Statins and Inflammatory Bowel Disease: Where Do We Stand? Eur. J. Intern. Med. 2020, 75, 10–14. [Google Scholar] [CrossRef]
  271. Sinh, P.; Cross, R. Cardiovascular Risk Assessment and Impact of Medications on Cardiovascular Disease in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
  272. Close, H.; Mason, J.M.; Wilson, D.W.; Hungin, A.P.S.; Jones, R.; Rubin, G. Risk of Ischaemic Heart Disease in Patients with Inflammatory Bowel Disease: Cohort Study Using the General Practice Research Database. PLoS ONE 2015, 10, e0139745. [Google Scholar] [CrossRef]
  273. Rungoe, C.; Basit, S.; Ranthe, M.F.; Wohlfahrt, J.; Langholz, E.; Jess, T. Risk of Ischaemic Heart Disease in Patients with Inflammatory Bowel Disease: A Nationwide Danish Cohort Study. Gut 2013, 62, 689–694. [Google Scholar] [CrossRef]
  274. Jaiswal, V.; Batra, N.; Dagar, M.; Butey, S.; Huang, H.; Chia, J.E.; Naz, S.; Endurance, E.O.; Raj, N.; Patel, S.; et al. Inflammatory Bowel Disease and Associated Cardiovascular Disease Outcomes: A Systematic Review. Medicine 2023, 102, e32775. [Google Scholar] [CrossRef] [PubMed]
  275. Zanoli, L.; Ozturk, K.; Cappello, M.; Inserra, G.; Geraci, G.; Tuttolomondo, A.; Torres, D.; Pinto, A.; Duminuco, A.; Riguccio, G.; et al. Inflammation and Aortic Pulse Wave Velocity: A Multicenter Longitudinal Study in Patients with Inflammatory Bowel Disease. J. Am. Heart Assoc. 2019, 8, e010942. [Google Scholar] [CrossRef]
  276. Brown, G. 5-Aminosalicylic Acid-Associated Myocarditis and Pericarditis: A Narrative Review. Can. J. Hosp. Pharm. 2016, 69, 466–472. [Google Scholar] [CrossRef] [PubMed]
  277. deFonseka, A.M.; Tuskey, A.; Conaway, M.R.; Behm, B.W. Antitumor Necrosis Factor-α Therapy Is Associated with Reduced Risk of Thromboembolic Events in Hospitalized Patients with Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2016, 50, 578–583. [Google Scholar] [CrossRef] [PubMed]
  278. Lewis, J.D.; Scott, F.I.; Brensinger, C.M.; Roy, J.A.; Osterman, M.T.; Mamtani, R.; Bewtra, M.; Chen, L.; Yun, H.; Xie, F.; et al. Increased Mortality Rates with Prolonged Corticosteroid Therapy When Compared with Antitumor Necrosis Factor-α-Directed Therapy for Inflammatory Bowel Disease. Am. J. Gastroenterol. 2018, 113, 405–417. [Google Scholar] [CrossRef] [PubMed]
  279. Pujades-Rodriguez, M.; Morgan, A.W.; Cubbon, R.M.; Wu, J. Dose-Dependent Oral Glucocorticoid Cardiovascular Risks in People with Immune-Mediated Inflammatory Diseases: A Population-Based Cohort Study. PLoS Med. 2020, 17, e1003432. [Google Scholar] [CrossRef]
  280. Kirchgesner, J.; Nyboe Andersen, N.; Carrat, F.; Jess, T.; Beaugerie, L.; BERENICE Study Group. Risk of Acute Arterial Events Associated with Treatment of Inflammatory Bowel Diseases: Nationwide French Cohort Study. Gut 2020, 69, 852–858. [Google Scholar] [CrossRef] [PubMed]
  281. Tripodi, A.; Spina, L.; Pisani, L.F.; Padovan, L.; Cavallaro, F.; Chantarangkul, V.; Valsecchi, C.; Peyvandi, F.; Vecchi, M. Anti-TNF-α Treatment Reduces the Baseline Procoagulant Imbalance of Patients with Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2021, 27, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
  282. Sandborn, W.J.; Panés, J.; D’Haens, G.R.; Sands, B.E.; Su, C.; Moscariello, M.; Jones, T.; Pedersen, R.; Friedman, G.S.; Lawendy, N.; et al. Safety of Tofacitinib for Treatment of Ulcerative Colitis, Based on 4.4 Years of Data From Global Clinical Trials. Clin. Gastroenterol. Hepatol. 2019, 17, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
  283. Olivera, P.A.; Lasa, J.S.; Bonovas, S.; Danese, S.; Peyrin-Biroulet, L. Safety of Janus Kinase Inhibitors in Patients with Inflammatory Bowel Diseases or Other Immune-Mediated Diseases: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 158, 1554–1573.e12. [Google Scholar] [CrossRef]
  284. Honap, S.; Chee, D.; Chapman, T.P.; Patel, M.; Kent, A.J.; Ray, S.; Sharma, E.; Kennedy, J.; Cripps, S.; Walsh, A.; et al. Real-World Effectiveness of Tofacitinib for Moderate to Severe Ulcerative Colitis: A Multicentre UK Experience. J. Crohns Colitis 2020, 14, 1385–1393. [Google Scholar] [CrossRef]
  285. Sedano, R.; Ma, C.; Jairath, V.; Feagan, B.G. Janus Kinase Inhibitors for the Management of Patients with Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2022, 18, 14–27. [Google Scholar]
  286. Sands, B.E.; Taub, P.R.; Armuzzi, A.; Friedman, G.S.; Moscariello, M.; Lawendy, N.; Pedersen, R.D.; Chan, G.; Nduaka, C.I.; Quirk, D.; et al. Tofacitinib Treatment Is Associated with Modest and Reversible Increases in Serum Lipids in Patients with Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2020, 18, 123–132.e3. [Google Scholar] [CrossRef] [PubMed]
  287. Adedokun, O.J.; Xu, Z.; Marano, C.; O’Brien, C.; Szapary, P.; Zhang, H.; Johanns, J.; Leong, R.W.; Hisamatsu, T.; Van Assche, G.; et al. Ustekinumab Pharmacokinetics and Exposure Response in a Phase 3 Randomized Trial of Patients with Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2020, 18, 2244–2255.e9. [Google Scholar] [CrossRef] [PubMed]
  288. Sandborn, W.J.; Rutgeerts, P.; Gasink, C.; Jacobstein, D.; Zou, B.; Johanns, J.; Sands, B.E.; Hanauer, S.B.; Targan, S.; Ghosh, S.; et al. Long-Term Efficacy and Safety of Ustekinumab for Crohn’s Disease through the Second Year of Therapy. Aliment. Pharmacol. Ther. 2018, 48, 65–77. [Google Scholar] [CrossRef] [PubMed]
  289. Loftus, E.V.; Feagan, B.G.; Panaccione, R.; Colombel, J.-F.; Sandborn, W.J.; Sands, B.E.; Danese, S.; D’Haens, G.; Rubin, D.T.; Shafran, I.; et al. Long-Term Safety of Vedolizumab for Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2020, 52, 1353–1365. [Google Scholar] [CrossRef]
  290. Cross, R.K.; Chiorean, M.; Vekeman, F.; Xiao, Y.; Wu, E.; Chao, J.; Wang, A.W. Assessment of the Real-World Safety Profile of Vedolizumab Using the United States Food and Drug Administration Adverse Event Reporting System. PLoS ONE 2019, 14, e0225572. [Google Scholar] [CrossRef] [PubMed]
  291. Narula, N.; Peerani, F.; Meserve, J.; Kochhar, G.; Chaudrey, K.; Hartke, J.; Chilukuri, P.; Koliani-Pace, J.; Winters, A.; Katta, L.; et al. Vedolizumab for Ulcerative Colitis: Treatment Outcomes from the VICTORY Consortium. Am. J. Gastroenterol. 2018, 113, 1345. [Google Scholar] [CrossRef] [PubMed]
  292. Chaparro, M.; Garre, A.; Ricart, E.; Iborra, M.; Mesonero, F.; Vera, I.; Riestra, S.; García-Sánchez, V.; Luisa De Castro, M.; Martin-Cardona, A.; et al. Short and Long-Term Effectiveness and Safety of Vedolizumab in Inflammatory Bowel Disease: Results from the ENEIDA Registry. Aliment. Pharmacol. Ther. 2018, 48, 839–851. [Google Scholar] [CrossRef] [PubMed]
  293. Meserve, J.; Aniwan, S.; Koliani-Pace, J.L.; Shashi, P.; Weiss, A.; Faleck, D.; Winters, A.; Chablaney, S.; Kochhar, G.; Boland, B.S.; et al. Retrospective Analysis of Safety of Vedolizumab in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2019, 17, 1533–1540.e2. [Google Scholar] [CrossRef] [PubMed]
  294. Waymack, J.R.; Sundareshan, V. Acquired Immune Deficiency Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  295. Ambrosioni, J.; Levi, L.; Alagaratnam, J.; Van Bremen, K.; Mastrangelo, A.; Waalewijn, H.; Molina, J.-M.; Guaraldi, G.; Winston, A.; Boesecke, C.; et al. Major Revision Version 12.0 of the European AIDS Clinical Society Guidelines 2023. HIV Med. 2023, 24, 1126–1136. [Google Scholar] [CrossRef]
  296. Hsue, P.Y.; Waters, D.D. HIV Infection and Coronary Heart Disease: Mechanisms and Management. Nat. Rev. Cardiol. 2019, 16, 745–759. [Google Scholar] [CrossRef]
  297. Palella, F.J.; Delaney, K.M.; Moorman, A.C.; Loveless, M.O.; Fuhrer, J.; Satten, G.A.; Aschman, D.J.; Holmberg, S.D. Declining Morbidity and Mortality Among Patients with Advanced Human Immunodeficiency Virus Infection. HIV Outpatient Study Investigators. N. Engl. J. Med. 1998, 338, 853–860. [Google Scholar] [CrossRef] [PubMed]
  298. Smit, M.; Brinkman, K.; Geerlings, S.; Smit, C.; Thyagarajan, K.; Sighem, A.; van de Wolf, F.; Hallett, T.B.; ATHENA Observational Cohort. Future Challenges for Clinical Care of an Ageing Population Infected with HIV: A Modelling Study. Lancet Infect. Dis. 2015, 15, 810–818. [Google Scholar] [CrossRef] [PubMed]
  299. Islam, F.M.; Wu, J.; Jansson, J.; Wilson, D.P. Relative Risk of Cardiovascular Disease Among People Living with HIV: A Systematic Review and Meta-Analysis. HIV Med. 2012, 13, 453–468. [Google Scholar] [CrossRef] [PubMed]
  300. Ballocca, F.; D’Ascenzo, F.; Gili, S.; Grosso Marra, W.; Gaita, F. Cardiovascular Disease in Patients with HIV. Trends Cardiovasc. Med. 2017, 27, 558–563. [Google Scholar] [CrossRef] [PubMed]
  301. Freiberg, M.S.; Chang, C.-C.H.; Skanderson, M.; Patterson, O.V.; DuVall, S.L.; Brandt, C.A.; So-Armah, K.A.; Vasan, R.S.; Oursler, K.A.; Gottdiener, J.; et al. Association Between HIV Infection and the Risk of Heart Failure with Reduced Ejection Fraction and Preserved Ejection Fraction in the Antiretroviral Therapy Era: Results From the Veterans Aging Cohort Study. JAMA Cardiol. 2017, 2, 536–546. [Google Scholar] [CrossRef]
  302. Al-Kindi, S.G.; ElAmm, C.; Ginwalla, M.; Mehanna, E.; Zacharias, M.; Benatti, R.; Oliveira, G.H.; Longenecker, C.T. Heart Failure in Patients with Human Immunodeficiency Virus Infection: Epidemiology and Management Disparities. Int. J. Cardiol. 2016, 218, 43–46. [Google Scholar] [CrossRef] [PubMed]
  303. Butt, A.A.; Chang, C.-C.; Kuller, L.; Goetz, M.B.; Leaf, D.; Rimland, D.; Gibert, C.L.; Oursler, K.K.; Rodriguez-Barradas, M.C.; Lim, J.; et al. Risk of Heart Failure with Human Immunodeficiency Virus in the Absence of Prior Diagnosis of Coronary Heart Disease. Arch. Intern. Med. 2011, 171, 737–743. [Google Scholar] [CrossRef]
  304. Freiberg, M.S.; Chang, C.-C.H.; Kuller, L.H.; Skanderson, M.; Lowy, E.; Kraemer, K.L.; Butt, A.A.; Bidwell Goetz, M.; Leaf, D.; Oursler, K.A.; et al. HIV Infection and the Risk of Acute Myocardial Infarction. JAMA Intern. Med. 2013, 173, 614–622. [Google Scholar] [CrossRef]
  305. Chow, F.C.; Regan, S.; Feske, S.; Meigs, J.B.; Grinspoon, S.K.; Triant, V.A. Comparison of Ischemic Stroke Incidence in HIV-Infected and Non-HIV-Infected Patients in a US Health Care System. J. Acquir. Immune Defic. Syndr. 2012, 60, 351–358. [Google Scholar] [CrossRef] [PubMed]
  306. Narla, V.A. Sudden Cardiac Death in HIV-Infected Patients: A Contemporary Review. Clin. Cardiol. 2021, 44, 316–321. [Google Scholar] [CrossRef]
  307. Sinha, A.; Feinstein, M.J. Coronary Artery Disease Manifestations in HIV: What, How, and Why. Can. J. Cardiol. 2019, 35, 270–279. [Google Scholar] [CrossRef] [PubMed]
  308. Hemkens, L.G.; Bucher, H.C. HIV Infection and Cardiovascular Disease. Eur. Heart J. 2014, 35, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
  309. Wang, T.; Yi, R.; Green, L.A.; Chelvanambi, S.; Seimetz, M.; Clauss, M. Increased Cardiovascular Disease Risk in the HIV-Positive Population on ART: Potential Role of HIV-Nef and Tat. Cardiovasc. Pathol. 2015, 24, 279–282. [Google Scholar] [CrossRef] [PubMed]
  310. Hsue, P.Y.; Lo, J.C.; Franklin, A.; Bolger, A.F.; Martin, J.N.; Deeks, S.G.; Waters, D.D. Progression of Atherosclerosis as Assessed by Carotid Intima-Media Thickness in Patients with HIV Infection. Circulation 2004, 109, 1603–1608. [Google Scholar] [CrossRef]
  311. Hsue, P.Y.; Hunt, P.W.; Sinclair, E.; Bredt, B.; Franklin, A.; Killian, M.; Hoh, R.; Martin, J.N.; McCune, J.M.; Waters, D.D.; et al. Increased Carotid Intima-Media Thickness in HIV Patients Is Associated with Increased Cytomegalovirus-Specific T-Cell Responses. AIDS 2006, 20, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
  312. Grand, M.; Bia, D.; Diaz, A. Cardiovascular Risk Assessment in People Living with HIV: A Systematic Review and Meta-Analysis of Real-Life Data. Curr. HIV Res. 2020, 18, 5–18. [Google Scholar] [CrossRef] [PubMed]
  313. Friis-Møller, N.; Thiébaut, R.; Reiss, P.; Weber, R.; Monforte, A.D.; De Wit, S.; El-Sadr, W.; Fontas, E.; Worm, S.; Kirk, O.; et al. Predicting the Risk of Cardiovascular Disease in HIV-Infected Patients: The Data Collection on Adverse Effects of Anti-HIV Drugs Study. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 491–501. [Google Scholar] [CrossRef] [PubMed]
  314. Feinstein, M.J.; Hsue, P.Y.; Benjamin, L.A.; Bloomfield, G.S.; Currier, J.S.; Freiberg, M.S.; Grinspoon, S.K.; Levin, J.; Longenecker, C.T.; Post, W.S. Characteristics, Prevention, and Management of Cardiovascular Disease in People Living with HIV: A Scientific Statement From the American Heart Association. Circulation 2019, 140, e98–e124. [Google Scholar] [CrossRef] [PubMed]
  315. Bozzette, S.A.; Ake, C.F.; Tam, H.K.; Phippard, A.; Cohen, D.; Scharfstein, D.O.; Louis, T.A. Long-Term Survival and Serious Cardiovascular Events in HIV-Infected Patients Treated with Highly Active Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2008, 47, 338–341. [Google Scholar] [CrossRef] [PubMed]
  316. Worm, S.W.; Sabin, C.; Weber, R.; Reiss, P.; El-Sadr, W.; Dabis, F.; De Wit, S.; Law, M.; Monforte, A.D.; Friis-Møller, N.; et al. Risk of Myocardial Infarction in Patients with HIV Infection Exposed to Specific Individual Antiretroviral Drugs from the 3 Major Drug Classes: The Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study. J. Infect. Dis. 2010, 201, 318–330. [Google Scholar] [CrossRef] [PubMed]
  317. Coplan, P.M.; Nikas, A.; Japour, A.; Cormier, K.; Maradit-Kremers, H.; Lewis, R.; Xu, Y.; DiNubile, M.J. Incidence of Myocardial Infarction in Randomized Clinical Trials of Protease Inhibitor-Based Antiretroviral Therapy: An Analysis of Four Different Protease Inhibitors. AIDS Res. Hum. Retroviruses 2003, 19, 449–455. [Google Scholar] [CrossRef]
  318. Petoumenos, K.; Worm, S.; Reiss, P.; de Wit, S.; d’Arminio Monforte, A.; Sabin, C.; Friis-Møller, N.; Weber, R.; Mercie, P.; Pradier, C.; et al. Rates of Cardiovascular Disease Following Smoking Cessation in Patients with HIV Infection: Results from the D:A:D Study(*). HIV Med. 2011, 12, 412–421. [Google Scholar] [CrossRef] [PubMed]
  319. Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef]
  320. Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, 3168–3209. [Google Scholar] [CrossRef]
  321. Grinspoon, S.K.; Fitch, K.V.; Overton, E.T.; Fichtenbaum, C.J.; Zanni, M.V.; Aberg, J.A.; Malvestutto, C.; Lu, M.T.; Currier, J.S.; Sponseller, C.A.; et al. Rationale and Design of the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Am. Heart J. 2019, 212, 23–35. [Google Scholar] [CrossRef] [PubMed]
  322. Funderburg, N.T.; Jiang, Y.; Debanne, S.M.; Storer, N.; Labbato, D.; Clagett, B.; Robinson, J.; Lederman, M.M.; McComsey, G.A. Rosuvastatin Treatment Reduces Markers of Monocyte Activation in HIV-Infected Subjects on Antiretroviral Therapy. Clin. Infect. Dis. 2014, 58, 588–595. [Google Scholar] [CrossRef]
  323. Funderburg, N.T.; Jiang, Y.; Debanne, S.M.; Labbato, D.; Juchnowski, S.; Ferrari, B.; Clagett, B.; Robinson, J.; Lederman, M.M.; McComsey, G.A. Rosuvastatin Reduces Vascular Inflammation and T-Cell and Monocyte Activation in HIV-Infected Subjects on Antiretroviral Therapy. JAIDS J. Acquir. Immune Defic. Syndr. 2015, 68, 396. [Google Scholar] [CrossRef]
  324. Srichatrapimuk, S.; Wongsa, A.; Sungkanuparph, S.; Kiertiburanakul, S.; Tassaneetrithep, B.; Phuphuakrat, A. Effects of Pitavastatin on Atherosclerotic-Associated Inflammatory Biomarkers in People Living with HIV with Dyslipidemia and Receiving Ritonavir-Boosted Atazanavir: A Randomized, Double-Blind, Crossover Study. AIDS Res. Ther. 2023, 20, 13. [Google Scholar] [CrossRef]
  325. Aslangul, E.; Fellahi, S.; Assoumou, L.K.; Bastard, J.-P.; Capeau, J.; Costagliola, D. High-Sensitivity C-Reactive Protein Levels Fall during Statin Therapy in HIV-Infected Patients Receiving Ritonavir-Boosted Protease Inhibitors. AIDS 2011, 25, 1128. [Google Scholar] [CrossRef] [PubMed]
  326. Eckard, A.R.; McComsey, G.A. The Role of Statins in the Setting of HIV Infection. Curr. HIV/AIDS Rep. 2015, 12, 305–312. [Google Scholar] [CrossRef] [PubMed]
  327. Wohl, D.A.; Waters, D.; Simpson, R.J., Jr.; Richard, S.; Schnell, A.; Napravnik, S.; Keys, J.; Eron, J.J., Jr.; Hsue, P. Ezetimibe Alone Reduces Low-Density Lipoprotein Cholesterol in HIV-Infected Patients Receiving Combination Antiretroviral Therapy. Clin. Infect. Dis. 2008, 47, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
  328. Sarkar, S.; Brown, T.T. Lipid Disorders in People with HIV. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
  329. Statins and Fibrates for the Treatment of Hyperlipidaemia in… : AIDS. Available online: https://journals.lww.com/aidsonline/fulltext/2003/04110/statins_and_fibrates_for_the_treatment_of.10.aspx (accessed on 7 May 2024).
  330. Marine Drugs|Free Full-Text|Effect of Omega-3 Polyunsaturated Fatty Acids Treatment on Lipid Pattern of HIV Patients: A Meta-Analysis of Randomized Clinical Trials. Available online: https://www.mdpi.com/1660-3397/18/6/292 (accessed on 7 May 2024).
  331. Eggert, J.; Oncology Nursing Society (Eds.) Cancer Basics, 2nd ed.; Oncology Nursing Society: Pittsburgh, PA, USA, 2017; ISBN 978-1-63593-007-8. [Google Scholar]
  332. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
  333. Battisti, N.M.L.; Welch, C.A.; Sweeting, M.; de Belder, M.; Deanfield, J.; Weston, C.; Peake, M.D.; Adlam, D.; Ring, A. Prevalence of Cardiovascular Disease in Patients with Potentially Curable Malignancies: A National Registry Dataset Analysis. JACC CardioOncol. 2022, 4, 238–253. [Google Scholar] [CrossRef] [PubMed]
  334. Paterson, D.I.; Wiebe, N.; Cheung, W.Y.; Mackey, J.R.; Pituskin, E.; Reiman, A.; Tonelli, M. Incident Cardiovascular Disease Among Adults with Cancer: A Population-Based Cohort Study. JACC CardioOncol. 2022, 4, 85–94. [Google Scholar] [CrossRef]
  335. Zhang, X.; Pawlikowski, M.; Olivo-Marston, S.; Williams, K.P.; Bower, J.K.; Felix, A.S. Ten-Year Cardiovascular Risk Among Cancer Survivors: The National Health and Nutrition Examination Survey. PLoS ONE 2021, 16, e0247919. [Google Scholar] [CrossRef] [PubMed]
  336. Stoltzfus, K.C.; Zhang, Y.; Sturgeon, K.; Sinoway, L.I.; Trifiletti, D.M.; Chinchilli, V.M.; Zaorsky, N.G. Fatal Heart Disease Among Cancer Patients. Nat. Commun. 2020, 11, 2011. [Google Scholar] [CrossRef]
  337. Sturgeon, K.M.; Deng, L.; Bluethmann, S.M.; Zhou, S.; Trifiletti, D.M.; Jiang, C.; Kelly, S.P.; Zaorsky, N.G. A Population-Based Study of Cardiovascular Disease Mortality Risk in US Cancer Patients. Eur. Heart J. 2019, 40, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
  338. Libby, P.; Kobold, S. Inflammation: A Common Contributor to Cancer, Aging, and Cardiovascular Diseases-Expanding the Concept of Cardio-Oncology. Cardiovasc. Res. 2019, 115, 824–829. [Google Scholar] [CrossRef] [PubMed]
  339. Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
  340. Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial Dysfunction and Oxidative Stress in Heart Disease. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
  341. Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef] [PubMed]
  342. Trøseid, M.; Andersen, G.Ø.; Broch, K.; Hov, J.R. The Gut Microbiome in Coronary Artery Disease and Heart Failure: Current Knowledge and Future Directions. EBioMedicine 2020, 52, 102649. [Google Scholar] [CrossRef] [PubMed]
  343. Masenga, S.K.; Hamooya, B.; Hangoma, J.; Hayumbu, V.; Ertuglu, L.A.; Ishimwe, J.; Rahman, S.; Saleem, M.; Laffer, C.L.; Elijovich, F.; et al. Recent Advances in Modulation of Cardiovascular Diseases by the Gut Microbiota. J. Hum. Hypertens. 2022, 36, 952–959. [Google Scholar] [CrossRef]
  344. Park, E.M.; Chelvanambi, M.; Bhutiani, N.; Kroemer, G.; Zitvogel, L.; Wargo, J.A. Targeting the Gut and Tumor Microbiota in Cancer. Nat. Med. 2022, 28, 690–703. [Google Scholar] [CrossRef] [PubMed]
  345. Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.-S.; Kroemer, G.; Galluzzi, L. Mitochondrial Metabolism and Cancer. Cell Res. 2018, 28, 265–280. [Google Scholar] [CrossRef] [PubMed]
  346. Wilcox, N.S.; Rotz, S.J.; Mullen, M.; Song, E.J.; Ky Hamilton, B.; Moslehi, J.; Armenian, S.H.; Wu, J.C.; Rhee, J.-W.; Ky, B. Sex-Specific Cardiovascular Risks of Cancer and Its Therapies. Circ. Res. 2022, 130, 632–651. [Google Scholar] [CrossRef]
  347. Okwuosa, T.M.; Morgans, A.; Rhee, J.-W.; Reding, K.W.; Maliski, S.; Plana, J.-C.; Volgman, A.S.; Moseley, K.F.; Porter, C.B.; Ismail-Khan, R.; et al. Impact of Hormonal Therapies for Treatment of Hormone-Dependent Cancers (Breast and Prostate) on the Cardiovascular System: Effects and Modifications: A Scientific Statement from the American Heart Association. Circ. Genom. Precis. Med. 2021, 14, e000082. [Google Scholar] [CrossRef] [PubMed]
  348. Chow, E.J.; Chen, Y.; Hudson, M.M.; Feijen, E.A.M.; Kremer, L.C.; Border, W.L.; Green, D.M.; Meacham, L.R.; Mulrooney, D.A.; Ness, K.K.; et al. Prediction of Ischemic Heart Disease and Stroke in Survivors of Childhood Cancer. J. Clin. Oncol. 2018, 36, 44–52. [Google Scholar] [CrossRef]
  349. Chow, E.J.; Chen, Y.; Kremer, L.C.; Breslow, N.E.; Hudson, M.M.; Armstrong, G.T.; Border, W.L.; Feijen, E.A.M.; Green, D.M.; Meacham, L.R.; et al. Individual Prediction of Heart Failure Among Childhood Cancer Survivors. J. Clin. Oncol. 2015, 33, 394–402. [Google Scholar] [CrossRef] [PubMed]
  350. Liu, C.; Chen, H.; Hu, B.; Shi, J.; Chen, Y.; Huang, K. New Insights into the Therapeutic Potentials of Statins in Cancer. Front. Pharmacol. 2023, 14, 1188926. [Google Scholar] [CrossRef] [PubMed]
  351. Matusewicz, L.; Meissner, J.; Toporkiewicz, M.; Sikorski, A.F. The Effect of Statins on Cancer Cells--Review. Tumour Biol. 2015, 36, 4889–4904. [Google Scholar] [CrossRef] [PubMed]
  352. Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond—The Role of the Mevalonate Pathway in Cancer Biology. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188351. [Google Scholar] [CrossRef] [PubMed]
  353. Mullen, P.J.; Yu, R.; Longo, J.; Archer, M.C.; Penn, L.Z. The Interplay Between Cell Signalling and the Mevalonate Pathway in Cancer. Nat. Rev. Cancer 2016, 16, 718–731. [Google Scholar] [CrossRef] [PubMed]
  354. Huang, B.; Song, B.-L.; Xu, C. Cholesterol Metabolism in Cancer: Mechanisms and Therapeutic Opportunities. Nat. Metab. 2020, 2, 132–141. [Google Scholar] [CrossRef] [PubMed]
  355. Ahmadi, M.; Amiri, S.; Pecic, S.; Machaj, F.; Rosik, J.; Łos, M.J.; Alizadeh, J.; Mahdian, R.; da Silva Rosa, S.C.; Schaafsma, D.; et al. Pleiotropic Effects of Statins: A Focus on Cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165968. [Google Scholar] [CrossRef]
  356. Jiang, W.; Hu, J.-W.; He, X.-R.; Jin, W.-L.; He, X.-Y. Statins: A Repurposed Drug to Fight Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 241. [Google Scholar] [CrossRef] [PubMed]
  357. Zaleska, M.; Mozenska, O.; Bil, J. Statins Use and Cancer: An Update. Future Oncol. 2018, 14, 1497–1509. [Google Scholar] [CrossRef]
  358. Juarez, D.; Fruman, D.A. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021, 7, 525–540. [Google Scholar] [CrossRef] [PubMed]
  359. Weis, M.; Heeschen, C.; Glassford, A.J.; Cooke, J.P. Statins Have Biphasic Effects on Angiogenesis. Circulation 2002, 105, 739–745. [Google Scholar] [CrossRef] [PubMed]
  360. Dulak, J.; Józkowicz, A. Anti-Angiogenic and Anti-Inflammatory Effects of Statins: Relevance to Anti-Cancer Therapy. Curr. Cancer Drug Targets 2005, 5, 579–594. [Google Scholar] [CrossRef]
  361. Zahedipour, F.; Butler, A.E.; Rizzo, M.; Sahebkar, A. Statins and Angiogenesis in Non-Cardiovascular Diseases. Drug Discov. Today 2022, 27, 103320. [Google Scholar] [CrossRef] [PubMed]
  362. Ashrafizadeh, M.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Modulatory Effects of Statins on the Autophagy: A Therapeutic Perspective. J. Cell Physiol. 2020, 235, 3157–3168. [Google Scholar] [CrossRef]
  363. Mengual, D.; Medrano, L.E.; Villamizar-Villamizar, W.; Osorio-Llanes, E.; Mendoza-Torres, E.; Bolívar, S. Novel Effects of Statins on Cancer via Autophagy. Pharmaceuticals 2022, 15, 648. [Google Scholar] [CrossRef] [PubMed]
  364. Van Rompay, M.I.; Solomon, K.R.; Nickel, J.C.; Ranganathan, G.; Kantoff, P.W.; McKinlay, J.B. Prostate Cancer Incidence and Mortality Among Men Using Statins and Non-Statin Lipid-Lowering Medications. Eur. J. Cancer 2019, 112, 118–126. [Google Scholar] [CrossRef]
  365. Taras, D.; Blanc, J.-F.; Rullier, A.; Dugot-Senant, N.; Laurendeau, I.; Vidaud, M.; Rosenbaum, J. Pravastatin Reduces Lung Metastasis of Rat Hepatocellular Carcinoma via a Coordinated Decrease of MMP Expression and Activity. J. Hepatol. 2007, 46, 69–76. [Google Scholar] [CrossRef]
  366. Mandal, C.C.; Ghosh-Choudhury, N.; Yoneda, T.; Choudhury, G.G.; Ghosh-Choudhury, N. Simvastatin Prevents Skeletal Metastasis of Breast Cancer by an Antagonistic Interplay Between P53 and CD44. J. Biol. Chem. 2011, 286, 11314–11327. [Google Scholar] [CrossRef] [PubMed]
  367. Tilija Pun, N.; Jeong, C.-H. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals 2021, 14, 470. [Google Scholar] [CrossRef]
  368. Graaf, M.R.; Beiderbeck, A.B.; Egberts, A.C.G.; Richel, D.J.; Guchelaar, H.-J. The Risk of Cancer in Users of Statins. J. Clin. Oncol. 2004, 22, 2388–2394. [Google Scholar] [CrossRef]
  369. Poynter, J.N.; Gruber, S.B.; Higgins, P.D.R.; Almog, R.; Bonner, J.D.; Rennert, H.S.; Low, M.; Greenson, J.K.; Rennert, G. Statins and the Risk of Colorectal Cancer. N. Engl. J. Med. 2005, 352, 2184–2192. [Google Scholar] [CrossRef]
  370. Cauley, J.A.; McTiernan, A.; Rodabough, R.J.; LaCroix, A.; Bauer, D.C.; Margolis, K.L.; Paskett, E.D.; Vitolins, M.Z.; Furberg, C.D.; Chlebowski, R.T.; et al. Statin Use and Breast Cancer: Prospective Results from the Women’s Health Initiative. J. Natl. Cancer Inst. 2006, 98, 700–707. [Google Scholar] [CrossRef] [PubMed]
  371. Kuoppala, J.; Lamminpää, A.; Pukkala, E. Statins and Cancer: A Systematic Review and Meta-Analysis. Eur. J. Cancer 2008, 44, 2122–2132. [Google Scholar] [CrossRef] [PubMed]
  372. Jacobs, E.J.; Rodriguez, C.; Bain, E.B.; Wang, Y.; Thun, M.J.; Calle, E.E. Cholesterol-Lowering Drugs and Advanced Prostate Cancer Incidence in a Large U.S. Cohort. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 2213–2217. [Google Scholar] [CrossRef] [PubMed]
  373. Kumar, A.S.; Benz, C.C.; Shim, V.; Minami, C.A.; Moore, D.H.; Esserman, L.J. Estrogen Receptor-Negative Breast Cancer Is Less Likely to Arise Among Lipophilic Statin Users. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
  374. Zhong, S.; Zhang, X.; Chen, L.; Ma, T.; Tang, J.; Zhao, J. Statin Use and Mortality in Cancer Patients: Systematic Review and Meta-Analysis of Observational Studies. Cancer Treat. Rev. 2015, 41, 554–567. [Google Scholar] [CrossRef] [PubMed]
  375. Nielsen, S.F.; Nordestgaard, B.G.; Bojesen, S.E. Statin Use and Reduced Cancer-Related Mortality. N. Engl. J. Med. 2012, 367, 1792–1802. [Google Scholar] [CrossRef] [PubMed]
  376. Chang, W.-T.; Lin, H.-W.; Lin, S.-H.; Li, Y.-H. Association of Statin Use with Cancer- and Noncancer-Associated Survival Among Patients with Breast Cancer in Asia. JAMA Netw. Open 2023, 6, e239515. [Google Scholar] [CrossRef]
  377. Mei, Z.; Liang, M.; Li, L.; Zhang, Y.; Wang, Q.; Yang, W. Effects of Statins on Cancer Mortality and Progression: A Systematic Review and Meta-Analysis of 95 Cohorts Including 1,111,407 Individuals. Int. J. Cancer 2017, 140, 1068–1081. [Google Scholar] [CrossRef]
  378. Zhou, Q.; Jiao, Z.; Liu, Y.; Devreotes, P.N.; Zhang, Z. The Effects of Statins in Patients with Advanced-Stage Cancers—A Systematic Review and Meta-Analysis. Front. Oncol. 2023, 13, 1234713. [Google Scholar] [CrossRef] [PubMed]
  379. Chen, Z.; Wu, P.; Wang, J.; Chen, P.; Fang, Z.; Luo, F. The Association of Statin Therapy and Cancer: A Meta-Analysis. Lipids Health Dis. 2023, 22, 192. [Google Scholar] [CrossRef]
  380. Undela, K.; Srikanth, V.; Bansal, D. Statin Use and Risk of Breast Cancer: A Meta-Analysis of Observational Studies. Breast Cancer Res. Treat. 2012, 135, 261–269. [Google Scholar] [CrossRef] [PubMed]
  381. Islam, M.M.; Yang, H.-C.; Nguyen, P.-A.; Poly, T.N.; Huang, C.-W.; Kekade, S.; Khalfan, A.M.; Debnath, T.; Li, Y.-C.J.; Abdul, S.S. Exploring Association Between Statin Use and Breast Cancer Risk: An Updated Meta-Analysis. Arch. Gynecol. Obstet. 2017, 296, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
  382. Wong, N.D.; Zhao, Y.; Quek, R.G.W.; Blumenthal, R.S.; Budoff, M.J.; Cushman, M.; Garg, P.; Sandfort, V.; Tsai, M.; Lopez, J.A.G. Residual Atherosclerotic Cardiovascular Disease Risk in Statin-Treated Adults: The Multi-Ethnic Study of Atherosclerosis. J. Clin. Lipidol. 2017, 11, 1223–1233. [Google Scholar] [CrossRef]
  383. Fruchart, J.-C.; Sacks, F.M.; Hermans, M.P.; Assmann, G.; Brown, W.V.; Ceska, R.; Chapman, M.J.; Dodson, P.M.; Fioretto, P.; Ginsberg, H.N.; et al. The Residual Risk Reduction Initiative: A Call to Action to Reduce Residual Vascular Risk in Dyslipidaemic Patient. Diab Vasc. Dis. Res. 2008, 5, 319–335. [Google Scholar] [CrossRef]
  384. Waksman, R.; Merdler, I.; Case, B.C.; Waksman, O.; Porto, I. Targeting Inflammation in Atherosclerosis: Overview, Strategy and Directions. EuroIntervention 2024, 20, 32–44. [Google Scholar] [CrossRef] [PubMed]
  385. Ridker, P.M. Residual Inflammatory Risk: Addressing the Obverse Side of the Atherosclerosis Prevention Coin. Eur. Heart J. 2016, 37, 1720–1722. [Google Scholar] [CrossRef]
  386. Ridker, P.M.; Koenig, W.; Kastelein, J.J.; Mach, F.; Lüscher, T.F. Has the Time Finally Come to Measure hsCRP Universally in Primary and Secondary Cardiovascular Prevention? Eur. Heart J. 2018, 39, 4109–4111. [Google Scholar] [CrossRef] [PubMed]
  387. Aday, A.W.; Ridker, P.M. Targeting Residual Inflammatory Risk: A Shifting Paradigm for Atherosclerotic Disease. Front. Cardiovasc. Med. 2019, 6, 16. [Google Scholar] [CrossRef]
  388. Soehnlein, O.; Libby, P. Targeting Inflammation in Atherosclerosis—From Experimental Insights to the Clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
  389. Ridker, P.M. Targeting Residual Inflammatory Risk: The Next Frontier for Atherosclerosis Treatment and Prevention. Vasc. Pharmacol. 2023, 153, 107238. [Google Scholar] [CrossRef] [PubMed]
  390. Zeller, C.B.; Appenzeller, S. Cardiovascular Disease in Systemic Lupus Erythematosus: The Role of Traditional and Lupus Related Risk Factors. Curr. Cardiol. Rev. 2008, 4, 116–122. [Google Scholar] [CrossRef]
  391. Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and Atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef]
  392. Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef] [PubMed]
  393. Ridker, P.M.; Rifai, N.; Rose, L.; Buring, J.E.; Cook, N.R. Comparison of C-Reactive Protein and Low-Density Lipoprotein Cholesterol Levels in the Prediction of First Cardiovascular Events. N. Engl. J. Med. 2002, 347, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
  394. Emerging Risk Factors Collaboration; Kaptoge, S.; Di Angelantonio, E.; Lowe, G.; Pepys, M.B.; Thompson, S.G.; Collins, R.; Danesh, J. C-Reactive Protein Concentration and Risk of Coronary Heart Disease, Stroke, and Mortality: An Individual Participant Meta-Analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef]
  395. Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J.; CANTOS Trial Group. Relationship of C-Reactive Protein Reduction to Cardiovascular Event Reduction Following Treatment with Canakinumab: A Secondary Analysis from the CANTOS Randomised Controlled Trial. Lancet 2018, 391, 319–328. [Google Scholar] [CrossRef] [PubMed]
  396. Ridker, P.M.; Libby, P.; MacFadyen, J.G.; Thuren, T.; Ballantyne, C.; Fonseca, F.; Koenig, W.; Shimokawa, H.; Everett, B.M.; Glynn, R.J. Modulation of the Interleukin-6 Signalling Pathway and Incidence Rates of Atherosclerotic Events and All-Cause Mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 2018, 39, 3499–3507. [Google Scholar] [CrossRef] [PubMed]
  397. Khan, M.S.; Talha, K.M.; Maqsood, M.H.; Rymer, J.A.; Borlaug, B.A.; Docherty, K.F.; Pandey, A.; Kahles, F.; Cikes, M.; Lam, C.S.P.; et al. Interleukin-6 and Cardiovascular Events in Healthy Adults: MESA. JACC Adv. 2024, 3, 101063. [Google Scholar] [CrossRef]
  398. Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
  399. Zheng, Y.; Lim, M.J.R.; Tan, B.Y.-Q.; Chan, B.P.L.; Paliwal, P.; Jonathan, O.J.Y.; Bharatendu, C.; Chan, A.C.Y.; Yeo, L.L.L.; Vijayan, J.; et al. Role of Plaque Inflammation in Symptomatic Carotid Stenosis. Front. Neurol. 2023, 14, 1086465. [Google Scholar] [CrossRef]
  400. Chowdhury, M.M.; Tarkin, J.M.; Albaghdadi, M.S.; Evans, N.R.; Le, E.P.V.; Berrett, T.B.; Sadat, U.; Joshi, F.R.; Warburton, E.A.; Buscombe, J.R.; et al. Vascular Positron Emission Tomography and Restenosis in Symptomatic Peripheral Arterial Disease: A Prospective Clinical Study. JACC Cardiovasc. Imaging 2020, 13, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
  401. Kelly, P.J.; Camps-Renom, P.; Giannotti, N.; Martí-Fàbregas, J.; Murphy, S.; McNulty, J.; Barry, M.; Barry, P.; Calvet, D.; Coutts, S.B.; et al. Carotid Plaque Inflammation Imaged by 18F-Fluorodeoxyglucose Positron Emission Tomography and Risk of Early Recurrent Stroke. Stroke 2019, 50, 1766–1773. [Google Scholar] [CrossRef]
  402. Moon, S.H.; Cho, Y.S.; Noh, T.S.; Choi, J.Y.; Kim, B.-T.; Lee, K.-H. Carotid FDG Uptake Improves Prediction of Future Cardiovascular Events in Asymptomatic Individuals. JACC Cardiovasc. Imaging 2015, 8, 949–956. [Google Scholar] [CrossRef]
  403. Bhakta, S.; Tarkin, J.M.; Chowdhury, M.M.; Rudd, J.H.; Warburton, E.A.; Evans, N.R. Carotid Atherosclerotic Plaque Microcalcification Is Independently Associated with Recurrent Neurovascular Events: A Pilot Study. Int. J. Stroke 2024, 19, 1155–1161. [Google Scholar] [CrossRef]
  404. Doris, M.K.; Meah, M.N.; Moss, A.J.; Andrews, J.P.M.; Bing, R.; Gillen, R.; Weir, N.; Syed, M.; Daghem, M.; Shah, A.; et al. Coronary 18F-Fluoride Uptake and Progression of Coronary Artery Calcification. Circ. Cardiovasc. Imaging 2020, 13, e011438. [Google Scholar] [CrossRef]
  405. Tarkin, J.M.; Joshi, F.R.; Evans, N.R.; Chowdhury, M.M.; Figg, N.L.; Shah, A.V.; Starks, L.T.; Martin-Garrido, A.; Manavaki, R.; Yu, E.; et al. Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging. J. Am. Coll. Cardiol. 2017, 69, 1774–1791. [Google Scholar] [CrossRef]
  406. Mojtahedi, A.; Alavi, A.; Thamake, S.; Amerinia, R.; Ranganathan, D.; Tworowska, I.; Delpassand, E.S. Assessment of Vulnerable Atherosclerotic and Fibrotic Plaques in Coronary Arteries Using (68)Ga-DOTATATE PET/CT. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 65–71. [Google Scholar]
  407. Chang, H.-J.; Lin, F.Y.; Lee, S.-E.; Andreini, D.; Bax, J.; Cademartiri, F.; Chinnaiyan, K.; Chow, B.J.W.; Conte, E.; Cury, R.C.; et al. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2018, 71, 2511–2522. [Google Scholar] [CrossRef] [PubMed]
  408. Ferencik, M.; Mayrhofer, T.; Bittner, D.O.; Emami, H.; Puchner, S.B.; Lu, M.T.; Meyersohn, N.M.; Ivanov, A.V.; Adami, E.C.; Patel, M.R.; et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients with Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiol. 2018, 3, 144–152. [Google Scholar] [CrossRef]
  409. Chan, K.; Wahome, E.; Tsiachristas, A.; Antonopoulos, A.S.; Patel, P.; Lyasheva, M.; Kingham, L.; West, H.; Oikonomou, E.K.; Volpe, L.; et al. Inflammatory Risk and Cardiovascular Events in Patients Without Obstructive Coronary Artery Disease: The ORFAN Multicentre, Longitudinal Cohort Study. Lancet 2024, 403, 2606–2618. [Google Scholar] [CrossRef] [PubMed]
  410. Roubille, C.; Richer, V.; Starnino, T.; McCourt, C.; McFarlane, A.; Fleming, P.; Siu, S.; Kraft, J.; Lynde, C.; Pope, J.; et al. The Effects of Tumour Necrosis Factor Inhibitors, Methotrexate, Non-Steroidal Anti-Inflammatory Drugs and Corticosteroids on Cardiovascular Events in Rheumatoid Arthritis, Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-Analysis. Ann. Rheum. Dis. 2015, 74, 480–489. [Google Scholar] [CrossRef] [PubMed]
  411. Strategies for Management of Antiretroviral Therapy (SMART) Study Group. CD4+ Count-Guided Interruption of Antiretroviral Treatment. N. Engl. J. Med. 2006, 355, 2283–2296. [Google Scholar] [CrossRef]
  412. INSIGHT START Study Group. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N. Engl. J. Med. 2015, 373, 795–807. [Google Scholar] [CrossRef]
Figure 1. The figure illustrates the multifactorial residual cardiovascular (CV) risk in non-traditional atherosclerotic conditions. The central circle represents persistent residual CV risk despite traditional risk management. The inner layer lists associated diseases [e.g., rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), psoriasis and psoriatic arthritis (PsA), HIV, vasculitis, and inflammatory bowel disease (IBD)]. The middle layer highlights disease-specific contributors, including infections, microvascular dysfunction, and metabolic dysregulation. The outer layer shows shared risk factors like chronic inflammation, oxidative stress, dyslipidemia, and endothelial dysfunction.
Figure 1. The figure illustrates the multifactorial residual cardiovascular (CV) risk in non-traditional atherosclerotic conditions. The central circle represents persistent residual CV risk despite traditional risk management. The inner layer lists associated diseases [e.g., rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), psoriasis and psoriatic arthritis (PsA), HIV, vasculitis, and inflammatory bowel disease (IBD)]. The middle layer highlights disease-specific contributors, including infections, microvascular dysfunction, and metabolic dysregulation. The outer layer shows shared risk factors like chronic inflammation, oxidative stress, dyslipidemia, and endothelial dysfunction.
Ijms 26 00535 g001
Table 1. Key findings in rheumatoid arthritis.
Table 1. Key findings in rheumatoid arthritis.
Summary of EvidenceArticles
CV risk and CV outcomesChronic inflammatory burden is central to atherosclerosis, leading to heightened CV risk, morbidity, and mortality in RA patients.[31,32,33,34,35,36]
CV risk stratificationExisting tools and traditional calculators often misestimate CV risk in RA patients. Including disease-specific factors is essential for accurate stratification.[22,23]
Lipid lowering therapyStatins not only lower LDL levels but also exhibit pleiotropic effects, making them valuable for CV risk reduction and adjunctive RA disease control.[37,38,39,40,41,42,43]
Disease therapyDMARDs provide cardiovascular protection. Biologic agents, including anti-TNF, IL-6 inhibitors, and JAK inhibitors, reduce CV morbidity and events.[34,46,47,52,53,54,55]
Table 2. Key insights into systemic lupus erythematosus.
Table 2. Key insights into systemic lupus erythematosus.
Summary of EvidenceArticles
CV risk and CV outcomesBoth traditional and disease-specific factors contribute to the elevated risk of CV events and mortality in SLE. SLE is recognized as an independent risk factor for CVD and classified as a “CVD risk equivalent”.[60,61,70]
CV risk stratificationEnhancing risk estimation models requires incorporating additional biomarkers and disease-specific risk factors, as current tools fall short in addressing the complexity of SLE-related CV risk.[23,73]
Lipid lowering therapyStatins demonstrate significant benefits in reducing CV risk, morbidity, and mortality. Emerging evidence suggests they may also influence disease activity.[74,75,76,77,78,84,85,95]
Disease therapyTargeting inflammatory pathways to suppress disease activity offers a promising approach for reducing cardiovascular risk in SLE patients.[86,87,88,89,90,91,92,93,94]
Table 3. Summary of evidence in systemic sclerosis.
Table 3. Summary of evidence in systemic sclerosis.
Summary of EvidenceArticles
CV risk and CV outcomesSSc patients exhibit a higher prevalence of macrovascular diseases, suggesting a potential increased risk of CVD.[98,99,100,101]
CV risk stratificationComprehensive CV risk evaluation, including microvascular impairment, remains underutilized. Current risk stratification relies on tools designed for the general population.[24,71]
Lipid lowering therapyWhile evidence highlights the benefits of statins in preventing endothelial dysfunction, no specific recommendations have been established for their use in SSc patients.[114,115,116]
Table 4. Key Findings in psoriasis and psoriatic arthritis.
Table 4. Key Findings in psoriasis and psoriatic arthritis.
Summary of EvidenceArticles
CV risk and CV outcomesPsoriasis is now recognized as an independent risk factor for CVD, with the higher prevalence of CVD not fully explained by traditional cardiovascular risk factors.[111,119,120,121,122,123,124,125,126,127,128,129,130,133,134,135]
CV risk stratificationCurrent clinical tools perform suboptimally as they exclude non-traditional risk factors. The Joint AAD advocates for adjustments to risk scoring tools, while similar recommendations are absent in AHA guidelines.[26,121,151]
Lipid lowering therapyAlthough studies show promising results, the inconsistent findings on lipid-lowering therapy efficacy in psoriasis treatment highlight the need for more robust evidence.[26,155,156,157,158,159,160,161,162,163,164,165,166]
Disease therapyAnti-psoriatic drugs show potential benefits in reducing CVD risk and metabolic comorbidities, with ongoing research yielding encouraging results.[167,168,169,170,171,172,173,174,175,176,177,178,179,182]
Table 5. Summary of evidence in ankylosing spondylitis.
Table 5. Summary of evidence in ankylosing spondylitis.
Summary of EvidenceArticles
CV risk and CV outcomesWhile AS patients have a higher prevalence of atherosclerotic risk factors, disease-related mechanisms such as chronic inflammation and disease activity significantly contribute to the elevated CVD risk.[124,189,190,191,192,193,194]
CV risk stratificationEULAR acknowledges AS as a condition with increased CV risk but does not provide disease-specific CVD risk prediction tools, recommending the use of national guidelines or the SCORE model.[154]
Lipid lowering therapyStatins, due to their pleiotropic effects, are gaining attention in AS management, not only for cardiovascular protection but also as potential adjunctive therapy to help control disease activity.[200,201,202,203,204,205,206]
Disease therapyWhile NSAIDs remain the first-line treatment for AS symptoms, their use requires caution in patients with CV risk factors or CVD history. Anti-TNF-α therapies have demonstrated reductions in CV morbidity and mortality.[154,207,208,209,210,211]
Table 6. Key findings in systemic vasculitis.
Table 6. Key findings in systemic vasculitis.
Summary of EvidenceArticles
CV risk and CV outcomesCV disease in vasculitis patients is driven by both traditional and disease-specific factors, including inflammation and vascular damage.[71,213,216,217,218,219,220,221,222,223]
CV risk stratificationTraditional tools underestimate CV risk. Guidelines recommend integrating disease-specific models for improved assessment.[25,71,216,227,232]
Lipid lowering therapyStatins show potential due to anti-inflammatory and endothelial-repairing effects, but specific recommendations are lacking.[233,234,235,236,237,238,239]
Disease therapyDisease remission reduces CV risk, but evidence on immunosuppressive agents and CV outcomes remains inconclusive.[225,241,242,243]
Table 7. Key findings in inflammatory bowel disease.
Table 7. Key findings in inflammatory bowel disease.
Summary of EvidenceArticles
CV risk and CV outcomesIncreased CV risk in IBD is driven by traditional risk factors, chronic inflammation, endothelial dysfunction, and microbiota dysbiosis.[247,248,249,250,251]
CV risk stratificationGuidelines lack clear recommendations on integrating IBD-specific factors, leading to potential CV risk underestimation.[22,259,260]
Lipid lowering therapyStatins show benefits, including reduced inflammation and steroid use, but lack general recommendations for IBD prevention or treatment.[252,261,262,263,264,265,269,270,271]
Disease therapyAnti-inflammatory drugs may reduce ASCVD risk, but evidence across drug classes remains inconsistent.[269,271,272,273,274,275,276,277,278,279,281,282,283,284,285,286,287,288,289,290,291,292,293]
Table 8. Summary of evidence in acquired immunodeficiency syndrome (AIDS).
Table 8. Summary of evidence in acquired immunodeficiency syndrome (AIDS).
Summary of EvidenceArticles
CV risk and CV outcomesIncreased CVD risk in HIV patients remains significant even after adjusting for traditional CV risk factors, with HIV-specific factors further contributing to the risk.[296,304,305,307,308,309,310]
CV risk stratificationGeneral population risk tools underestimate CVD risk in PLWHIV. Models incorporating both traditional and HIV-specific factors may improve risk prediction accuracy.[313]
Lipid lowering therapyThere is no consensus on the benefits of lipid-lowering therapy for PLWHIV not meeting current statin therapy indications.[321]
Disease therapyART regimens, particularly those with protease inhibitors or certain NRTIs, increase CVD risk. Careful selection of “lipid-friendly” ART regimens is strongly recommended.[308,315,316,317,319]
Table 9. Key findings in cancer.
Table 9. Key findings in cancer.
Summary of EvidenceArticles
CV risk and CV outcomesCancer patients face an increased risk of CVD and CVD-related mortality, influenced by both the disease and its treatments.[333,334,335,336,337]
CV risk stratificationCurrent CV risk tools do not account for cancer or cancer treatments, leading to underestimation of overall CV risk.[28,29,348,349]
Lipid lowering therapyWhile promising results have been observed, clear recommendations for lipid-lowering therapy as an adjunctive treatment in cancer patients are lacking.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Biscetti, F.; Polito, G.; Rando, M.M.; Nicolazzi, M.A.; Eraso, L.H.; DiMuzio, P.J.; Massetti, M.; Gasbarrini, A.; Flex, A. Residual Traditional Risk in Non-Traditional Atherosclerotic Diseases. Int. J. Mol. Sci. 2025, 26, 535. https://doi.org/10.3390/ijms26020535

AMA Style

Biscetti F, Polito G, Rando MM, Nicolazzi MA, Eraso LH, DiMuzio PJ, Massetti M, Gasbarrini A, Flex A. Residual Traditional Risk in Non-Traditional Atherosclerotic Diseases. International Journal of Molecular Sciences. 2025; 26(2):535. https://doi.org/10.3390/ijms26020535

Chicago/Turabian Style

Biscetti, Federico, Giorgia Polito, Maria Margherita Rando, Maria Anna Nicolazzi, Luis H. Eraso, Paul J. DiMuzio, Massimo Massetti, Antonio Gasbarrini, and Andrea Flex. 2025. "Residual Traditional Risk in Non-Traditional Atherosclerotic Diseases" International Journal of Molecular Sciences 26, no. 2: 535. https://doi.org/10.3390/ijms26020535

APA Style

Biscetti, F., Polito, G., Rando, M. M., Nicolazzi, M. A., Eraso, L. H., DiMuzio, P. J., Massetti, M., Gasbarrini, A., & Flex, A. (2025). Residual Traditional Risk in Non-Traditional Atherosclerotic Diseases. International Journal of Molecular Sciences, 26(2), 535. https://doi.org/10.3390/ijms26020535

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop