The Potassium Utilization Gene Network in Brassica napus and Functional Validation of BnaZSHAK5.2 Gene in Response to Potassium Deficiency
Abstract
:1. Introduction
2. Results
2.1. Identification and Construction of K+ Utilization Network Genes in B. napus
2.2. Chromosome Localization, Duplications, and Evolution of K+ Utilization Network Genes in B. napus
2.3. Potential Transcriptional Regulation Profile of K+ Utilization Network in B. napus
2.4. Spatiotemporal Expression Analysis of K+ Utilization Gene in ZS11
2.5. Co-Expression Analysis of K+ Utilization Network in B. napus Based on RNA-Seq Datasets
2.6. Differential Expression Analysis of BnaZSKUPs Under K+ Deficiency Stress
2.7. Functional Complementation of BnHAK5.2 Gene Restored Resistance of Arabidopsis Mutants to LK Stress
3. Discussion
3.1. Amplification and Evolution Mechanisms of K+ Utilization Genes in ZS11
3.2. Expression Patterns of K+ Utilization Genes in ZS11
3.3. The Critical Function of BnaZSHAK5.2 in K+ Stress Response
3.4. The Integral Role of Potassium in Root Elongation
4. Materials and Methods
4.1. Identification and Subcellular Localization of K+ Utilization Genes in ZS11
4.2. Chromosomal Localization and Collinearity Analysis of K+ Utilization Genes in ZS11
4.3. Selection Pressure Analysis of K+ Utilization Genes in ZS11
4.4. Functional Prediction Analysis of K+ Utilization Genes in ZS11
4.5. Expression Pattern Analysis of K+ Utilization Genes in ZS11
4.6. Phenotypic Analysis of Transgenic Arabidopsis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leigh, R.A.; Jones, R.G.W. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 2010, 97, 1–13. [Google Scholar] [CrossRef]
- Clarkson, D.T.; Hall, K.C.; Roberts, J.K.M. Phospholipid composition and fatty acid desaturation in the roots of rye during acclimatization of low temperature: Positional analysis of fatty acids. Planta 1980, 149, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Ivashikina, N.; Becker, D.; Ache, P.; Meyerhoff, O.; Felle, H.H.; Hedrich, R. K+ channel profile and electrical properties ofArabidopsisroot hairs. FEBS Lett. 2001, 508, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Li, C.J.; Zhang, F.S. Transpiration, Potassium Uptake and Flow in Tobacco as Affected by Nitrogen Forms and Nutrient Levels. Ann. Bot. 2005, 95, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Ashley, M.K.; Grabov, M.G. Plant responses to potassium deficiencies: A role for potassium transport proteins. J. Exp. Bot. 2006, 57, 425–436. [Google Scholar] [CrossRef]
- Sparks, D.L. Potassium Dynamics in Soils; Springer: New York, NY, USA, 1987. [Google Scholar]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere 2023, 33, 385–406. [Google Scholar] [CrossRef]
- Lagarde, D.; Basset, M.; Lepetit, M.; Conejero, G.; Grignon, C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 2010, 9, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.E.; Lewis, B.D.; Spalding, E.P.; Sussman, M.R. A Role for the AKT1 Potassium Channel in Plant Nutrition. Science 1998, 280, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.; Hagen, C.E. A kinetic study of the absorption of alkali cations by barley roots. Plant Physiol. 1952, 27, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.; Elzam, D.W.R.E. RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Proc. Natl. Acad. Sci. USA 1963, 49, 684–692. [Google Scholar] [CrossRef]
- Hedrich, R.; Marten, I. TPC1-SV channels gain shape. Mol. Plant 2011, 004, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Very, A.A.; Nieves-Cordones, M.; Daly, M.; Khan, I.; Fizames, C.; Sentenac, H. Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? J. Plant Physiol. 2014, 171, 748–769. [Google Scholar] [CrossRef]
- Ragel, P.; Ródenas, R.; García-Martín, E.; Andrés, Z.; Villalta, I.; Nieves-Cordones, M.; Rivero, R.M.; Martínez, V.; Pardo, J.M.; Quintero, F.J. The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots. Plant Physiol. 2015, 169, 2863–2873. [Google Scholar]
- Duby, G.; Hosy, E.; Fizames, C.; Alcon, C.; Costa, A.; Sentenac, H.; Thibaud, J.B. AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J. 2008, 53, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, B.; Pilot, G.; Michard, E.; Gaymard, F.; Sentenac, H.; Thibaud, J.B. A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell Online 2000, 12, 837–851. [Google Scholar]
- Geiger, D.; Becker, D.; Vosloh, D.; Gambale, F.; Hedrich, R. Heteromeric AtKC1·AKT1 Channels in Arabidopsis Roots Facilitate Growth under K+-limiting Conditions. J. Biol. Chem. 2009, 284, 21288–21295. [Google Scholar] [CrossRef] [PubMed]
- Reintanz, B.; Szyroki, A.; Ivashikina, N.; Ache, P.; Godde, M.; Becker, D.; Palme, K.; Rainer, H. AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc. Natl. Acad. Sci. USA 2002, 99, 4079–4084. [Google Scholar] [CrossRef] [PubMed]
- Czempinski, K.; Frachisse, J.M.; Maurel, C.; Barbierbrygoo, H.; Muellerroeber, B. Vacuolar membrane localization of the ‘two-pore’ Kchannel KCO1. Plant J. 2002, 29, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Gobert, A.; Isayenkov, S.; Voelker, C.; Czempinski, K.; Maathuis, F.J.M. The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc. Natl. Acad. Sci. USA 2007, 104, 10726–10731. [Google Scholar] [CrossRef] [PubMed]
- Rubio, F. Root K+ acquisition in plants: The Arabidopsis thaliana model. Plant Cell Physiol. 2011, 52, 1603–1612. [Google Scholar]
- Chen, G.; Hu, Q.; Luo, L.E.; Yang, T.; Zhang, S.; Hu, Y.; Yu, L.; Xu, G. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ. 2015, 38, 2747–2765. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Ciani, S.; Schachtman, D.P. A Peroxidase Contributes to ROS Production during Arabidopsis Root Response to Potassium Deficiency. Mol. Plant 2010, 3, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, M.L.; Ma, T.L.; Wang, Y. Phosphorylation of ARF2 Relieves its Repression of Transcription of the K+ transporter gene HAK5 in Response to Low Potassium Stress. Plant Cell 2016, 28, 3005–3019. [Google Scholar] [CrossRef] [PubMed]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.P.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B. Erratum: Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953, Erratum in Science 2014, 345, 1260782. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Ren, T.; Pan, Y.; Li, X.; Cong, R.; Lu, J. Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L. Sci. Rep. 2016, 6, 21725. [Google Scholar] [CrossRef]
- Ren, T.; Zou, J.; Lu, J.; Chen, F.; Wu, J.; Li, X. On-farm trials of optimal fertilizer recommendations for the maintenance of high seed yields in winter oilseed rape (Brassica napus L.) production. Soil Sci. Plant Nutr. 2015, 61, 528–540. [Google Scholar] [CrossRef]
- Juan, Z.; Lu, J.-w.; Li, Y.-s.; Li, X.-k. Regional evaluation of winter rapeseed response to K fertilization, K use efficiency, and critical level of soil K in the Yangtze River Valley. Agric. Sci. China 2011, 10, 911–920. [Google Scholar]
- Su, W.; Liu, J.; Wang, B.; Li, W. Research Progress on the HAK Function of Plant High Affinity Potassium Ion Transporter. Biotechnol. Bull. 2020, 36, 144. [Google Scholar]
- Lara, A.; Ródenas, R.; Andrés, Z.; Martínez, V.; Quintero, F.J.; Nieves-Cordones, M.; Botella, M.A.; Rubio, F. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9. J. Exp. Bot. 2020, 71, 5053–5060. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Song, Y.; Zhao, F.; Cao, Y.; Luo, D.; Qiao, D.; Cao, Y.; Xu, H. Phylogenetic, structural and functional evolution of the LHC gene family in plant species. Int. J. Mol. Sci. 2022, 24, 488. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wu, J.; Wang, X. Genome triplication drove the diversification of Brassica plants. Hortic. Res. 2014, 1, 14024. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019, 20, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wu, J.; Cai, X.; Liang, J.; Freeling, M.; Wang, X. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 2018, 4, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Cankaya, M.; Hernandez, A.M.; Ciftci, M.; Beydemir, S.; Ozdemir, H.; Budak, H.; Gulcin, I.; Comakli, V.; Emircupani, T.; Ekinci, D. An analysis of expression patterns of genes encoding proteins with catalytic activities. BMC Genom. 2007, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- White, J. PubMed 2.0. Med. Ref. Serv. Q. 2020, 39, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shengqiang, S.; Russell, H.; Rochak, N.; Hayes, R.D.; Joni, F.; Therese, M.; William, D.; Uffe, H.; Nicholas, P. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.S.; Bealer, K.; Madden, T. Software BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 1–9. [Google Scholar] [CrossRef]
- Song, J.M.; Guan, Z.; Hu, J.; Guo, C.; Guo, L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 2020, 6, 34–45. [Google Scholar] [CrossRef]
- Kazutaka, K.; Misakwa, K.; Kei-ichi, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar]
- Chou, K.-C.; Shen, H.-B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef] [PubMed]
- Paul, H.; Keun-Joon, P.; Takeshi, O.; Naoya, F.; Hajime, H.; Adams-Collier, C.J.; Kenta, N. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, 585–587. [Google Scholar]
- Song, J.M.; Liu, D.X.; Xie, W.Z.; Yang, Z.; Guo, L.; Liu, K.; Yang, Q.Y.; Chen, L.L. BnPIR: Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol. J. 2021, 19, 412. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, R. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Campanella, J.J.; Bitincka, L.; Smalley, J. MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform. 2003, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731. [Google Scholar] [CrossRef]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Kosakovsky Pond, S.L.; Scheffler, K. FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Yang, D.-C.; Meng, Y.-Q.; Jin, J.; Gao, G. PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Res. 2020, 48, D1104–D1113. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011, 39, W155. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yu, L.; Wei, L.; Yu, P.; Guo, L. BnTIR:an online transcriptome platform for exploring RNA: Eq libraries for oil crop Brassica napus. Plant Biotechnol. J. 2021, 19, 1895. [Google Scholar] [CrossRef] [PubMed]
Genes | Sequence |
---|---|
Actin7-F | 5′-AACCTTCTCTCAAGTCTCTGTG-3′ |
Actin7-R | 5′-CCAGAATCATCACAAAGCATCC-3′ |
ZSUBI-F | 5′-GCCATGGCTATTTTCCTTACAG-3′ |
ZSUBI-R | 5′-GCCTCGTAGTCCAGATACTTTT-3′ |
ZSHAK5.1-F | 5′-GAAACCGCTATACAAATGGCTACA-3′ |
ZSHAK5.1-R | 5′-TGGTGTCACACGGCTCACG-3′ |
ZSHAK5.2-F | 5′-GAGTTTGGCATTCCAGAGCCTA-3′ |
ZSHAK5.2-R | 5′-TTGAGAAGTGCGACAAGGGTG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; Liu, H.; Zhou, J.; Zhu, W.; Hu, L.; Yang, X.; Yang, X.; Zhao, H.; Wan, H.; Yin, N.; et al. The Potassium Utilization Gene Network in Brassica napus and Functional Validation of BnaZSHAK5.2 Gene in Response to Potassium Deficiency. Int. J. Mol. Sci. 2025, 26, 794. https://doi.org/10.3390/ijms26020794
Qian X, Liu H, Zhou J, Zhu W, Hu L, Yang X, Yang X, Zhao H, Wan H, Yin N, et al. The Potassium Utilization Gene Network in Brassica napus and Functional Validation of BnaZSHAK5.2 Gene in Response to Potassium Deficiency. International Journal of Molecular Sciences. 2025; 26(2):794. https://doi.org/10.3390/ijms26020794
Chicago/Turabian StyleQian, Xingzhi, Hanrong Liu, Jie Zhou, Wenyu Zhu, Liping Hu, Xiaoya Yang, Xiwen Yang, Huiyan Zhao, Huafang Wan, Nengwen Yin, and et al. 2025. "The Potassium Utilization Gene Network in Brassica napus and Functional Validation of BnaZSHAK5.2 Gene in Response to Potassium Deficiency" International Journal of Molecular Sciences 26, no. 2: 794. https://doi.org/10.3390/ijms26020794
APA StyleQian, X., Liu, H., Zhou, J., Zhu, W., Hu, L., Yang, X., Yang, X., Zhao, H., Wan, H., Yin, N., Li, J., Qu, C., & Du, H. (2025). The Potassium Utilization Gene Network in Brassica napus and Functional Validation of BnaZSHAK5.2 Gene in Response to Potassium Deficiency. International Journal of Molecular Sciences, 26(2), 794. https://doi.org/10.3390/ijms26020794