Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered Acer griseum (Franch.) Pax Endemic to China
Abstract
:1. Introduction
2. Results
2.1. Genetic Diversity and Genetic Differentiation Based on nDNA
2.1.1. Specific-Locus Amplified Fragment Sequencing (SLAF-Seq) Data Quality
2.1.2. Genetic Diversity Based on nDNA
2.1.3. Extant Spatial Genetic Structure
2.1.4. Genetic Differentiation and Gene Flow Among Populations
2.1.5. Phylogenetic Relationship and Divergence Time
2.1.6. Selective Sweep Analysis and Putative Selected Gene Function Enrichment Analysis
2.2. Genetic Diversity and Genetic Differentiation Based on cpDNA
2.2.1. Polymorphic Loci and cpDNA Primers
2.2.2. Genetic Diversity Based on cpDNA
2.2.3. Genetic Differentiated and Gene Flow Mediated by Seeds
2.2.4. Haplotype Network and Phylogenetic Relationship
2.2.5. Haplotype Divergence Time and Demographic History
2.3. Potential Suitable Area in Different Period
3. Discussion
3.1. Endangered A. griseum Had a Relatively High Level of Genetic Diversity
3.2. Driving Forces for Genetic Diversity and Genetic Differentiation
3.2.1. Orogeny Promoted Haplotype Differentiation by Creating Heterogeneous Microenvironments
3.2.2. Environmental Selection Pressures Led to Adaptive Evolution of A. griseum
3.2.3. Mountains Provided Many Glacial Refugia to Maintain Genetic Diversity of A. griseum
3.2.4. High Pollen Flow Among Populations and Out-Breeding Mating System Maintained Genetic Diversity of A. griseum
3.3. Conservation Strategy of A. griseum
4. Materials and Methods
4.1. Sample Sites and DNA Extraction
4.2. SLAF-Seq and SNP Calling of nDNA
4.3. Population Genetic Analysis Based on nDNA
4.4. Complete Chloroplast Genome Sequencing and Development of cpDNA Sequences Primers
4.5. Phylogeographic Analysis Based on cpDNA
4.6. Prediction of Potential Suitable Areas Based on MaxEnt Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez-Pujol, J.; Zhang, F.M.; Sun, H.Q.; Ying, T.S.; Ge, S. Mountains of southern China as “plant museums” and “plant cradles”: Evolutionary and conservation insights. Mt. Res. Dev. 2011, 31, 261–269. [Google Scholar] [CrossRef]
- Perrigo, A.; Hoorn, C.; Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 2020, 47, 315–325. [Google Scholar] [CrossRef]
- Harris, J.G.S. Tree genera—3. Acer—Of the maple. Arboric. J. 1975, 2, 361–369. [Google Scholar] [CrossRef]
- Xu, T.Z. Geographical distribution and floristic characteristics of Acer in Hengduan Mountain area of China. Acta Bot. Yunn. 1983, 5, 391–400. [Google Scholar]
- Wu, C.Y.; Raven, P.H.; Hong, D.Y. Flora of China: Oxalidaceae Through Aceraceae; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MI, USA, 2008; pp. 516–553. [Google Scholar]
- Xing, Y.W.; Ree, R.H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. USA 2017, 114, 3444–3451. [Google Scholar] [CrossRef]
- Sciandrello, S.; Guarino, R.; Minissale, P.; Spampinato, G. The endemic vascular flora of Peloritani Mountains (NE Sicily): Plant functional traits and phytogeographical relationships in the most isolated and fragmentary micro-plate of the Alpine orogeny. Plant Biosyst. 2015, 149, 838–854. [Google Scholar] [CrossRef]
- Petit, R.J.; Vendramin, G.G. Plant phylogeography based on organelle genes: An introduction. In Phylogeography of Southern European Refugia; Springer: Dordrecht, The Netherlands, 2002; pp. 23–97. [Google Scholar] [CrossRef]
- Chen, D.M.; Kang, H.Z.; Liu, C.J. An overview on the potential Quaternary glacial refugia of plants in China mainland. Bull. Bot. Res. 2011, 31, 623–632. [Google Scholar]
- Lumibao, C.Y.; Hoban, S.M.; McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 2017, 20, 1459–1468. [Google Scholar] [CrossRef]
- Shahzad, K.; Liu, M.L.; Zhao, Y.H.; Zhang, T.T.; Liu, J.N.; Li, Z.H. Evolutionary history of endangered and relict tree species Dipteronia sinensis in response to geological and climatic events in the Qinling Mountains and adjacent areas. Ecol. Evol. 2020, 10, 14052–14066. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.L.; Li, J.F.; Dyer, R.J. Genetic structure of Pinus henryi and Pinus tabuliformis: Natural landscapes as significant barriers to gene flow among populations. Biochem. Syst. Ecol. 2015, 61, 124–132. [Google Scholar] [CrossRef]
- Zhang, Y.P. Phylogeography and Genetic Diversity of Quercus baronii and Quercus dolicholepis Populations. Master’s Thesis, NorthWest University, Xi’an, China, 2017; pp. 12–57. [Google Scholar]
- Wang, Y.L.; Liu, H.C.; Xu, J.K.; Yu, S.; Huang, Y.Q.; Zhang, Y.; He, X.Y.; Chen, W. Prediction of suitable planting areas of Rubia cordifolia in China based on a species distribution model and analysis of specific secondary metabolites. Ind. Crop. Prod. 2023, 206, 117651. [Google Scholar] [CrossRef]
- Esper-Reyes, K.A.; Mariano, N.A.; Alcalá, R.; Bonilla-Barbosa, J.R.; Flores-Franco, G.; Wehncke, E.V. Seed dispersal by rivers in tropical dry forests: An overlooked process in tropical central Mexico. J. Veg. Sci. 2018, 29, 62–73. [Google Scholar] [CrossRef]
- Zhu, R.B.; Wang, Q.; Guan, W.B.; Mao, Y.J.; Tian, B.; Cheng, J.M.; El-Kassaby, Y.A. Conservation of genetic diversity hotspots of the high-valued relic yellowhorn (Xanthoceras sorbifolium) considering climate change predictions. Ecol. Evol. 2019, 9, 3251–3263. [Google Scholar] [CrossRef] [PubMed]
- Gichira, A.W.; Chen, L.; Li, Z.; Hu, G.; Saina, J.K.; Gituru, R.W.; Wang, Q.; Chen, J. Plastid phylogenomics and insights into the inter-mountain dispersal of the Eastern African giant senecios (Dendrosenecio, Asteraceae). Mol. Phylogenet. Evol. 2021, 164, 107271. [Google Scholar] [CrossRef]
- Ruiz-Sanchez, E.; Specht, C.D.; Ladiges, P. Influence of the geological history of the Trans-Mexican Volcanic Belt on the diversification of Nolina parviflora (Asparagaceae: Nolinoideae). J. Biogeogr. 2013, 40, 1336–1347. [Google Scholar] [CrossRef]
- Ye, J.W.; Jiang, T.; Wang, H.F.; Wang, T.M.; Bao, L.; Ge, J.P. Repeated expansions and fragmentations linked to Pleistocene climate changes shaped the genetic structure of a woody climber, Actinidia arguta (Actinidiaceae). Botany 2018, 96, 19–31. [Google Scholar] [CrossRef]
- Lee, K.M.; Ranta, P.; Saarikivi, J.; Kutnar, L.; Vreš, B.; Dzhus, M.; Mutanen, M.; Kvist, L. Using genomic information for management planning of an endangered perennial, Viola uliginosa. Ecol. Vcol. 2020, 10, 2638e2649. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Yin, G.S.; Gong, X. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation. Plant Divers. 2022, 45, 513–522. [Google Scholar] [CrossRef]
- Zhou, Y.; Pan, H.T. Specific-locus amplified fragment sequencing (SLAF-Seq). Methods Mol. Biol. 2023, 2638, 165–171. [Google Scholar] [CrossRef]
- Di, X.Y. Population Genetics of Quercus aliena Based on cpDNA and SSR Marker. Master’s Thesis, NorthWest University, Xi’an, China, 2017; pp. 10–50. [Google Scholar]
- Zhang, Y.Y. The Conservation Genetics Research of Parrotia subaequalis (Hamamelidaceae), an Endangered Palaeoendemic Plant in China. Master’s Thesis, Nanjing University, Nanjing, China, 2018; pp. 50–62. [Google Scholar]
- Cires, E.; Samain, M.S.; Goetghebeur, P.; Prieto, J.A.F. Genetic structure in peripheral Western European populations of the endangered species Cochlearia pyrenaica (Brassicaceae). Plant Syst. Evol. 2011, 297, 75–85. [Google Scholar] [CrossRef]
- Su, Z.; Richardson, B.A.; Zhuo, L.; Jiang, X.L.; Li, W.J.; Kang, X.S. Genetic diversity and structure of an endangered desert shrub and the implications for conservation. AOB Plants 2017, 9, plx016. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Shahid, M.Q.; Ghouri, F.; Baloch, F.S.; Wang, Y.; Huang, H.W. Evaluation of the geographical pattern of genetic diversity of Glycine soja and Glycine max based on four single copy nuclear gene loci: For conservation of soybean germplasm. Biochem. Syst. Ecol. 2015, 62, 229–235. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002; pp. 182–183. [Google Scholar]
- Hamrick, J.L.; Godt, M.J.W.; Sherman-Broyles, S.L. Factors influencing levels of genetic diversity in woody plant species. New For. 1992, 6, 95–124. [Google Scholar] [CrossRef]
- Meyer, P.W. Paperbark maple Acer griseum. Arnoldia 2010, 68, 48–50. [Google Scholar] [CrossRef]
- Xia, X.X.; Yu, X.D.; Fu, Q.D.; Zhao, Y.X.; Zheng, Y.Q.; Wu, Y.X.; Zhang, C.H. Comparison of chloroplast genomes of compound-leaved maples and phylogenetic inference with other Acer species. Tree Genet. Genomes 2022, 18, 11. [Google Scholar] [CrossRef]
- Chen, P.; Yu, X.D.; Zhang, C.H.; Zheng, Y.Q.; Sun, S.; Cheng, B.B.; Zhu, C.B. Natural regeneration of Acer griseum, an endemic species in China. Sci. Silvae Sin. 2013, 49, 159–164. [Google Scholar] [CrossRef]
- Ye, X.M.; Yu, X.D.; Fu, Q.D.; Zheng, Y.Q.; Zhang, C.H. Differential analysis of non-coding chloroplast DNA sequences in Acer griseum. For. Res. 2017, 30, 674–678. [Google Scholar] [CrossRef]
- Aiello, A.; Crowley, D. Acer griseum. The IUCN Red List of Threatened Species 2019: E.T193593A2244567. Available online: https://www.iucnredlist.org/species/193593/2244567 (accessed on 22 January 2024).
- Wang, S.; Xie, Y. China Species Red List; Higher Education Press: Beijing, China, 2004; pp. 352–357. [Google Scholar]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Jia, J.; Zeng, L.Q.; Gong, X. High genetic diversity and population differentiation in the critically endangered plant species Trailliaedoxa gracilis (Rubiaceae). Plant Mol. Biol. Rep. 2016, 34, 327–338. [Google Scholar] [CrossRef]
- González, F.; Ruiz, E.; Torres-Díaz, C.; Fuentes, G.; Cavieres, L.A. Genetic diversity in Nothofagus alessandrii (Fagaceae), an endangered endemic tree species of the coastal maulino forest of Central Chile. Ann. Bot. 2007, 100, 75–82. [Google Scholar] [CrossRef]
- Wei, S.; Yang, W.K.; Wang, X.Y.; Hou, Y.G. High genetic diversity in an endangered medicinal plant, Saussurea involucrata (Saussurea, Asteraceae), in western Tianshan Mountains, China. Conserv. Genet. 2017, 18, 1435–1447. [Google Scholar] [CrossRef]
- Zhu, X.L.; Zou, R.; Qin, H.Z.; Chai, S.F.; Tang, J.M.; Li, Y.Y.; Wei, X. Genome-wide diversity evaluation and core germplasm extraction in ex situ conservation: A case of golden Camellia tunghinensis. Evol. Appl. 2023, 16, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Bachtell, K.R.; Aiello, A.S.; Dosman, M.S.; Wang, K. Paperbark maple (Acer griseum) conservation project. Comb. Proc. Int. Plant Propag. Soc. 2019, 69, 87–93. [Google Scholar]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef]
- Sun, S. Study on Genetic Variation of Natural Populations in Acer griseum Based on SSR Markers. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2014; pp. 33–53. [Google Scholar] [CrossRef]
- Liao, J.; Yu, X.D.; Wu, Y.X.; Pei, S.X.; Xin, X.B.; Xia, X.H.; Mao, S.; Pan, X.Y.; Zheng, Y.Q.; Zhang, C.H. Spatial Pattern of genetic diversity and demographic history revealed by population genomic analysis: Resilience to climate fluctuations of Acer truncatum Bunge. Forests 2024, 15, 639. [Google Scholar] [CrossRef]
- Wang, S.A.; Wang, Q.; Li, S.M.; Wang, P.; Yang, R.T.; Li, Y. SNP development and genetic diversity analysis of Carpinus oblongifolia based on SLAF-seq. Mol. Plant Breed. 2022, 20, 3722–3729. [Google Scholar] [CrossRef]
- Gong, X.; Yang, A.H.; Wu, Z.X.; Chen, C.H.; Li, H.H.; Liu, Q.L.; Yu, F.X.; Zhong, Y.D. Employing genome-wide SNP discovery to characterize the genetic diversity in Cinnamomum camphora using genotyping by sequencing. Forests 2021, 12, 1511. [Google Scholar] [CrossRef]
- Zeng, W.S.; Su, Y.; Huang, R.; Hu, D.H.; Huang, S.W.; Zheng, H.Q. Insight into the complex genetic relationship of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) advanced parent trees based on SSR and SNP datasets. Forests 2023, 14, 347. [Google Scholar] [CrossRef]
- Xia, W.; Luo, T.T.; Zhang, W.; Mason, A.S.; Huang, D.Y.; Huang, X.L.; Tang, W.Q.; Dou, Y.J.; Zhang, C.Y.; Xiao, Y. Development of high-density SNP markers and their application in evaluating genetic diversity and population structure in Elaeis guineensis. Front. Plant Sci. 2019, 10, 130. [Google Scholar] [CrossRef]
- Chen, Z.F.; Ni, H.; Feng, H.; Chen, X.; Cai, L.J.; Sun, W.H.; Zhou, S.Q. Analysis of genetic variation and differentiation of monotypic genus Euscaphis japonica based on SNP markers. Subtrop. Agric. Res. 2023, 19, 137–144. [Google Scholar] [CrossRef]
- Du, L.M.; Yang, L.W.; Lin, X.X.; Huang, G.N.; Li, X.B.; Guo, X. Genetic diversity analysis of Ficus hirta Vahl based on SNP molecular marker. Mol. Plant Breed. 2023, 21, 5709–5719. [Google Scholar] [CrossRef]
- Jara-Arancio, P.; Carvalho, C.S.; Carmona-Ortiz, M.R.; Bustamante, R.O.; Villela, P.M.S.; Andrade, S.C.S.; Peña-Gómez, F.T.; González, L.A.; Fleury, M. Genetic diversity and population structure of Jubaea chilensis, an endemic and monotype gender from Chile, based on SNP markers. Plants 2022, 11, 1959. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, M.; Wu, L.W.; Wang, Y.D.; Liu, H.C.; Chen, Y.C. A study on population genetic diversity among Litsea populifolia (Hemsl.) Gamble in Mount Emei Area. J. Plant Genet. Resour. 2019, 20, 359–369. [Google Scholar] [CrossRef]
- He, X.D.; Zheng, J.W.; Jiao, Z.Y.; Dou, Q.Q.; Huang, L.B. Genetic diversity and structure analyses of Quercus shumardii populations based on SLAF-seq technology. J. Nanjing For. Univ. 2022, 46, 81–87. [Google Scholar] [CrossRef]
- Cheng, J.; Kao, H.X.; Dong, S.B. Population genetic structure and gene flow of rare and endangered Tetraena mongolica Maxim. revealed by reduced representation sequencing. BMC Plant Biol. 2020, 20, 391. [Google Scholar] [CrossRef]
- Xu, J.J.; Zang, F.Q.; Wu, Q.C.; Wang, Y.; Wang, B.S.; Huang, P.; Zang, D.K.; Ma, Y.; Zheng, Y.Q. Analysis of the genetic diversity and molecular phylogeography of the endangered wild rose (Rosa rugosa) in China based on chloroplast genes. Glob. Ecol. Conserv. 2021, 28, e01653. [Google Scholar] [CrossRef]
- Liesebach, H.; Götz, B. Low chloroplast DNA diversity in red dogwood (Cornus sanguinea L.). Silvae Genet. 2017, 57, 291–300. [Google Scholar] [CrossRef]
- NYáRI, L. Genetic variability of service tree (Sorbus domestica L.) in the Hungarian Middle Mountains—Based on cpDNA analysis in two regions. Acta Silvatica Lign. Hung. 2010, 6, 17–32. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, W.C.; Luo, J.; Yao, Z.X.; Yu, Q.; Wang, Y.L.; Zhang, S.Z.; Liu, Z.G.; Zhang, M.R.; Shen, Y.M. Development of EST-SSR markers and their application in an analysis of the genetic diversity of the endangered species Magnolia sinostellata. Mol. Genet. Genomics 2019, 294, 135–147. [Google Scholar] [CrossRef]
- Yao, Z.X. The Conservation Genetics Research of Magnolia sinostellata. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2019; pp. 24–32. [Google Scholar]
- Zavinon, F.; Adoukonou-Sagbadja, H.; Bossikponnon, A.; Dossa, H.; Ahanhanzo, C. Phenotypic diversity for agro-morphological traits in pigeon pea landraces [(Cajanus cajan L.) Millsp.] cultivated in southern Benin. Open Agric. 2019, 4, 487–499. [Google Scholar] [CrossRef]
- Jia, C.Z.; He, D.F.; Lu, J.M. Episodes and geodynamic setting of Himalayan movement in China. Oil Gas Geol. 2004, 25, 122–125. [Google Scholar] [CrossRef]
- Wang, G.B. A brief history of Qinling Mountains. Geol. Shaanxi 2020, 38, 1–6. [Google Scholar] [CrossRef]
- Yang, Q.; Ribeiro-Barros, A.F.; Silva, L.; Zhao, J.L. Editorial: Adaptive evolution of plants in mountainous regions. Front. Plant Sci. 2023, 14, 1296987. [Google Scholar] [CrossRef] [PubMed]
- Muellner-Riehl, A.N. Mountains as evolutionary arenas: Patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Front. Plant Sci. 2019, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.N.; Zhu, L.Q.; Tian, L.; Li, X. Spatial-temporal changes in vegetation characteristics and climate in the Qinling-Daba Mountains. Acta Ecol. Sin. 2019, 39, 3257–3266. [Google Scholar] [CrossRef]
- Liao, W.; Cheng, Z.G.; Li, Y.Q. Analysis of precipitation characteristics in Qin-Ba mountainous area based on TRMM data. Plateau Mountain Meteor Res. 2020, 40, 11–17. [Google Scholar] [CrossRef]
- Dong, Q.D.; Chen, C.N.; Yin, H.R.; Zhou, L.K.; Zhu, Y.Q. Vegetation greenness characteristics in Qinling-Daba Mountains and its response to surface hydrothermal. Acta Ecol. Sin. 2023, 43, 1090–1101. [Google Scholar] [CrossRef]
- Anguiano-Constante, M.A.; Zamora-Tavares, P.; Ruiz-Sanchez, E.; Dean, E.; Rodríguez, A.; Munguía-Lino, G. Population differentiation and phylogeography in Lycianthes moziniana (Solanaceae: Capsiceae), a perennial herb endemic to the Mexican Transition Zone. Biol. J. Linn. Soc. 2021, 132, 359–373. [Google Scholar] [CrossRef]
- Song, H.J.; Zhang, X.Z.; Wang, X.Y.; Wang, Y.; Li, S.; Xu, Y.D. Not the expected poleward migration: Impact of climate change scenarios on the distribution of two endemic evergreen broad-leaved Quercus species in China. Sci. Total Environ. 2023, 889, 164273. [Google Scholar] [CrossRef]
- Ge, S.B.; Zhang, X.N.; Han, W.Y.; Li, Q.Y.; Li, X. Research progress on plant flavonoids biosynthesis and their anti-stress mechanism. Acta Hortic. Sin. 2023, 50, 209–224. [Google Scholar] [CrossRef]
- Zlotek, U.; Szymanowska, U.; Baraniak, B.; Monika, K. Antioxidant activity of polyphenols of adzuki bean (Vigna angularis) germinated in abiotic stress conditions. Acta Sci. Polon.-Techn. 2015, 14, 55–63. [Google Scholar] [CrossRef]
- Martinez, V.; Mestre, T.C.; Rubio, F.; Girones-Vilaplana, A.; Moreno, D.A.; Mittler, R.; Rivero, R.M. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front. Plant Sci. 2016, 7, 838. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, O.E.; Kosyan, A.M.; Kosyk, O.I.; Taran, A.Y. Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum Moench. plants. Ukr. Biochem. J. 2015, 87, 129135. [Google Scholar] [CrossRef]
- Chen, H.; Dong, J.L.; Wang, T. Autophagy in plant abiotic stress management. Int. J. Mol. Sci. 2021, 22, 4075. [Google Scholar] [CrossRef]
- Li, Y.B.; Xu, X.M.; Qi, G.; Cui, D.Z.; Huang, C.; Sui, X.X.; Li, G.Y.; Fan, Q.Q. Mechanisms of autophagy function and regulation in plant growth, development, and response to abiotic stress. Crop J. 2023, 11, 1611–1625. [Google Scholar] [CrossRef]
- Mako, Y.; Kohki, Y. New insights into plant autophagy: Molecular mechanisms and roles in development and stress responses. J. Exp. Bot. 2024, 75, 1234–1251. [Google Scholar] [CrossRef]
- Yu, X.F.; Tang, Y.; Hu, Y. Study on influencing factors of acid soil heavy metal—A case study of Hupingshan Natural Protectorate. Guangdong Agric. Sci. 2011, 9, 54–55. [Google Scholar] [CrossRef]
- Trivedi, K.; Anand, K.J.V.; Kubavat, D.; Ghosh, A. Role of Kappaphycus alvarezii seaweed extract and its active constituents, glycine betaine, choline chloride, and zeatin in the alleviation of drought stress at critical growth stages of maize crop. J. Appl. Phycol. 2022, 34, 1791–1804. [Google Scholar] [CrossRef]
- Xian, X.L.; Zhang, Z.X.; Wang, S.C.; Cheng, J.; Gao, Y.L.; Ma, N.Y.; Li, C.L.; Wang, Y.X. Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways. Chem. Biol. Technol. Agric. 2024, 11, 58. [Google Scholar] [CrossRef]
- Yu, H.; Guo, Q.; Ji, W.; Wang, H.Y.; Tao, J.Q.; Xu, P.; Chen, X.L.; Ali, W.Z.M.; Wu, X.; Shen, X.L.; et al. Transcriptome expression profiling reveals the molecular response to salt stress in Gossypium anomalum seedlings. Plants 2024, 13, 312. [Google Scholar] [CrossRef]
- Goswami, L.; Sengupta, S.; Mukherjee, S.; Ray, S.; Mukherjee, R.; Lahiri Majumder, A. Targeted expression of L-myo- inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka confers multiple stress tolerance in transgenic crop plants. J. Plant Biochem. Biot. 2014, 23, 316–330. [Google Scholar] [CrossRef]
- Salinas-Cornejo, J.; Madrid-Espinoza, J.; Verdugo, I.; Perez-Diaz, J.; Martin-Davison, A.S.; Norambuena, L.; Ruiz-Lara, S. The exocytosis associated SNAP25-Type protein, SlSNAP33, increases salt stress tolerance by modulating endocytosis in tomato. Plants 2021, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.L.; Li, C.L.; Wang, M.; He, L.L.; Lin, M.Y.; Chen, D.H.; Zhang, W. Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana. BMC Plant Biol. 2017, 17, 217. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Deng, Y.S.; Gao, L.Y.; Kong, F.J.; Sheng, G.F.; Duan, B.; Wang, Z.W.; Dai, M.H.; Han, Z.F. Series-temporal transcriptome profiling of cotton reveals the response mechanism of phosphatidylinositol signaling system in the early stage of drought stress. Genomics 2022, 114, 110465. [Google Scholar] [CrossRef]
- Sun, W.; Chen, X.L. Analysis of research hotspots in saline-alkali land in China. J. North Agric. 2020, 48, 130–134. [Google Scholar] [CrossRef]
- Choudhury, D.R.; Kumar, R.; Maurya, A.; Semwal, D.P.; Rathi, R.S.; Gautam, R.K.; Trivedi, A.K.; Bishnoi, S.K.; Ahlawat, S.P.; Singh, K.; et al. SSR and SNP marker-based investigation of Indian rice landraces in relation to their genetic diversity, population structure, and geographical isolation. Agriculture 2023, 13, 823. [Google Scholar] [CrossRef]
- Afzal Malik, W.; Afzal, M.; Chen, X.G.; Cui, R.F.; Lu, X.K.; Wang, S.; Wang, J.; Mahmood, I.; Ye, W.W. Systematic analysis and comparison of ABC proteins superfamily confer structural, functional and evolutionary insights into four cotton species. Ind. Crop. Prod. 2022, 177, 114433. [Google Scholar] [CrossRef]
- Dawane, A.; Deshpande, S.; Vijayaraghavreddy, P.; Vemanna, R.S. Polysome-bound mRNAs and translational mechanisms regulate drought tolerance in rice. Plant Physiol. Biochem. 2024, 208, 108513. [Google Scholar] [CrossRef]
- Li, W.; Fu, L.F.; Geng, Z.W.; Zhao, X.J.; Liu, Q.H.; Jiang, X.Q. Physiological characteristic changes and full-length transcriptome of rose (Rosa chinensis) roots and leaves in response to drought stress. Plant Cell Physiol. 2021, 61, 2153–2166. [Google Scholar] [CrossRef]
- Bai, G.Q.; Zhou, T.; Zhang, X.; Chen, X.D.; Yang, J.; Li, Z.H.; Zhao, G.F. Genetic differentiation and population genetic structure of the Chinese endemic Dipteronia Oliv. revealed by cpDNA and AFLP data. Forests 2017, 8, 424. [Google Scholar] [CrossRef]
- Hickerson, M.J.; Carstens, B.C.; Cavender-Bares, J.; Crandall, K.A.; Graham, C.H.; Johnson, J.B.; Rissler, L.; Victoriano, P.F.; Yoder, A.D. Phylogeography’s past, present, and future: 10 years after. Mol. Phylogenet. Evol. 2010, 54, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Maruyama, T.; Chakraborty, R. The bottleneck effect of genetic variability in populations. Evolution 1975, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, P.X.; Kang, M.; Lowe, A.J.; Huang, H.W. Refugia within refugia: The case study of a canopy tree (Eurycorymbus cavaleriei) in subtropical China. J. Biogeogr. 2009, 36, 2156–2164. [Google Scholar] [CrossRef]
- Sun, J.W.; Zheng, Y.Q.; Yu, X.D.; Xia, X.H.; Zhao, Y.X.; Wu, Y.X.; Zhang, C.H. Floral traits and mating system of endangered species Acer griseum. Sci. Silvae Sin. 2022, 58, 47–55. [Google Scholar] [CrossRef]
- Gow, J.L.; Noble, L.R.; Rollinson, D.; Mimpfoundi, R.; Jones, C.S. Breeding system and demography shape population genetic structure across ecological and climatic zones in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata), intermediate host for schistosomes. Mol. Ecol. 2004, 13, 3561–3573. [Google Scholar] [CrossRef]
- Pickup, M.; Brandvain, Y.; Fraïsse, C.; Yakimowski, S.; Barton, N.H.; Dixit, T.; Lexer, C.; Cereghetti, E.; Field, D.L. Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytol. 2019, 224, 1035–1047. [Google Scholar] [CrossRef]
- Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 1985, 16, 393–430. [Google Scholar] [CrossRef]
- Saeki, I.; Murakami, N. Chloroplast DNA phylogeography of the endangered Japanese red maple (Acer pycnanthum): The spatial configuration of wetlands shapes genetic diversity. Divers. Distrib. 2009, 15, 917–927. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zheng, X.M.; Ge, S. Population genetic structure of Vitex negundo (Verbenaceae) in Three-Gorge Area of the Yangtze River: The riverine barrier to seed dispersal in plants. Biochem. Syst. Ecol. 2007, 35, 506–516. [Google Scholar] [CrossRef]
- Hampe, A.; Petit, R.J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M. Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Aust. J. Bot. 2007, 55, 316–325. [Google Scholar] [CrossRef]
- Reiter, N.; Lawrie, A.C.; Linde, C.C. Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes. Ann. Bot. 2018, 122, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, S.; Wilson, T.C.; Yap, J.Y.S.; Lee, E.H.; Errington, G.; Rossetto, M. Evolutionary processes in an undescribed eucalypt: Implications for the translocation of a critically endangered species. Ann. Bot. 2022, 130, 491–508. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, B.P.; Yao, Y.H.; Zhang, X.H.; Wang, J.; Yu, F.Q.; Li, J.Y. Latitudinal differentiation and patterns of temperate and subtropical plants in the Qinling-Daba Mountains. J. Geogr. Sci. 2023, 33, 907–923. [Google Scholar] [CrossRef]
- Wu, S.Y.; Liu, H.L.; Zhou, Y.X. The preliminary exploration on natural and scenic value protection of rivers in Qinba Mountain Area. Eng. Sci. (Chin.) 2020, 22, 80–85. [Google Scholar] [CrossRef]
- Sun, X.W.; Liu, D.Y.; Zhang, X.F.; Li, W.B.; Liu, H.; Hong, W.G.; Jiang, C.B.; Guan, N.; Ma, C.X.; Zeng, H.P. SLAF-seq: An efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef]
- Yang, J.; Wariss, H.M.; Tao, L.; Zhang, R.; Yun, Q.; Hollingsworth, P.; Dao, Z.; Luo, G.; Guo, H.; Ma, Y.; et al. De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China. Gigascience 2019, 8, giz085. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.M.; Zhang, G.L.; Guo, F.P.; Wang, M.Q.; Wang, H.Y.; Xiao, H.X. A genomewide scan for genetic structure and demographic history of two closely related species, Rhododendron dauricum and R. mucronulatum (Rhododendron, Ericaceae). Front. Plant Sci. 2020, 11, 1093. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genom. Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Yang, Z.H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Wright, S. The genetical structure of populations. Ann. Eugen. 1951, 15, 323–354. [Google Scholar] [CrossRef]
- Pickrell, J.; Pritchard, J. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, 3787–3793. [Google Scholar] [CrossRef]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L.P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, R14. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamada, K.D.; Tomii, K.; Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018, 34, 2490–2492. [Google Scholar] [CrossRef]
- Singh, V.K.; Mangalam, A.K.; Dwivedi, S.; Naik, S. Primer premier: Program for design of degenerate primers from a protein sequence. Biotechniques 1998, 24, 318–319. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Pons, O.; Petit, R.J. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 1996, 144, 1237–11245. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2020, 29, 1969–1973. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2020, 33, 607–611. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
Marker Type | Source of Variation | d.f. | Percentage of Variation | Fixation Index |
---|---|---|---|---|
nDNA | Among populations | 16 | 7.48 | Fst = 0.075 |
Within populations | 323 | 92.52 | ||
Total | 339 | 100.00 | ||
cpDNA | Among populations | 16 | 96.26 | Fst = 0.963 |
Within populations | 212 | 3.74 | ||
Total | 228 | 100.00 |
No. | Code | Mountains | Sampling Sites | Latitude (N°) | Longitude (E°) | Altitude (Peak) (m.a.s.l.) | Individuals (cpDNA) |
---|---|---|---|---|---|---|---|
1 | YC | Mt. Taihang | Yangcheng county, Shanxi Province | 35.27 | 112.43 | 534~802 (1994) | 15 |
2 | TBS | Mt. Qinling | Taibai mountain, Shaanxi Province | 34.08 | 107.72 | 1668~1817 (3771) | 15 |
3 | HS | Mt. Qinling | Huashan mountain, Shaanxi Province | 34.48 | 110.08 | 1565~2098 (2155) | 15 |
4 | NX | Mt. Qinling | Neixiang county, Henan Province | 33.50 | 111.93 | 1234~1501 (1380) | 13 |
5 | LC | Mt. Qinling | Luanchuan county, Henan Province | 33.73 | 111.63 | 1066~1388 (2297) | 15 |
6 | SX | Mt. Qinling | Song county, Henan Province | 34.25 | 111.87 | 941~956 (1860) | 14 |
7 | TPZ | Mt. Qinling | Taiping town, Xixia county, Henan Province | 33.67 | 111.63 | 853~902 (2212) | 13 |
8 | TS | Mt. Qinling | Tianshui county, Gansu Province | 34.23 | 105.98 | 1391~1483 (2686) | 14 |
9 | CK | Mt. Daba | Chengkou county, Chongqing Municipality | 32.10 | 108.53 | 1127~1273 (2256) | 14 |
10 | GWS | Mt. Daba | Guangwu mountain, Sichuan Province | 32.67 | 106.92 | 1418~1698 (2507) | 10 |
11 | HLS | Mt. Daba | Hualong mountain, Shaanxi Province | 32.65 | 107.67 | 1517~1732 (2918) | 14 |
12 | SNJ | Mt. Daba | Shennongjia nature reserve, Hubei Province | 31.46 | 110.35 | 1272~1490 (3106) | 11 |
13 | XS | Mt. Daba | Xing mountain, Hubei Province | 31.31 | 110.47 | 1255~1650 (2427) | 15 |
14 | ZJJ | Mt. Wuling | Zhangjiajie city, Hunan Province | 29.07 | 110.48 | 1307~1367 (1519) | 13 |
15 | HPS | Mt. Wuling | Huping mountain, Hunan Province | 30.05 | 110.53 | 1455~1850 (2099) | 13 |
16 | YL | Mt. Wuling | Yuanling county, Hunan Province | 28.90 | 110.42 | 564~826 (1294) | 15 |
17 | WF | Mt. Wuling | Wufeng county, Hubei Province | 30.15 | 110.57 | 1496~1709 (2320) | 10 |
Total | 229 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Yu, X.; Wu, Y.; Liao, J.; Pan, X.; Zheng, Y.; Zhang, C. Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered Acer griseum (Franch.) Pax Endemic to China. Int. J. Mol. Sci. 2025, 26, 574. https://doi.org/10.3390/ijms26020574
Xia X, Yu X, Wu Y, Liao J, Pan X, Zheng Y, Zhang C. Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered Acer griseum (Franch.) Pax Endemic to China. International Journal of Molecular Sciences. 2025; 26(2):574. https://doi.org/10.3390/ijms26020574
Chicago/Turabian StyleXia, Xinhe, Xuedan Yu, Yuxia Wu, Jia Liao, Xinyue Pan, Yongqi Zheng, and Chuanhong Zhang. 2025. "Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered Acer griseum (Franch.) Pax Endemic to China" International Journal of Molecular Sciences 26, no. 2: 574. https://doi.org/10.3390/ijms26020574
APA StyleXia, X., Yu, X., Wu, Y., Liao, J., Pan, X., Zheng, Y., & Zhang, C. (2025). Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered Acer griseum (Franch.) Pax Endemic to China. International Journal of Molecular Sciences, 26(2), 574. https://doi.org/10.3390/ijms26020574