Alcohol Consumption and Autoimmune Diseases
Abstract
:1. Alcohol Addiction
2. Autoimmune Diseases
3. Alcohol Addiction and Autoimmune Diseases
3.1. Protective Role of Alcohol
Autoimmune Disease | Population | Results | Reference |
---|---|---|---|
Autoimmune thyroiditis (AITD) | 5154 She ethnic minority people of Fujian province | Incidence of hypothyroidism and TPOAb positivity was decreased in case of alcohol consumption (defined as the average consumption of at least 35 g of alcohol per day). | [56] |
272 patients and 1088 controls | Moderate alcohol consumption is associated with reduction in the risk of hyperthyroidism irrespectively of age and gender. | [57] | |
803 healthy women at risk of developing AITD | Alcohol consumption of >10 units/week may protect against the development of overt hypothyroidism. | [58] | |
140 patients and 560 controls | Alcohol consumption protects against development of overt hypothyroidism irrespectively of sex and type of alcohol consumed. | [59] | |
543 patients | Alcohol intake was not associated with risk of hyperthyroidism. | [60] | |
Multiple sclerosis (MS) | 6619 patients and 7007 controls | Alcohol consumption exhibits a dose-dependent inverse association with MS. | [61] |
1717 patients (ages 15–19) with MS and 4685 healthy volunteers | Alcohol consumption in adolescence was associated with lower risk of developing MS in both sexes. | [62] | |
10,249 patients, of which 215 had alcohol use disorders. | Alcohol use disorders in patients with MS results in significant increases in-hospital mortality and the length of the hospital stay and results in overexpenditure. | [63] | |
923 patients | Higher total alcohol and red wine intake were associated with a lower cross-sectional level of neurologic disability in MS patients but increased T2LV accumulation. | [64] | |
547 patients and 1057 healthy volunteers | After adjusting for measurement bias, confounding, and random error, alcohol consumption had a positive causal effect on the incidence of MS. | [65] | |
210 patients | There is a significant association between consumption of hard liquor per day and risk of MS. | [66] | |
2100 patients | No significant association between MS risk and alcohol consumption. | [67] | |
258 patients | [68] | ||
146 patients and 294 controls | No significant association between primary progressive MS risk and alcohol consumption. | [69] | |
Mouse models with experimental autoimmune encephalomyelitis | Alcohol significantly alters the course of MS differentially in males and females via effects on gut bacterial networks. This supports further need to evaluate dose and sex-specific alcohol effects in MS. | [70] | |
Rheumatoid arthritis (RA) | 11,839 patients | Weekly alcohol consumption of <14 units per week does not appear to be associated with an increased risk of transaminitis. | [71] |
3353 patients and 2836 controls | The finding of a protective role of alcohol on risk of RA must be interpreted with caution from a clinical and public health perspective. | [72] | |
1204 patients and 871 controls | Alcohol may protect against RA. | [73] | |
873 patients and 1004 healthy controls | Alcohol consumption has an inverse and dose-related association with both risk and severity of RA. | [74] | |
1238 patients | There is an association between alcohol consumption and both lower self-reported disease activity and higher health-related quality of life in female, but not in male RA patients. | [75] | |
903 female patients | There is an association between long-term moderate alcohol drinking and reduced risk of RA in women. | [76] | |
596 patients | There may be a deleterious effect of moderate consumption of alcohol on radiological progression in women, but not in men, with early RA. | [77] | |
188 patients and 192 healthy volunteers | Confirmed the protective role of moderate alcohol consumption against RA, but alcohol was not associated with the severity of joint inflammation. | [78] | |
197 patients | Moderate consumption of alcohol is associated with reduced risk of RA. | [79] | |
174 patients | There is an association between alcohol consumption and markers of inflammation in RA patients prior to the occurrence of symptoms. | [80] | |
158 female patients aged 55–69 | Alcohol use did not influence the risk of RA. | [81] | |
87 patients | Increased alcohol consumption is associated with an elevated risk of RA among women, but not in men. | [82] | |
Alcohol-exposed mice | Alcohol-exposed mice have reduced Bcl6 and PD-1 expression as well as IL-21 production by TFH cells, preventing proper spatial organization of TFH cells to form TFH–B-cell conjugates in germinal centers, which ultimately impairs autoantibody formation and mitigates experimental autoimmune arthritis. | [83] | |
Male DBA/1 mice | Low continued ethanol consumption delays the onset and halts the progression of collagen-induced arthritis by interaction with innate immune responsiveness. | [84] | |
Systemic lupus erythematosus (SLE) | 1177 women | Alcohol may reduce SLE risk by decreasing circulating stem cell factor. | [85] |
282 female patients and 292 healthy volunteers | Alcohol intake is inversely associated with SLE risk. | [86] | |
150 patients and 300 controls | [87] | ||
85 patients and 205 controls | [88] | ||
244 patients | There is an inverse association between moderate alcohol consumption (≥5 g or 0.5 drink/day) and SLE risk in women. | [89] | |
127 patients | Confirmed decreased SLE risk with moderate alcohol consumption. | [90] | |
114 patients and 228 controls | Alcohol consumption before SLE diagnosis is not associated with increased risk of SLE. Individuals who develop SLE are more likely to quit. | [91] | |
125 patients and 125 controls | Alcohol was associated with neither increased risk nor a protective role. | [92] | |
67 female patients | [93] | ||
Diabetes | 1841 T2DM and 140 T1DM | Moderate alcohol consumption reduces the risk of T1DM and T2DM. | [94] |
250 latent autoimmune diabetes in adults (LADA) and 764 T2DM | Alcohol intake may reduce the risk of type 2 diabetes and type 2-like LADA. but has no beneficial effects on diabetes-related autoimmunity. | [95] | |
Allergic rhinitis (AR) and hypersensitivity reactions | 5870 women | Alcohol consumption is associated with an increased risk of developing perennial AR. | [96] |
3317 volunteers | Alcohol consumption was positively associated with aeroallergen sensitization. | [97] | |
3460 adults | No association between alcohol consumption and nickel sensitization. | [98] | |
734 subjects | Alcohol consumption leads to IgE-mediated immune responses rather than delayed-type hypersensitivity reactions such that it may prevent the development of contact sensitization. | [99] | |
Primary biliary cholangitis (PBC) | 2576 patients and 2438 controls | Mild-to-moderate alcohol intake was negatively associated with PBC. | [100] |
103 patients and 100 controls | [101] | ||
200 patients and 200 controls | Alcohol appears to have an inverse relationship with PBC. | [102] |
3.2. Alcohol Role as a Risk Factor for Autoimmune Diseases
4. Autoimmune Thyroiditis
5. Multiple Sclerosis
6. Rheumatoid Arthritis
7. Systemic Lupus Erythematosus
8. Diabetes
9. Allergic Rhinitis
10. Primary Biliary Cholangitis
11. Discussion
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciafrè, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev. 2020, 118, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Giesbrecht, N.; Reisdorfer, E.; Shield, K. The impacts of alcohol marketing and advertising, and the alcohol industry’s views on marketing regulations: Systematic reviews of systematic reviews. Drug Alcohol Rev. 2024, 43, 1402–1425. [Google Scholar] [CrossRef]
- Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; et al. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol. 2018, 96, 128–136. [Google Scholar] [CrossRef]
- GBD 2020 Alcohol Collaborators Population-level risks of alcohol consumption by amount, geography, age, sex, and year: A systematic analysis for the Global Burden of Disease Study 2020. Lancet 2022, 400, 185–235. [CrossRef] [PubMed]
- Caputo, F.; Penitenti, F.; Bergonzoni, B.; Lungaro, L.; Costanzini, A.; Caio, G.; DE Giorgio, R.; Ambrosio, M.R.; Zoli, G.; Testino, G. Alcohol use disorders and liver fibrosis: An update. Minerva Med. 2024, 115, 354–363. [Google Scholar] [CrossRef]
- Fiore, M.; Minni, A.; Cavalcanti, L.; Raponi, G.; Puggioni, G.; Mattia, A.; Gariglio, S.; Colizza, A.; Meliante, P.G.; Zoccali, F.; et al. The Impact of Alcohol Consumption and Oral Microbiota on Upper Aerodigestive Tract Carcinomas: A Pilot Study. Antioxidants 2023, 12, 1233. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; et al. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants 2022, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E.; et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose-response meta-analysis. Br. J. Cancer 2015, 112, 580–593. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.; Petrella, C.; Greco, A.; Ralli, M.; Vitali, M.; Giovagnoli, R.; De Persis, S.; Fiore, M.; Ceccanti, M.; Messina, M.P. Acute alcohol intoxication: A clinical overview. Clin. Ter. 2022, 173, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Martellucci, S.; Ralli, M.; Attanasio, G.; Russo, F.Y.; Marcelli, V.; Greco, A.; Gallo, A.; Fiore, M.; Petrella, C.; Ferraguti, G.; et al. Alcohol binge-drinking damage on the vestibulo-oculomotor reflex. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, S.; White, B. A Complex Interplay Between Nutrition and Alcohol Use Disorder: Implications for Breaking the Vicious Cycle. Curr. Pharm. Des. 2024, 30, 1822–1837. [Google Scholar] [CrossRef]
- Coriale, G.; Gencarelli, S.; Battagliese, G.; Delfino, D.; Fiorentino, D.; Petrella, C.; Greco, A.; Ralli, M.; Attilia, M.L.; Messina, M.P.; et al. Physiological Responses to Induced Stress in Individuals Affected by Alcohol Use Disorder with Dual Diagnosis and Alexithymia. Clin. Ter. 2020, 171, e120–e129. [Google Scholar] [CrossRef] [PubMed]
- Coriale, G.; Battagliese, G.; Pisciotta, F.; Attilia, M.L.; Porrari, R.; De Rosa, F.; Vitali, M.; Carito, V.; Messina, M.P.; Greco, A.; et al. Behavioral responses in people affected by alcohol use disorder and psychiatric comorbidity: Correlations with addiction severity. Ann. Ist. Super. Sanita 2019, 55, 131–142. [Google Scholar] [CrossRef]
- Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; et al. Nerve Growth Factor in Alcohol Use Disorders. Curr. Neuropharmacol. 2020, 19, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Ledda, R.; Battagliese, G.; Attilia, F.; Rotondo, C.; Pisciotta, F.; Gencarelli, S.; Greco, A.; Fiore, M.; Ceccanti, M.; Attilia, M.L.M.L. Drop-out, relapse and abstinence in a cohort of alcoholic people under detoxification. Physiol. Behav. 2019, 198, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Zahr, N.M. Alcohol Use Disorder and Dementia: A Review. Alcohol Res. 2024, 44, 03. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Yang, Q.; Joshi, R.B.; Liu, Y.; Akbar, M.; Song, B.-J.; Zhou, S.; Wang, X. Role of Alcohol Drinking in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2020, 21, 2316. [Google Scholar] [CrossRef]
- Feng, D.; Hwang, S.; Guillot, A.; Wang, Y.; Guan, Y.; Chen, C.; Maccioni, L.; Gao, B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101352. [Google Scholar] [CrossRef]
- Ciafrè, S.; Carito, V.; Tirassa, P.; Ferraguti, G.; Attilia, M.L.; Ciolli, P.; Messina, M.P.; Ceccanti, M.; Fiore, M. Ethanol consumption and innate neuroimmunity. Biomed. Rev. 2017, 28, 49–61. [Google Scholar] [CrossRef]
- Wojtowicz, J.S. Long-Term Health Outcomes of Regular, Moderate Red Wine Consumption. Cureus 2023, 15, e46786. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Hormesis defined. Ageing Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Conrad, N.; Misra, S.; Verbakel, J.Y.; Verbeke, G.; Molenberghs, G.; Taylor, P.N.; Mason, J.; Sattar, N.; McMurray, J.J.V.; McInnes, I.B.; et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet 2023, 401, 1878–1890. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Ferraguti, G.; Tarani, L.; Fanfarillo, F.; Tirassa, P.; Ralli, M.; Iannella, G.; Polimeni, A.; Lucarelli, M.; Greco, A.; et al. Nerve Growth Factor and Autoimmune Diseases. Curr. Issues Mol. Biol. 2023, 45, 8950–8973. [Google Scholar] [CrossRef]
- Tang, B.; Liu, Q.; Ilar, A.; Wiebert, P.; Hägg, S.; Padyukov, L.; Klareskog, L.; Alfredsson, L.; Jiang, X. Occupational inhalable agents constitute major risk factors for rheumatoid arthritis, particularly in the context of genetic predisposition and smoking. Ann. Rheum. Dis. 2023, 82, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Moroncini, G.; Calogera, G.; Benfaremo, D.; Gabrielli, A. Biologics in Inflammatory Immune-mediated Systemic Diseases. Curr. Pharm. Biotechnol. 2018, 18, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef]
- Parkin, J.; Cohen, B. An overview of the immune system. Lancet 2001, 357, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Tomar, N.; De, R.K. A brief outline of the immune system. Methods Mol. Biol. 2014, 1184, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.P.; Secord, E. Innate Immunity. Immunol. Allergy Clin. N. Am. 2021, 41, 535–541. [Google Scholar] [CrossRef]
- Geremia, A.; Biancheri, P.; Allan, P.; Corazza, G.R.; Di Sabatino, A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 2014, 13, 3–10. [Google Scholar] [CrossRef] [PubMed]
- McComb, S.; Thiriot, A.; Akache, B.; Krishnan, L.; Stark, F. Introduction to the Immune System. Methods Mol. Biol. 2019, 2024, 1–24. [Google Scholar] [CrossRef] [PubMed]
- den Haan, J.M.M.; Arens, R.; van Zelm, M.C. The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol. Lett. 2014, 162, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Dikiy, S.; Rudensky, A.Y. Principles of regulatory T cell function. Immunity 2023, 56, 240–255. [Google Scholar] [CrossRef] [PubMed]
- Dong, C. Cytokine Regulation and Function in T Cells. Annu. Rev. Immunol. 2021, 39, 51–76. [Google Scholar] [CrossRef]
- Saravia, J.; Chapman, N.M.; Chi, H. Helper T cell differentiation. Cell. Mol. Immunol. 2019, 16, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Hillion, S.; Arleevskaya, M.I.; Blanco, P.; Bordron, A.; Brooks, W.H.; Cesbron, J.Y.; Kaveri, S.; Vivier, E.; Renaudineau, Y. The Innate Part of the Adaptive Immune System. Clin. Rev. Allergy Immunol. 2020, 58, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shao, T.; Nie, L.; Zhu, L.; Xiang, L.; Shao, J. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity. Mol. Immunol. 2016, 69, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Tsay, G.J.; Zouali, M. The Interplay Between Innate-Like B Cells and Other Cell Types in Autoimmunity. Front. Immunol. 2018, 9, 1064. [Google Scholar] [CrossRef] [PubMed]
- Justiz Vaillant, A.A.; Sabir, S.; Jan, A. Physiology, Immune Response; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016, 17, 1142–1149. [Google Scholar] [CrossRef]
- Vadasz, Z.; Haj, T.; Kessel, A.; Toubi, E. Age-related autoimmunity. BMC Med. 2013, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Takaba, H.; Takayanagi, H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol. 2017, 38, 805–816. [Google Scholar] [CrossRef]
- Zou, Y.-R.; Grimaldi, C.; Diamond, B. B Cells. In Kelley and Firestein’s Textbook of Rheumatology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–230.e3. [Google Scholar]
- Hu, W.; Wang, Z.-M.; Feng, Y.; Schizas, M.; Hoyos, B.E.; van der Veeken, J.; Verter, J.G.; Bou-Puerto, R.; Rudensky, A.Y. Regulatory T cells function in established systemic inflammation and reverse fatal autoimmunity. Nat. Immunol. 2021, 22, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Basu, S.; Williams, C.B.; Salzman, N.H.; Dittel, B.N. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J. Immunol. 2012, 188, 3188–3198. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.P.; Patterson, D.G.; Liang, D.; Sharpe, A.H. Immune checkpoint receptors in autoimmunity. Curr. Opin. Immunol. 2023, 80, 102283. [Google Scholar] [CrossRef]
- Ferguson, T.A.; Green, D.R.; Griffith, T.S. Cell death and immune privilege. Int. Rev. Immunol. 2002, 21, 153–172. [Google Scholar] [CrossRef]
- Christovich, A.; Luo, X.M. Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Front. Immunol. 2022, 13, 946248. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Ni, J.-J.; Han, B.-X.; Yan, S.-S.; Wei, X.-T.; Feng, G.-J.; Zhang, H.; Zhang, L.; Li, B.; Pei, Y.-F. Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Front. Immunol. 2021, 12, 746998. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, F.-S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update. J. Intern. Med. 2015, 278, 369–395. [Google Scholar] [CrossRef]
- Xiao, Z.X.; Miller, J.S.; Zheng, S.G. An updated advance of autoantibodies in autoimmune diseases. Autoimmun. Rev. 2021, 20, 102743. [Google Scholar] [CrossRef]
- Miller, F.W. The increasing prevalence of autoimmunity and autoimmune diseases: An urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr. Opin. Immunol. 2023, 80, 102266. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.R. Prediction and Prevention of Autoimmune Disease in the 21st Century: A Review and Preview. Am. J. Epidemiol. 2016, 183, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.; Delgado Alves, J.; Fortuna, J.; Faria, R.; Almeida, I.; Alves, G.; Araújo Correia, J.; Campar, A.; Brandão, M.; Crespo, J.; et al. Biological therapy in systemic lupus erythematosus, antiphospholipid syndrome, and Sjögren’s syndrome: Evidence- and practice-based guidance. Front. Immunol. 2023, 14, 1117699. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cai, L.; Zheng, Y.; Pan, J.; Li, L.; Zong, L.; Lin, W.; Liang, J.; Huang, H.; Wen, J.; et al. Association between lifestyle and thyroid dysfunction: A cross-sectional epidemiologic study in the She ethnic minority group of Fujian Province in China. BMC Endocr. Disord. 2019, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Carlé, A.; Bülow Pedersen, I.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Jørgensen, T.; Laurberg, P. Graves’ hyperthyroidism and moderate alcohol consumption: Evidence for disease prevention. Clin. Endocrinol. 2013, 79, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Effraimidis, G.; Tijssen, J.G.P.; Wiersinga, W.M. Alcohol Consumption as a Risk Factor for Autoimmune Thyroid Disease: A Prospective Study. Eur. Thyroid J. 2012, 1, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Carlé, A.; Pedersen, I.B.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Jørgensen, T.; Laurberg, P. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: A population-based case–control study. Eur. J. Endocrinol. 2012, 167, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Holm, I.A.; Manson, J.E.; Michels, K.B.; Alexander, E.K.; Willett, W.C.; Utiger, R.D. Smoking and other lifestyle factors and the risk of Graves’ hyperthyroidism. Arch. Intern. Med. 2005, 165, 1606–1611. [Google Scholar] [CrossRef]
- Hedström, A.K.; Hillert, J.; Olsson, T.; Alfredsson, L. Alcohol as a modifiable lifestyle factor affecting multiple sclerosis risk. JAMA Neurol. 2014, 71, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.; Søndergaard, H.B.; Bang Oturai, D.; Laursen, J.H.; Gustavsen, S.; Larsen, N.K.; Magyari, M.; Just-Østergaard, E.; Thørner, L.W.; Sellebjerg, F.; et al. Alcohol consumption in adolescence is associated with a lower risk of multiple sclerosis in a Danish cohort. Mult. Scler. J. 2019, 25, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
- Gili-Miner, M.; López-Méndez, J.; Vilches-Arenas, A.; Ramírez-Ramírez, G.; Franco-Fernández, D.; Sala-Turrens, J.; Béjar-Prado, L. Multiple sclerosis and alcohol use disorders: In-hospital mortality, extended hospital stays, and overexpenditures. Neurologia 2018, 33, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Cruz, C.; Chua, A.S.; Malik, M.T.; Kaplan, T.; Glanz, B.I.; Egorova, S.; Guttmann, C.R.G.; Bakshi, R.; Weiner, H.L.; Healy, B.C.; et al. The effect of alcohol and red wine consumption on clinical and MRI outcomes in multiple sclerosis. Mult. Scler. Relat. Disord. 2017, 17, 47–53. [Google Scholar] [CrossRef]
- Malekifar, P.; Nedjat, S.; Abdollahpour, I.; Nazemipour, M.; Malekifar, S.; Mansournia, M.A. Impact of Alcohol Consumption on Multiple Sclerosis Using Model-based Standardization and Misclassification Adjustment Via Probabilistic Bias Analysis. Arch. Iran. Med. 2023, 26, 567–574. [Google Scholar] [CrossRef]
- Pekmezovic, T.; Drulovic, J.; Milenkovic, M.; Jarebinski, M.; Stojsavljevic, N.; Mesaros, S.; Kisic, D.; Kostic, J. Lifestyle factors and multiple sclerosis: A case-control study in Belgrade. Neuroepidemiology 2006, 27, 212–216. [Google Scholar] [CrossRef]
- Dreyer-Alster, S.; Achiron, A.; Giovannoni, G.; Jacobs, B.M.; Dobson, R. No evidence for an association between alcohol consumption and Multiple Sclerosis risk: A UK Biobank study. Sci. Rep. 2022, 12, 22158. [Google Scholar] [CrossRef] [PubMed]
- Massa, J.; O’Reilly, E.; Munger, K.; Ascherio, A. Caffeine and alcohol intakes have no association with risk of multiple sclerosis. Mult. Scler. J. 2013, 19, 53–58. [Google Scholar] [CrossRef]
- Mortazavi, S.H.; Moghadasi, A.N.; Almasi-Hashiani, A.; Sahraian, M.A.; Goudarzi, H.; Eskandarieh, S. Waterpipe and cigarette smoking and drug and alcohol consumption, and the risk of primary progressive multiple sclerosis: A population-based case-control study. Curr. J. Neurol. 2023, 22, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Caslin, B.; Maguire, C.; Karmakar, A.; Mohler, K.; Wylie, D.; Melamed, E. Alcohol shifts gut microbial networks and ameliorates a murine model of neuroinflammation in a sex-specific pattern. Proc. Natl. Acad. Sci. USA 2019, 116, 25808–25815. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, J.H.; Warner, A.; Costello, R.; Lunt, M.; Verstappen, S.M.M.; Dixon, W.G. Quantifying the hepatotoxic risk of alcohol consumption in patients with rheumatoid arthritis taking methotrexate. Ann. Rheum. Dis. 2017, 76, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Hössjer, O.; Klareskog, L.; Alfredsson, L. Interplay between alcohol, smoking and HLA genes in RA aetiology. RMD Open 2019, 5, e000893. [Google Scholar] [CrossRef]
- Källberg, H.; Jacobsen, S.; Bengtsson, C.; Pedersen, M.; Padyukov, L.; Garred, P.; Frisch, M.; Karlson, E.W.; Klareskog, L.; Alfredsson, L. Alcohol consumption is associated with decreased risk of rheumatoid arthritis: Results from two Scandinavian case-control studies. Ann. Rheum. Dis. 2009, 68, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, J.R.; Gowers, I.R.; Moore, D.J.; Wilson, A.G. Alcohol consumption is inversely associated with risk and severity of rheumatoid arthritis. Rheumatology 2010, 49, 2140–2146. [Google Scholar] [CrossRef] [PubMed]
- Bergman, S.; Symeonidou, S.; Andersson, M.L.; Söderlin, M.K.; BARFOT Study Group. Alcohol consumption is associated with lower self-reported disease activity and better health-related quality of life in female rheumatoid arthritis patients in Sweden: Data from BARFOT, a multicenter study on early RA. BMC Musculoskelet. Disord. 2013, 14, 218. [Google Scholar] [CrossRef]
- Lu, B.; Solomon, D.H.; Costenbader, K.H.; Karlson, E.W. Alcohol consumption and risk of incident rheumatoid arthritis in women: A prospective study. Arthritis Rheumatol. 2014, 66, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Sageloli, F.; Quesada, J.; Fautrel, B.; Salliot, C.; Gaudin, P.; Baillet, A. Moderate alcohol consumption is associated with increased radiological progression in women, but not in men, with early rheumatoid arthritis: Results from the ESPOIR cohort (Étude et Suivi des Polyarthrites Indifférenciées Récentes). Scand. J. Rheumatol. 2018, 47, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Mangnus, L.; van Steenbergen, H.W.; Nieuwenhuis, W.P.; Reijnierse, M.; van der Helm-van Mil, A.H.M. Moderate use of alcohol is associated with lower levels of C reactive protein but not with less severe joint inflammation: A cross-sectional study in early RA and healthy volunteers. RMD Open 2018, 4, e000577. [Google Scholar] [CrossRef] [PubMed]
- Di Giuseppe, D.; Alfredsson, L.; Bottai, M.; Askling, J.; Wolk, A. Long term alcohol intake and risk of rheumatoid arthritis in women: A population based cohort study. BMJ 2012, 345, e4230. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Solomon, D.H.; Costenbader, K.H.; Keenan, B.T.; Chibnik, L.B.; Karlson, E.W. Alcohol consumption and markers of inflammation in women with preclinical rheumatoid arthritis. Arthritis Rheum. 2010, 62, 3554–3559. [Google Scholar] [CrossRef] [PubMed]
- Cerhan, J.R.; Saag, K.G.; Criswell, L.A.; Merlino, L.A.; Mikuls, T.R. Blood transfusion, alcohol use, and anthropometric risk factors for rheumatoid arthritis in older women. J. Rheumatol. 2002, 29, 246–254. [Google Scholar] [PubMed]
- VanEvery, H.; Yang, W.; Olsen, N.; Bao, L.; Lu, B.; Wu, S.; Cui, L.; Gao, X. Alcohol Consumption and Risk of Rheumatoid Arthritis among Chinese Adults: A Prospective Study. Nutrients 2021, 13, 2231. [Google Scholar] [CrossRef]
- Azizov, V.; Dietel, K.; Steffen, F.; Dürholz, K.; Meidenbauer, J.; Lucas, S.; Frech, M.; Omata, Y.; Tajik, N.; Knipfer, L.; et al. Ethanol consumption inhibits TFH cell responses and the development of autoimmune arthritis. Nat. Commun. 2020, 11, 1998. [Google Scholar] [CrossRef]
- Jonsson, I.-M.; Verdrengh, M.; Brisslert, M.; Lindblad, S.; Bokarewa, M.; Islander, U.; Carlsten, H.; Ohlsson, C.; Nandakumar, K.S.; Holmdahl, R.; et al. Ethanol prevents development of destructive arthritis. Proc. Natl. Acad. Sci. USA 2007, 104, 258–263. [Google Scholar] [CrossRef]
- Hahn, J.; Leatherwood, C.; Malspeis, S.; Liu, X.; Lu, B.; Roberts, A.L.; Sparks, J.A.; Karlson, E.W.; Feldman, C.H.; Munroe, M.E.; et al. Associations between daily alcohol consumption and systemic lupus erythematosus-related cytokines and chemokines among US female nurses without SLE. Lupus 2020, 29, 976–982. [Google Scholar] [CrossRef]
- Nagata, C.; Fujita, S.; Iwata, H.; Kurosawa, Y.; Kobayashi, K.; Kobayashi, M.; Motegi, K.; Omura, T.; Yamamoto, M.; Nose, T. Systemic lupus erythematosus: A case-control epidemiologic study in Japan. Int. J. Dermatol. 1995, 34, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Hardy, C.J.; Palmer, B.P.; Muir, K.R.; Sutton, A.J.; Powell, R.J. Smoking history, alcohol consumption, and systemic lupus erythematosus: A case-control study. Ann. Rheum. Dis. 1998, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, A.A.; Rylander, L.; Hagmar, L.; Nived, O.; Sturfelt, G. Risk factors for developing systemic lupus erythematosus: A case-control study in southern Sweden. Rheumatology 2002, 41, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Barbhaiya, M.; Lu, B.; Sparks, J.A.; Malspeis, S.; Chang, S.-C.; Karlson, E.W.; Costenbader, K.H. Influence of Alcohol Consumption on the Risk of Systemic Lupus Erythematosus Among Women in the Nurses’ Health Study Cohorts. Arthritis Care Res. 2017, 69, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Cozier, Y.C.; Barbhaiya, M.; Castro-Webb, N.; Conte, C.; Tedeschi, S.K.; Leatherwood, C.; Costenbader, K.H.; Rosenberg, L. Relationship of Cigarette Smoking and Alcohol Consumption to Incidence of Systemic Lupus Erythematosus in a Prospective Cohort Study of Black Women. Arthritis Care Res. 2019, 71, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kay, A.B.; Fletcher, J.; Formica, M.K.; McAlindon, T.E. Alcohol consumption is not protective for systemic lupus erythematosus. Ann. Rheum. Dis. 2009, 68, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Ghaussy, N.O.; Sibbitt, W.L.; Qualls, C.R. Cigarette smoking, alcohol consumption, and the risk of systemic lupus erythematosus: A case-control study. J. Rheumatol. 2001, 28, 2449–2453. [Google Scholar] [PubMed]
- Formica, M.K.; Palmer, J.R.; Rosenberg, L.; McAlindon, T.E. Smoking, alcohol consumption, and risk of systemic lupus erythematosus in the Black Women’s Health Study. J. Rheumatol. 2003, 30, 1222–1226. [Google Scholar]
- Rasouli, B.; Ahlbom, A.; Andersson, T.; Grill, V.; Midthjell, K.; Olsson, L.; Carlsson, S. Alcohol consumption is associated with reduced risk of Type 2 diabetes and autoimmune diabetes in adults: Results from the Nord-Trøndelag health study. Diabet. Med. 2013, 30, 56–64. [Google Scholar] [CrossRef]
- Rasouli, B.; Andersson, T.; Carlsson, P.-O.; Dorkhan, M.; Grill, V.; Groop, L.; Martinell, M.; Tuomi, T.; Carlsson, S. Alcohol and the risk for latent autoimmune diabetes in adults: Results based on Swedish ESTRID study. Eur. J. Endocrinol. 2014, 171, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, P.; Grønbæk, M.; Kjær, S.K.; Munk, C.; Linneberg, A.; Tolstrup, J.S. Alcohol consumption and the risk of self-reported perennial and seasonal allergic rhinitis in young adult women in a population-based cohort study. Clin. Exp. Allergy 2008, 38, 1179–1185. [Google Scholar] [CrossRef]
- Linneberg, A.; Hertzum, I.; Husemoen, L.L.N.; Johansen, N.; Jørgensen, T. Association between alcohol consumption and aeroallergen sensitization in Danish adults. Clin. Exp. Allergy 2006, 36, 714–721. [Google Scholar] [CrossRef]
- Thyssen, J.P.; Johansen, J.D.; Menné, T.; Nielsen, N.H.; Linneberg, A. Effect of tobacco smoking and alcohol consumption on the prevalence of nickel sensitization and contact sensitization. Acta Derm. Venereol. 2010, 90, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Nielsen, N.H.; Linneberg, A. The association between alcohol consumption and contact sensitization in Danish adults: The Glostrup Allergy Study. Br. J. Dermatol. 2007, 158, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Corpechot, C.; Chrétien, Y.; Chazouillères, O.; Poupon, R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J. Hepatol. 2010, 53, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-A.; Kim, Y.S.; Park, S.H.; Chung, W.J.; Choi, D.H.; Jang, E.S.; Jeong, S.-H. Environmental risk factors and comorbidities of primary biliary cholangitis in Korea: A case-control study. Korean J. Intern. Med. 2021, 36, 313–321. [Google Scholar] [CrossRef]
- French, J.A.; Gow, P.; Simpson-Yap, S.; Collins, K.; Ng, J.; Angus, P.W.; van der Mei, I.A.F. Alcohol intake is associated with a decreased risk of developing primary biliary cholangitis. World J. Hepatol. 2022, 14, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Barbería-Latasa, M.; Gea, A.; Martínez-González, M.A. Alcohol, Drinking Pattern, and Chronic Disease. Nutrients 2022, 14, 1954. [Google Scholar] [CrossRef] [PubMed]
- Le Daré, B.; Lagente, V.; Gicquel, T. Ethanol and its metabolites: Update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab. Rev. 2019, 51, 545–561. [Google Scholar] [CrossRef]
- Anaya, J.-M.; Restrepo-Jiménez, P.; Ramírez-Santana, C. The autoimmune ecology: An update. Curr. Opin. Rheumatol. 2018, 30, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Toyn, J.H.; Araki, H.; Sugino, A.; Johnston, L.H. The cell-cycle-regulated budding yeast gene DBF2, encoding a putative protein kinase, has a homologue that is not under cell-cycle control. Gene 1991, 104, 63–70. [Google Scholar] [CrossRef]
- Hillmer, A.T.; Nadim, H.; Devine, L.; Jatlow, P.; O’Malley, S.S. Acute alcohol consumption alters the peripheral cytokines IL-8 and TNF-α. Alcohol 2020, 85, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Pai, J.K.; Hankinson, S.E.; Thadhani, R.; Rifai, N.; Pischon, T.; Rimm, E.B. Moderate alcohol consumption and lower levels of inflammatory markers in US men and women. Atherosclerosis 2006, 186, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Waldschmidt, T.J.; Cook, R.T.; Kovacs, E.J. Alcohol and inflammation and immune responses: Summary of the 2006 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2008, 42, 137–142. [Google Scholar] [CrossRef]
- Starkenburg, S.; Munroe, M.E.; Waltenbaugh, C. Early alteration in leukocyte populations and Th1/Th2 function in ethanol-consuming mice. Alcohol. Clin. Exp. Res. 2001, 25, 1221–1230. [Google Scholar] [PubMed]
- Fiore, M.; Messina, M.P.; Petrella, C.; D’Angelo, A.; Greco, A.; Ralli, M.; Ferraguti, G.; Tarani, L.; Vitali, M.; Ceccanti, M. Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet. J. Funct. Foods 2020, 71, 104012. [Google Scholar] [CrossRef]
- Terracina, S.; Petrella, C.; Francati, S.; Lucarelli, M.; Barbato, C.; Minni, A.; Ralli, M.; Greco, A.; Tarani, L.; Fiore, M.; et al. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int. J. Mol. Sci. 2022, 23, 15674. [Google Scholar] [CrossRef]
- Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition 2017, 33, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M. Oxidative Stress in Alcohol Abuse: An Unfortunately Still Open Question. Antioxidants 2024, 13, 934. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Calabriso, N.; Massaro, M.; Pellegrino, M.; Storelli, C.; Martines, G.; De Caterina, R.; Carluccio, M.A. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: A potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch. Biochem. Biophys. 2012, 527, 81–89. [Google Scholar] [CrossRef]
- Sakata, Y.; Zhuang, H.; Kwansa, H.; Koehler, R.C.; Doré, S. Resveratrol protects against experimental stroke: Putative neuroprotective role of heme oxygenase 1. Exp. Neurol. 2010, 224, 325–329. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Garcia-Rivas, V.; Thomas, M.A.; Soares, A.R.; McKee, S.A.; Picciotto, M.R. Sex differences in stress-induced alcohol intake: A review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology 2022, 239, 2041–2061. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Xiang, C.; Cai, Q.; Wei, X.; He, J. Alcohol consumption as a preventive factor for developing rheumatoid arthritis: A dose-response meta-analysis of prospective studies. Ann. Rheum. Dis. 2014, 73, 1962–1967. [Google Scholar] [CrossRef] [PubMed]
- Bishehsari, F.; Magno, E.; Swanson, G.; Desai, V.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Alcohol and Gut-Derived Inflammation. Alcohol Res. 2017, 38, 163–171. [Google Scholar]
- Hyun, J.; Han, J.; Lee, C.; Yoon, M.; Jung, Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int. J. Mol. Sci. 2021, 22, 5717. [Google Scholar] [CrossRef] [PubMed]
- Engen, P.A.; Green, S.J.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. 2015, 37, 223–236. [Google Scholar] [PubMed]
- Caslin, B.; Mohler, K.; Thiagarajan, S.; Melamed, E. Alcohol as friend or foe in autoimmune diseases: A role for gut microbiome? Gut Microbes 2021, 13, 1916278. [Google Scholar] [CrossRef]
- Hoyt, L.R.; Randall, M.J.; Ather, J.L.; DePuccio, D.P.; Landry, C.C.; Qian, X.; Janssen-Heininger, Y.M.; van der Vliet, A.; Dixon, A.E.; Amiel, E.; et al. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biol. 2017, 12, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Nurmi, K.; Virkanen, J.; Rajamäki, K.; Niemi, K.; Kovanen, P.T.; Eklund, K.K. Ethanol inhibits activation of NLRP3 and AIM2 inflammasomes in human macrophages--a novel anti-inflammatory action of alcohol. PLoS ONE 2013, 8, e78537. [Google Scholar] [CrossRef] [PubMed]
- Keyel, P.A. How is inflammation initiated? Individual influences of IL-1, IL-18 and HMGB1. Cytokine 2014, 69, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Lippai, D.; Bala, S.; Petrasek, J.; Csak, T.; Levin, I.; Kurt-Jones, E.A.; Szabo, G. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J. Leukoc. Biol. 2013, 94, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, L.R.; Ather, J.L.; Randall, M.J.; DePuccio, D.P.; Landry, C.C.; Wewers, M.D.; Gavrilin, M.A.; Poynter, M.E. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation. J. Immunol. 2016, 197, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Le Daré, B.; Ferron, P.-J.; Gicquel, T. The Purinergic P2X7 Receptor-NLRP3 Inflammasome Pathway: A New Target in Alcoholic Liver Disease? Int. J. Mol. Sci. 2021, 22, 2139. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Tarani, L.; Ceccanti, M.; Vitali, M.; Francati, S.; Lucarelli, M.; Venditti, S.; Verdone, L.; Ferraguti, G.; Fiore, M. The Impact of Oxidative Stress on the Epigenetics of Fetal Alcohol Spectrum Disorders. Antioxidants 2024, 13, 410. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Ferraguti, G.; Tarani, L.; Messina, M.P.; Lucarelli, M.; Vitali, M.; De Persis, S.; Greco, A.; Minni, A.; Polimeni, A.; et al. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking. Findings from Humans and Animal Models. Curr. Neuropharmacol. 2021, 20, 1158–1173. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.H.; Fu, D.G. Autoimmune thyroid disease: Mechanism, genetics and current knowledge. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3611–3618. [Google Scholar]
- Hu, X.; Chen, Y.; Shen, Y.; Tian, R.; Sheng, Y.; Que, H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta-analysis. Front. Public Health 2022, 10, 1020709. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, P.; Aistleitner, A.; Oehrlein, M.; Trifina-Mikosch, E. Hashimoto’s thyroiditis and coexisting disorders in correlation with HLA status-an overview. Wien. Med. Wochenschr. 2023, 173, 41–53. [Google Scholar] [CrossRef]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.G.; Phillippi, J.C. Hypothyroidism: Diagnosis and Evidence-Based Treatment. J. Midwifery Womens. Health 2022, 67, 394–397. [Google Scholar] [CrossRef]
- Subekti, I.; Pramono, L.A. Current Diagnosis and Management of Graves’ Disease. Acta Med. Indones. 2018, 50, 177–182. [Google Scholar] [PubMed]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef] [PubMed]
- Corvilain, B.; Hamy, A.; Brunaud, L.; Borson-Chazot, F.; Orgiazzi, J.; Bensalem Hachmi, L.; Semrouni, M.; Rodien, P.; Lussey-Lepoutre, C. Treatment of adult Graves’ disease. Ann. Endocrinol. 2018, 79, 618–635. [Google Scholar] [CrossRef] [PubMed]
- Laurberg, P.; Andersen, S.; Pedersen, I.B.; Knudsen, N.; Carlé, A. Prevention of autoimmune hypothyroidism by modifying iodine intake and the use of tobacco and alcohol is manoeuvring between Scylla and Charybdis. Hormones 2013, 12, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.L.; Briggs, F.B.S.; Winnike, J.H.; Natanzon, Y.; Maichle, S.; Knagge, K.J.; Newby, L.K.; Gregory, S.G. Metabolome-based signature of disease pathology in MS. Mult. Scler. Relat. Disord. 2019, 31, 12–21. [Google Scholar] [CrossRef]
- Ward, M.; Goldman, M.D. Epidemiology and Pathophysiology of Multiple Sclerosis. Continuum 2022, 28, 988–1005. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Fiore, M.; Probert, L.; Turrini, P.; Tirassa, P. Overexpression of tumour necrosis factor alpha in the brain of transgenic mice differentially alters nerve growth factor levels and choline acetyltransferase activity. Cytokine 1999, 11, 45–54. [Google Scholar] [CrossRef]
- Sinha, S.; Boyden, A.W.; Itani, F.R.; Crawford, M.P.; Karandikar, N.J. CD8(+) T-Cells as Immune Regulators of Multiple Sclerosis. Front. Immunol. 2015, 6, 619. [Google Scholar] [CrossRef]
- Banwell, B.; Bennett, J.L.; Marignier, R.; Kim, H.J.; Brilot, F.; Flanagan, E.P.; Ramanathan, S.; Waters, P.; Tenembaum, S.; Graves, J.S.; et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet. Neurol. 2023, 22, 268–282. [Google Scholar] [CrossRef]
- Kira, J.-I.; Yamasaki, R.; Ogata, H. Anti-neurofascin autoantibody and demyelination. Neurochem. Int. 2019, 130, 104360. [Google Scholar] [CrossRef]
- Imamura, M.; Higuchi, O.; Maeda, Y.; Mukaino, A.; Ueda, M.; Matsuo, H.; Nakane, S. Anti-Kir4.1 Antibodies in Multiple Sclerosis: Specificity and Pathogenicity. Int. J. Mol. Sci. 2020, 21, 9632. [Google Scholar] [CrossRef] [PubMed]
- Jarius, S.; Aktas, O.; Ayzenberg, I.; Bellmann-Strobl, J.; Berthele, A.; Giglhuber, K.; Häußler, V.; Havla, J.; Hellwig, K.; Hümmert, M.W.; et al. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD)-revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J. Neurol. 2023, 270, 3341–3368. [Google Scholar] [CrossRef]
- Cabrera, C.M. Oligoclonal bands: An immunological and clinical approach. Adv. Clin. Chem. 2022, 109, 129–163. [Google Scholar] [CrossRef]
- Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 2011, 164, 1079–1106. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, M.; Zohora, F.T.; Ceylan, A.; Hossain, F.; Yazdani, R.; Azizi, G. Immunopathogenesis of multiple sclerosis: Molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol. Immunotoxicol. 2024, 46, 355–377. [Google Scholar] [CrossRef]
- Doshi, A.; Chataway, J. Multiple sclerosis, a treatable disease. Clin. Med. 2016, 16, s53–s59. [Google Scholar] [CrossRef] [PubMed]
- Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 2015, 28, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Li, R.; Yan, J.-W.; Wan, Y.-N.; Tao, J.-H.; Chen, B.; Huang, X.-L.; Yang, G.-J.; Wang, J.; Ye, D.-Q. The epidemiology of alcohol consumption and multiple sclerosis: A review. Neurol. Sci. 2015, 36, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Venetsanopoulou, A.I.; Alamanos, Y.; Voulgari, P.V.; Drosos, A.A. Epidemiology and Risk Factors for Rheumatoid Arthritis Development. Mediterr. J. Rheumatol. 2023, 34, 404–413. [Google Scholar] [CrossRef]
- Larid, G.; Pancarte, M.; Offer, G.; Clavel, C.; Martin, M.; Pradel, V.; Auger, I.; Lafforgue, P.; Roudier, J.; Serre, G.; et al. In Rheumatoid Arthritis Patients, HLA-DRB1*04:01 and Rheumatoid Nodules Are Associated With ACPA to a Particular Fibrin Epitope. Front. Immunol. 2021, 12, 692041. [Google Scholar] [CrossRef] [PubMed]
- Padyukov, L. Genetics of rheumatoid arthritis. Semin. Immunopathol. 2022, 44, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Wasserman, A.M. Diagnosis and management of rheumatoid arthritis. Am. Fam. Physician 2011, 84, 1245–1252. [Google Scholar] [PubMed]
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Mousavi, M.J.; Jamalzehi, S.; Alimohammadi, R.; Bezvan, M.H.; Mohammadi, H.; Aslani, S. Strategies toward rheumatoid arthritis therapy; the old and the new. J. Cell. Physiol. 2019, 234, 10018–10031. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.K. Comment on: Alcohol consumption is inversely associated with risk and severity of rheumatoid arthritis. Rheumatology 2011, 50, 423–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, B.; Peng, L.; Wang, J.; Xu, K.; Xu, P. The Causal Association between Alcohol, Smoking, Coffee Consumption, and the Risk of Arthritis: A Meta-Analysis of Mendelian Randomization Studies. Nutrients 2023, 15, 5009. [Google Scholar] [CrossRef]
- Imhof, A.; Woodward, M.; Doering, A.; Helbecque, N.; Loewel, H.; Amouyel, P.; Lowe, G.D.O.; Koenig, W. Overall alcohol intake, beer, wine, and systemic markers of inflammation in western Europe: Results from three MONICA samples (Augsburg, Glasgow, Lille). Eur. Heart J. 2004, 25, 2092–2100. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, J.; Zheng, Y.; Liu, X.; Xu, Y.; Fang, Y.; Lin, Z.; Lin, L.; Zhang, H.; Wang, Z. Alcoholic drink produced by pea is a risk factor for incident knee surgery in patients with knee osteoarthritis. Front. Nutr. 2023, 10, 1264338. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.-T.; Liang, X.-Z.; Luo, D.; Li, J.-C.; Yan, B.-Z.; Lu, B.-W.; Xu, B.; Li, G. Plasma lipids, alcohol intake frequency and risk of Osteoarthritis: A Mendelian randomization study. BMC Public Health 2023, 23, 1327. [Google Scholar] [CrossRef]
- Liu, T.; Xu, C.; Driban, J.B.; McAlindon, T.; Eaton, C.B.; Lu, B. Excessive alcohol consumption and the risk of knee osteoarthritis: A prospective study from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2022, 30, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E.; Melton, L.J.; O’Fallon, W.M.; Riggs, B.L. Risk factors for spinal osteoporosis in men. Am. J. Med. 1983, 75, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Diamond, T.; Stiel, D.; Lunzer, M.; Wilkinson, M.; Posen, S. Ethanol reduces bone formation and may cause osteoporosis. Am. J. Med. 1989, 86, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Lin, D.; Zhang, J.; Habib, P.; Smith, P.; Murtha, J.; Fu, Z.; Yao, Z.; Qi, Y.; Keller, E.T. Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. J. Clin. Investig. 2000, 106, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Sofat, N. Alcohol intake in rheumatic disease: Good or bad? Rheumatology 2002, 41, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Ng, N.; Parkinson, L.; Brown, W.J.; Moorin, R.; Peeters, G.M.E.E.G. Lifestyle behaviour changes associated with osteoarthritis: A prospective cohort study. Sci. Rep. 2024, 14, 6242. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, G.; Brennan, M.T. Systemic lupus erythematosus: Epidemiology, pathophysiology, manifestations, and management. Dent. Clin. N. Am. 2013, 57, 631–655. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhang, P.; Tong, Y. Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: A meta-analysis. Int. J. Rheum. Dis. 2015, 18, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, J.R. Systemic lupus erythematosus and genes within the HLA region. Br. J. Rheumatol. 1993, 32, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.K. Pathogenesis of systemic lupus erythematosus: Risks, mechanisms and therapeutic targets. Ann. Rheum. Dis. 2023, 82, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Tani, C.; Elefante, E.; Arnaud, L.; Barreira, S.C.; Bulina, I.; Cavagna, L.; Costedoat-Chalumeau, N.; Doria, A.; Fonseca, J.E.; Franceschini, F.; et al. Rare clinical manifestations in systemic lupus erythematosus: A review on frequency and clinical presentation. Clin. Exp. Rheumatol. 2022, 40 (Suppl. S1), 93–102. [Google Scholar] [CrossRef]
- Yu, H.; Nagafuchi, Y.; Fujio, K. Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus. Biomolecules 2021, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef]
- Aringer, M.; Petri, M. New classification criteria for systemic lupus erythematosus. Curr. Opin. Rheumatol. 2020, 32, 590–596. [Google Scholar] [CrossRef]
- Zucchi, D.; Silvagni, E.; Elefante, E.; Signorini, V.; Cardelli, C.; Trentin, F.; Schilirò, D.; Cascarano, G.; Valevich, A.; Bortoluzzi, A.; et al. Systemic lupus erythematosus: One year in review 2023. Clin. Exp. Rheumatol. 2023, 41, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Lazar, S.; Kahlenberg, J.M. Systemic Lupus Erythematosus: New Diagnostic and Therapeutic Approaches. Annu. Rev. Med. 2023, 74, 339–352. [Google Scholar] [CrossRef]
- Washio, M.; Horiuchi, T.; Kiyohara, C.; Kodama, H.; Tada, Y.; Asami, T.; Takahashi, H.; Kobashi, G.; Abe, T.; Tanaka, H.; et al. Smoking, drinking, sleeping habits, and other lifestyle factors and the risk of systemic lupus erythematosus in Japanese females: Findings from the KYSS study. Mod. Rheumatol. 2006, 16, 143–150. [Google Scholar] [CrossRef]
- Wang, J.; Pan, H.-F.; Ye, D.-Q.; Su, H.; Li, X.-P. Moderate alcohol drinking might be protective for systemic lupus erythematosus: A systematic review and meta-analysis. Clin. Rheumatol. 2008, 27, 1557–1563. [Google Scholar] [CrossRef]
- Cozier, Y.C.; Barbhaiya, M.; Castro-Webb, N.; Conte, C.; Tedeschi, S.; Leatherwood, C.; Costenbader, K.H.; Rosenberg, L. A prospective study of obesity and risk of systemic lupus erythematosus (SLE) among Black women. Semin. Arthritis Rheum. 2019, 48, 1030–1034. [Google Scholar] [CrossRef]
- Murr, C.; Widner, B.; Wirleitner, B.; Fuchs, D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 2002, 3, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Wirleitner, B.; Schroecksnadel, K.; Winkler, C.; Schennach, H.; Fuchs, D. Resveratrol suppresses interferon-gamma-induced biochemical pathways in human peripheral blood mononuclear cells in vitro. Immunol. Lett. 2005, 100, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; et al. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition 2020, 79–80, 110783. [Google Scholar] [CrossRef]
- Mathers, J.C.; Strathdee, G.; Relton, C.L. Induction of epigenetic alterations by dietary and other environmental factors. Adv. Genet. 2010, 71, 3–39. [Google Scholar] [CrossRef] [PubMed]
- Kiyohara, C.; Washio, M.; Horiuchi, T.; Asami, T.; Ide, S.; Atsumi, T.; Kobashi, G.; Takahashi, H.; Tada, Y.; Kyushu Sapporo SLE (KYSS) Study Group. Modifying effect of N-acetyltransferase 2 genotype on the association between systemic lupus erythematosus and consumption of alcohol and caffeine-rich beverages. Arthritis Care Res. 2014, 66, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liao, S.; Pang, W.; Guo, F.; Yang, L.; Liu, H.; Pan, Q. Life factors acting on systemic lupus erythematosus. Front. Immunol. 2022, 13, 986239. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Lee, S.-S.; Choe, J.-Y.; Park, S.-H.; Lee, H. Effect of alcohol consumption and smoking on disease damage in systemic lupus erythematosus: Data from the Korean Lupus Network (KORNET) registry. Lupus 2017, 26, 1540–1549. [Google Scholar] [CrossRef]
- Gillespie, K.M. Type 1 diabetes: Pathogenesis and prevention. CMAJ 2006, 175, 165–170. [Google Scholar] [CrossRef]
- Ilonen, J.; Lempainen, J.; Veijola, R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2019, 15, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Ghazy, A.A. Role of HLA-DPrs3077 and HLA-DQrs3920 Polymorphisms as Risk Factors for Type 1 Diabetes Mellitus. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.A. Fifty years of HLA-associated type 1 diabetes risk: History, current knowledge, and future directions. Front. Immunol. 2024, 15, 1457213. [Google Scholar] [CrossRef] [PubMed]
- Bluestone, J.A.; Herold, K.; Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010, 464, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int. J. Mol. Sci. 2023, 24, 10012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Huang, J.; Hu, J. Improved diagnosis of type-1 diabetes mellitus using multiplexed autoantibodies ELISA array. Anal. Biochem. 2022, 649, 114722. [Google Scholar] [CrossRef]
- Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Prim. 2017, 3, 17016. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, R.; Zou, H.; Xie, L.; Zhou, Z.; Xiao, Y. Latent Autoimmune Diabetes in Adults (LADA): From Immunopathogenesis to Immunotherapy. Front. Endocrinol. 2022, 13, 917169. [Google Scholar] [CrossRef]
- Akil, A.A.-S.; Yassin, E.; Al-Maraghi, A.; Aliyev, E.; Al-Malki, K.; Fakhro, K.A. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J. Transl. Med. 2021, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- Chellappan, D.K.; Sivam, N.S.; Teoh, K.X.; Leong, W.P.; Fui, T.Z.; Chooi, K.; Khoo, N.; Yi, F.J.; Chellian, J.; Cheng, L.L.; et al. Gene therapy and type 1 diabetes mellitus. Biomed. Pharmacother. 2018, 108, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Kerr, W.C.; Williams, E.; Li, L.; Lui, C.K.; Ye, Y.; Greenfield, T.K.; Lown, E.A. Alcohol use patterns and risk of diabetes onset in the 1979 National Longitudinal Survey of Youth Cohort. Prev. Med. 2018, 109, 22–27. [Google Scholar] [CrossRef]
- Joosten, M.M.; Beulens, J.W.J.; Kersten, S.; Hendriks, H.F.J. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: A randomised, crossover trial. Diabetologia 2008, 51, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S. Lifestyle or Environmental Influences and Their Interaction With Genetic Susceptibility on the Risk of LADA. Front. Endocrinol. 2022, 13, 917850. [Google Scholar] [CrossRef]
- Herzog, K.; Ahlqvist, E.; Alfredsson, L.; Groop, L.; Hjort, R.; Löfvenborg, J.E.; Tuomi, T.; Carlsson, S. Combined lifestyle factors and the risk of LADA and type 2 diabetes—Results from a Swedish population-based case-control study. Diabetes Res. Clin. Pract. 2021, 174, 108760. [Google Scholar] [CrossRef]
- Czech, E.J.; Overholser, A.; Schultz, P. Allergic Rhinitis. Med. Clin. N. Am. 2024, 108, 609–628. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, X.; Li, J.; Deng, X.; Dai, T.; Ji, Q.; Xiong, D.; Xie, H. Environmental Risk Factors, Protective Factors, and Biomarkers for Allergic Rhinitis: A Systematic Umbrella Review of the Evidence. Clin. Rev. Allergy Immunol. 2023, 65, 188–205. [Google Scholar] [CrossRef]
- Czech, E.J.; Overholser, A.; Schultz, P. Allergic Rhinitis. Prim. Care: Clin. Office Pract. 2023, 50, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.A.; Walker, A.; Pirwani, M.M.; Tahiri, M.; Syed, I. Allergic rhinitis: Diagnosis and management. Br. J. Hosp. Med. 2022, 83, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.K.; Lin, S.Y.; Toskala, E.; Orlandi, R.R.; Akdis, C.A.; Alt, J.A.; Azar, A.; Baroody, F.M.; Bachert, C.; Canonica, G.W.; et al. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int. Forum Allergy Rhinol. 2018, 8, 108–352. [Google Scholar] [CrossRef] [PubMed]
- Passalacqua, G.; Canonica, G.W.; Bagnasco, D. Benefit of SLIT and SCIT for Allergic Rhinitis and Asthma. Curr. Allergy Asthma Rep. 2016, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Quintela, A.; Vidal, C.; Gude, F. Alcohol, IgE and allergy. Addict. Biol. 2004, 9, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Skaaby, T.; Kilpeläinen, T.O.; Taylor, A.E.; Mahendran, Y.; Wong, A.; Ahluwalia, T.S.; Paternoster, L.; Trompet, S.; Stott, D.J.; Flexeder, C.; et al. Association of alcohol consumption with allergic disease and asthma: A multi-centre Mendelian randomization analysis. Addiction 2019, 114, 216–225. [Google Scholar] [CrossRef]
- Selmi, C.; Bowlus, C.L.; Gershwin, M.E.; Coppel, R.L. Primary biliary cirrhosis. Lancet 2011, 377, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Houri, I.; Hirschfield, G.M. Primary Biliary Cholangitis: Pathophysiology. Clin. Liver Dis. 2024, 28, 79–92. [Google Scholar] [CrossRef]
- Tanaka, A. Current understanding of primary biliary cholangitis. Clin. Mol. Hepatol. 2021, 27, 1–21. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. Electronic address: [email protected]; European Association for the Study of the Liver EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 2017, 67, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Gulamhusein, A.F.; Hirschfield, G.M. Pathophysiology of primary biliary cholangitis. Best Pract. Res. Clin. Gastroenterol. 2018, 34–35, 17–25. [Google Scholar] [CrossRef]
- Kim, K.-A.; Jeong, S.-H. The diagnosis and treatment of primary biliary cirrhosis. Korean J. Hepatol. 2011, 17, 173–179. [Google Scholar] [CrossRef]
- Takada, K.; Suzuki, K.; Matsumoto, M.; Okada, M.; Nakanishi, T.; Horikoshi, H.; Higuchi, T.; Ohsuzu, F. Clinical characteristics of patients with both anti-U1RNP and anti-centromere antibodies. Scand. J. Rheumatol. 2008, 37, 360–364. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Ran, Y.; Li, L.; Wang, B.; Zhou, L. Anti-gp210-positive primary biliary cholangitis: The dilemma of clinical treatment and emerging mechanisms. Ann. Hepatol. 2023, 28, 101121. [Google Scholar] [CrossRef]
- Tan, D.; Goodman, Z.D. Liver Biopsy in Primary Biliary Cholangitis. Clin. Liver Dis. 2018, 22, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Trivella, J.; John, B.V.; Levy, C. Primary biliary cholangitis: Epidemiology, prognosis, and treatment. Hepatol. Commun. 2023, 7, e0179. [Google Scholar] [CrossRef] [PubMed]
- Gershwin, E.M.; Selmi, C.; Worman, H.J.; Gold, E.B.; Watnik, M.; Utts, J.; Lindor, K.D.; Kaplan, M.M.; Vierling, J.M. Risk Factors and Comorbidities in Primary Biliary Cirrhosis: A Controlled Interview-Based Study of 1032 Patients. Hepatology 2005, 42, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.I.; Ducker, S.J.; James, O.F.W. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut 2010, 59, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, B.; Franco, D.; Paci, L.; Charra, M.; Martin, B.; Vuitton, D.; Fries, D. Deficient natural killer cell activity in alcoholic cirrhosis. Clin. Exp. Immunol. 1984, 58, 107–115. [Google Scholar]
- Domínguez-Santalla, M.J.; Vidal, C.; Viñuela, J.; Pérez, L.F.; González-Quintela, A. Increased serum IgE in alcoholics: Relationship with Th1/Th2 cytokine production by stimulated blood mononuclear cells. Alcohol. Clin. Exp. Res. 2001, 25, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wu, Z.; Feng, F.; Li, Y.; Zhang, S. Low vitamin D concentrations and BMI are causal factors for primary biliary cholangitis: A mendelian randomization study. Front. Immunol. 2022, 13, 1055953. [Google Scholar] [CrossRef] [PubMed]
- Ngu, J.H.; Gearry, R.B.; Frampton, C.M.; Stedman, C.A.M. Autoimmune hepatitis: The role of environmental risk factors: A population-based study. Hepatol. Int. 2013, 7, 869–875. [Google Scholar] [CrossRef]
- Kesteloot, H. Alcohol intake and markers of inflammation. Eur. Heart J. 2004, 25, 2075–2076. [Google Scholar] [CrossRef]
- de Pablos, R.M.; Espinosa-Oliva, A.M.; Hornedo-Ortega, R.; Cano, M.; Arguelles, S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol. Res. 2019, 143, 58–72. [Google Scholar] [CrossRef]
- Rolland, B.; de Chazeron, I.; Carpentier, F.; Moustafa, F.; Viallon, A.; Jacob, X.; Lesage, P.; Ragonnet, D.; Genty, A.; Geneste, J.; et al. Comparison between the WHO and NIAAA criteria for binge drinking on drinking features and alcohol-related aftermaths: Results from a cross-sectional study among eight emergency wards in France. Drug Alcohol Depend. 2017, 175, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.M.; Kawasawa, Y.I.; Basha, A.; Mohammad, S.; Ito, M.; Hashimoto-Torii, K. Fatty acid metabolism changes in association with neurobehavioral deficits in animal models of fetal alcohol spectrum disorders. Commun. Biol. 2023, 6, 736. [Google Scholar] [CrossRef]
- Nayak, R.R.; Orellana, D.A. The impact of the human gut microbiome on the treatment of autoimmune disease. Immunol. Rev. 2024, 325, 107–130. [Google Scholar] [CrossRef]
- Abbey, J.; Fields, B.; O’Mullane, M.; Tomaska, L.D. Food Additives: Colorants. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; pp. 459–465. [Google Scholar]
- Testino, G.; Leone, S.; Fagoonee, S.; Pellicano, R. Alcoholic liver fibrosis: Detection and treatment. Minerva Med. 2018, 109, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Ceci, F.M.; Ceccanti, M.; Petrella, C.; Vitali, M.; Messina, M.P.; Chaldakov, G.N.; Greco, A.; Ralli, M.; Lucarelli, M.; Angeloni, A.; et al. Alcohol Drinking, Apolipoprotein Polymorphisms and the Risk of Cardiovascular Diseases. Curr. Neurovasc. Res. 2021, 18, 150–161. [Google Scholar] [CrossRef]
- Rodríguez-Molinero, J.; Migueláñez-Medrán, B.D.C.; Puente-Gutiérrez, C.; Delgado-Somolinos, E.; Carreras-Presas, C.M.; Fernández-Farhall, J.; López-Sánchez, A.F. Association between oral cancer and diet: An update. Nutrients 2021, 13, 1299. [Google Scholar] [CrossRef]
- Carrino, D.; Branca, J.J.V.; Becatti, M.; Paternostro, F.; Morucci, G.; Gulisano, M.; Mannelli, L.D.C.; Pacini, A. Alcohol-induced blood-brain barrier impairment: An in vitro study. Int. J. Environ. Res. Public Health 2021, 18, 2683. [Google Scholar] [CrossRef]
- Carvalho, L.; Lasek, A.W. It is not just about transcription: Involvement of brain RNA splicing in substance use disorders. J. Neural Transm. 2024, 131, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Kanda, J.; Matsuo, K.; Suzuki, T.; Kawase, T.; Hiraki, A.; Watanabe, M.; Mizuno, N.; Sawaki, A.; Yamao, K.; Tajima, K.; et al. Impact of alcohol consumption with polymorphisms in alcohol-metabolizing enzymes on pancreatic cancer risk in Japanese. Cancer Sci. 2009, 100, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Wu, D.C.; Wu, I.C.; Goan, Y.G.; Lee, J.M.; Chou, S.H.; Chan, T.F.; Huang, H.L.; Hung, Y.H.; Huang, M.C.; et al. Genetic modulation of ADH1B and ALDH2 polymorphisms with regard to alcohol and tobacco consumption for younger aged esophageal squamous cell carcinoma diagnosis. Int. J. Cancer 2009, 125, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Karoly, H.C.; Skrzynski, C.J.; Moe, E.N.; Bryan, A.D.; Hutchison, K.E. Exploring relationships between alcohol consumption, inflammation, and brain structure in a heavy drinking sample. Alcohol. Clin. Exp. Res. 2021, 45, 2256–2270. [Google Scholar] [CrossRef]
- Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian Guidelines for the treatment of alcohol dependence. Riv. Psichiatr. 2018, 53, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Witkiewitz, K.; Hallgren, K.A.; Kranzler, H.R.; Mann, K.F.; Hasin, D.S.; Falk, D.E.; Litten, R.Z.; O’Malley, S.S.; Anton, R.F. Clinical Validation of Reduced Alcohol Consumption After Treatment for Alcohol Dependence Using the World Health Organization Risk Drinking Levels. Alcohol. Clin. Exp. Res. 2017, 41, 179–186. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terracina, S.; Caronti, B.; Lucarelli, M.; Francati, S.; Piccioni, M.G.; Tarani, L.; Ceccanti, M.; Caserta, M.; Verdone, L.; Venditti, S.; et al. Alcohol Consumption and Autoimmune Diseases. Int. J. Mol. Sci. 2025, 26, 845. https://doi.org/10.3390/ijms26020845
Terracina S, Caronti B, Lucarelli M, Francati S, Piccioni MG, Tarani L, Ceccanti M, Caserta M, Verdone L, Venditti S, et al. Alcohol Consumption and Autoimmune Diseases. International Journal of Molecular Sciences. 2025; 26(2):845. https://doi.org/10.3390/ijms26020845
Chicago/Turabian StyleTerracina, Sergio, Brunella Caronti, Marco Lucarelli, Silvia Francati, Maria Grazia Piccioni, Luigi Tarani, Mauro Ceccanti, Micaela Caserta, Loredana Verdone, Sabrina Venditti, and et al. 2025. "Alcohol Consumption and Autoimmune Diseases" International Journal of Molecular Sciences 26, no. 2: 845. https://doi.org/10.3390/ijms26020845
APA StyleTerracina, S., Caronti, B., Lucarelli, M., Francati, S., Piccioni, M. G., Tarani, L., Ceccanti, M., Caserta, M., Verdone, L., Venditti, S., Fiore, M., & Ferraguti, G. (2025). Alcohol Consumption and Autoimmune Diseases. International Journal of Molecular Sciences, 26(2), 845. https://doi.org/10.3390/ijms26020845