Lovastatin and Resveratrol Synergistically Improve Wound Healing and Inhibit Bacterial Growth
Abstract
:1. Introduction
2. Results
2.1. Cell Viability for Individual Drugs
2.2. Cell Viability for Lov/Res Combinations
2.3. Cell Morphology
2.4. Scratch Wound-Healing Assay
2.5. Transwell Migration Assay
2.6. Real-Time Quantitative Polymerase Chain Reaction (qPCR) of Wound-Healing-Related Genes
2.7. Combined Drugs Molecular Docking Studies
2.8. S. Aureus Growth Inhibition
2.9. P. Aeruginosa Growth Inhibition
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Drugs Preparation
4.3. Cell Viability
4.4. Cell Morphology
4.5. Scratch Wound-Healing Assay
4.6. Transwell Migration Assay
4.7. Real-Time Quantitative Polymerase Chain Reaction (qPCR) of Wound-Healing-Related Markers
4.8. In Silico Molecular Docking Prediction of Combined Drugs
4.9. Bacterial Strains and Culture
4.10. Broth Microdilution Test for Bacterial Growth Inhibition
4.11. Checkerboard Assay
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef]
- Agyare, C.; Akindele, A.J.; Steenkamp, V. Natural Products and/or Isolated Compounds on Wound Healing. Evid.-Based Complement. Altern. Med. 2019, 2019, e4594965. [Google Scholar] [CrossRef] [PubMed]
- Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound Healing Phases. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in Wound Repair: Molecular and Cellular Mechanisms. J. Invest. Dermatol. 2007, 127, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Trinh, X.-T.; Long, N.-V.; Van Anh, L.T.; Nga, P.T.; Giang, N.N.; Chien, P.N.; Nam, S.-Y.; Heo, C.-Y. A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int. J. Mol. Sci. 2022, 23, 9573. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, S.R.; Carter, M.J.; Fife, C.E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health 2018, 21, 27–32. [Google Scholar] [CrossRef]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care 2019, 8, 39–48. [Google Scholar] [CrossRef]
- Zabaglo, M.; Sharman, T. Postoperative Wound Infection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Deng, X.; Gould, M.; Ali, M.A. A Review of Current Advancements for Wound Healing: Biomaterial Applications and Medical Devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 2542–2573. [Google Scholar] [CrossRef] [PubMed]
- Avishai, E.; Yeghiazaryan, K.; Golubnitschaja, O. Impaired Wound Healing: Facts and Hypotheses for Multi-Professional Considerations in Predictive, Preventive and Personalised Medicine. EPMA J. 2017, 8, 23–33. [Google Scholar] [CrossRef]
- Scalise, A.; Bianchi, A.; Tartaglione, C.; Bolletta, E.; Pierangeli, M.; Torresetti, M.; Marazzi, M.; Di Benedetto, G. Microenvironment and Microbiology of Skin Wounds: The Role of Bacterial Biofilms and Related Factors. Semin. Vasc. Surg. 2015, 28, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Shevelev, A.B.; La Porta, N.; Isakova, E.P.; Martens, S.; Biryukova, Y.K.; Belous, A.S.; Sivokhin, D.A.; Trubnikova, E.V.; Zylkova, M.V.; Belyakova, A.V.; et al. In Vivo Antimicrobial and Wound-Healing Activity of Resveratrol, Dihydroquercetin, and Dihydromyricetin against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Pathogens 2020, 9, 296. [Google Scholar] [CrossRef]
- Hecker, A.; Schellnegger, M.; Hofmann, E.; Luze, H.; Nischwitz, S.P.; Kamolz, L.; Kotzbeck, P. The Impact of Resveratrol on Skin Wound Healing, Scarring, and Aging. Int. Wound J. 2021, 19, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.H. Advances in Regenerative Orthopedics. Mayo Clin. Proc. 2013, 88, 1323–1339. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Sun, S.; Fu, W.; Yang, Z.; Yao, H.; Zhang, Z. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines 2024, 12, 743. [Google Scholar] [CrossRef] [PubMed]
- Guillamat-Prats, R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021, 10, 1729. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.; Wu, Y.; Song, G.; Azizi, R.; Zamani, A. The Application of Mesenchymal Stromal Cells (MSCs) and Their Derivative Exosome in Skin Wound Healing: A Comprehensive Review. Stem Cell Res. Ther. 2022, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Sirtori, C.R. The Pharmacology of Statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Roca-Millan, E.; González-Navarro, B.; Izquierdo-Gómez, K.; Marí-Roig, A.; Jané-Salas, E.; López-López, J.; Velasco-Ortega, E. The Application of Statins in the Regeneration of Bone Defects. Syst. Rev. Meta-Analysis. Mater. 2019, 12, 2992. [Google Scholar] [CrossRef]
- Murphy, C.; Deplazes, E.; Cranfield, C.G.; Garcia, A. The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. Int. J. Mol. Sci. 2020, 21, 8745. [Google Scholar] [CrossRef] [PubMed]
- Alberts, A.W. Lovastatin and Simvastatin--Inhibitors of HMG CoA Reductase and Cholesterol Biosynthesis. Cardiology 1990, 77 (Suppl. S4), 14–21. [Google Scholar] [CrossRef] [PubMed]
- Laurencin, C.T.; Ashe, K.M.; Henry, N.; Kan, H.M.; Lo, K.W.-H. Delivery of Small Molecules for Bone Regenerative Engineering: Preclinical Studies and Potential Clinical Applications. Drug Discov. Today 2014, 19, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Farsaei, S.; Khalili, H.; Farboud, E.S. Potential Role of Statins on Wound Healing: Review of the Literature. Int. Wound J. 2011, 9, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.H.; Thaung Zaw, J.J.; Xian, C.J.; Howe, P.R. Regular Supplementation With Resveratrol Improves Bone Mineral Density in Postmenopausal Women: A Randomized, Placebo-Controlled Trial. J. Bone Miner. Res. 2020, 35, 2121–2131. [Google Scholar] [CrossRef]
- Zhao, C.-C.; Zhu, L.; Wu, Z.; Yang, R.; Xu, N.; Liang, L. Resveratrol-Loaded Peptide-Hydrogels Inhibit Scar Formation in Wound Healing through Suppressing Inflammation. Regen. Biomater. 2020, 7, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Yadava, S.K.; Naik, J.B.; Patil, J.S.; Mokale, V.J.; Singh, R. Enhanced Solubility and Bioavailability of Lovastatin Using Stabilized Form of Self-Emulsifying Drug Delivery System. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 63–71. [Google Scholar] [CrossRef]
- Riccitiello, F.; De Luise, A.; Conte, R.; D’Aniello, S.; Vittoria, V.; Di Salle, A.; Calarco, A.; Peluso, G. Effect of Resveratrol Release Kinetic from Electrospun Nanofibers on Osteoblast and Osteoclast Differentiation. Eur. Polym. J. 2018, 99, 289–297. [Google Scholar] [CrossRef]
- Penumathsa, S.V.; Thirunavukkarasu, M.; Koneru, S.; Juhasz, B.; Zhan, L.; Pant, R.; Menon, V.P.; Otani, H.; Maulik, N. Statin and Resveratrol in Combination Induces Cardioprotection against Myocardial Infarction in Hypercholesterolemic Rat. J. Mol. Cell Cardiol. 2007, 42, 508–516. [Google Scholar] [CrossRef]
- Attalah nee Rezkallah, C.; Thongkum, A.; Zhu, C.; Chen, Q.M. Resveratrol for Protection against Statin Toxicity in C2C12 and H9c2 Cells. J. Biochem. Mol. Toxicol. 2020, 34, e22484. [Google Scholar] [CrossRef] [PubMed]
- Soner, B.C.; Şahin, A.S. Cardiovascular Effects of Resveratrol and Atorvastatin Treatments in an H2O2-Induced Stress Model. Exp. Ther. Med. 2014, 8, 1660–1664. [Google Scholar] [CrossRef] [PubMed]
- Maksimova, E.; Yie, T.-A.; Rom, W.N. In Vitro Mechanisms of Lovastatin on Lung Cancer Cell Lines as a Potential Chemopreventive Agent. Lung 2008, 186, 45–54. [Google Scholar] [CrossRef]
- Martirosyan, A.; Clendening, J.W.; Goard, C.A.; Penn, L.Z. Lovastatin Induces Apoptosis of Ovarian Cancer Cells and Synergizes with Doxorubicin: Potential Therapeutic Relevance. BMC Cancer 2010, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, Q.; Kao, C.; Wang, G.-J.; Balian, G. Lovastatin Inhibits Adipogenic and Stimulates Osteogenic Differentiation by Suppressing PPARγ2 and Increasing Cbfa1/Runx2 Expression in Bone Marrow Mesenchymal Cell Cultures. Bone 2003, 33, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Szende, B.; Tyihak, E.; Kiraly-Veghely, Z. Dose-Dependent Effect of Resveratrol on Proliferation and Apoptosis in Endothelial and Tumor Cell Cultures. Exp. Mol. Med. 2000, 32, 88–92. [Google Scholar] [CrossRef]
- Zhou, T.; Yan, Y.; Zhao, C.; Xu, Y.; Wang, Q.; Xu, N. Resveratrol Improves Osteogenic Differentiation of Senescent Bone Mesenchymal Stem Cells through Inhibiting Endogenous Reactive Oxygen Species Production via AMPK Activation. Redox Rep. 2019, 24, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Haeri, M.R.; White, K.; Qharebeglou, M.; Ansar, M.M. Cholesterol Suppresses Antimicrobial Effect of Statins. Iran. J. Basic Med. Sci. 2015, 18, 1253. [Google Scholar] [PubMed]
- Alibi, S.; Crespo, D.; Navas, J. Plant-Derivatives Small Molecules with Antibacterial Activity. Antibiotics 2021, 10, 231. [Google Scholar] [CrossRef]
- Hennessy, E.; Adams, C.; Reen, F.J.; O’Gara, F. Is There Potential Repurposing Statins Novel Antimicrobials? Antimicrob. Agents Chemother. 2016, 60, 5111–5121. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Ingmer, H. Antibacterial and Antifungal Properties of Resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S. Chapter 6—Molecular Docking: A Structure-Based Approach for Drug Repurposing. In In Silico Drug Design; Roy, K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 161–189. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Noshad, M.; Falah, F.; Zargari, F.; Nikfarjam, Z.; Vasiee, A. Synergistic Activity of Satureja intermedia and Ducrosia anethifolia Essential Oils and Their Interaction against Foodborne Pathogens: A Multi-Ligand Molecular Docking Simulation. LWT 2024, 205, 116487. [Google Scholar] [CrossRef]
- Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front. Chem. 2020, 8, 343. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Wang, W.; Aldahdooh, J.; Malyutina, A.; Shadbahr, T.; Tanoli, Z.; Pessia, A.; Tang, J. SynergyFinder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets. Genom. Proteom. Bioinform. 2022, 20, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Egusa, H.; Saeki, M.; Doi, M.; Fukuyasu, S.; Matsumoto, T.; Kamisaki, Y.; Yatani, H. A Small-Molecule Approach to Bone Regenerative Medicine in Dentistry. J. Oral Biosci. 2010, 52, 107–118. [Google Scholar] [CrossRef]
- Mitchell, J.; Lo, K.W.H. Small Molecule-Mediated Regenerative Engineering for Craniofacial and Dentoalveolar Bone. Front. Bioeng. Biotechnol. 2022, 10, 1003936. [Google Scholar] [CrossRef] [PubMed]
- Southey, M.W.Y.; Brunavs, M. Introduction to Small Molecule Drug Discovery and Preclinical Development. Front. Drug Discov. 2023, 3, 1314077. [Google Scholar] [CrossRef]
- Safari, B.; Aghanejad, A.; Roshangar, L.; Davaran, S. Osteogenic Effects of the Bioactive Small Molecules and Minerals in the Scaffold-Based Bone Tissue Engineering. Colloids Surf. B Biointerfaces 2021, 198, 111462. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-B.; Tae, J.-Y.; Ko, Y.; Park, J.-B. Lovastatin Increases the Proliferation and Osteoblastic Differentiation of Human Gingiva-Derived Stem Cells in Three-Dimensional Cultures. Exp. Ther. Med. 2019, 18, 3425–3430. [Google Scholar] [CrossRef] [PubMed]
- de Lara Janz, F.; Favero, G.M.; Bohatch, M.S.; Aguiar Debes, A.; Bydlowski, S.P. Simvastatin Induces Osteogenic Differentiation in Human Amniotic Fluid Mesenchymal Stem Cells (AFMSC). Fundam. Clin. Pharmacol. 2014, 28, 211–216. [Google Scholar] [CrossRef]
- Kupcsik, L.; Meurya, T.; Flury, M.; Stoddart, M.; Alini, M. Statin-Induced Calcification in Human Mesenchymal Stem Cells Is Cell Death Related. J. Cell. Mol. Med. 2009, 13, 4465–4473. [Google Scholar] [CrossRef]
- Martínez-Botas, J.; Ferruelo, A.J.; Suárez, Y.; Fernández, C.; Gómez-Coronado, D.; Lasunción, M.A. Dose-Dependent Effects of Lovastatin on Cell Cycle Progression. Distinct Requirement of Cholesterol and Non-Sterol Mevalonate Derivatives. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2001, 1532, 185–194. [Google Scholar] [CrossRef]
- Peltz, L.; Gomez, J.; Marquez, M.; Alencastro, F.; Atashpanjeh, N.; Quang, T.; Bach, T.; Zhao, Y. Resveratrol Exerts Dosage and Duration Dependent Effect on Human Mesenchymal Stem Cell Development. PLoS ONE 2012, 7, e37162. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Y.; Xia, J.; Liu, B.; Zhang, Q.; Liu, J.; Luo, L.; Peng, Z.; Song, Z.; Zhu, R. Resveratrol Induces Cell Cycle Arrest via a P53-Independent Pathway in A549 Cells. Mol. Med. Rep. 2015, 11, 2459–2464. [Google Scholar] [CrossRef]
- Ribeiro, E.; Vale, N. The Role of Resveratrol in Cancer Management: From Monotherapy to Combination Regimens. Targets 2024, 2, 307–326. [Google Scholar] [CrossRef]
- Kolahdouz-Mohammadi, R.; Delbandi, A.-A.; Khodaverdi, S.; Arefi, S.; Arablou, T.; Shidfar, F. The Effects of Resveratrol Treatment on Bcl-2 and Bax Gene Expression in Endometriotic Compared with Non-Endometriotic Stromal Cells. Iran. J. Public Health 2020, 49, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, Y.; Fard, J.K.; Ghafoor, D.; Eid, A.H.; Sahebkar, A. Paradoxical Effects of Statins on Endothelial and Cancer Cells: The Impact of Concentrations. Cancer Cell Int. 2023, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Ratajczak, M.Z.; Suszynska, M.; Kucia, M. Does It Make Sense to Target One Tumor Cell Chemotactic Factor or Its Receptor When Several Chemotactic Axes Are In-volved in Metastasis of the Same Cancer? Clin. Transl. Med. 2016, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Ramhormozi, P.; Ansari, J.M.; Simorgh, S.; Asgari, H.R.; Najafi, M.; Barati, M.; Babakhani, A.; Nobakht, M. Simvastatin Accelerates the Healing Process of Burn Wound in Wistar Rats through Akt/mTOR Signaling Pathway. Ann. Anat.—Anat. Anz. 2021, 236, 151652. [Google Scholar] [CrossRef]
- Gilbert, R.W.D.; Vickaryous, M.K.; Viloria-Petit, A.M. Signalling by Transforming Growth Factor Beta Isoforms in Wound Healing and Tissue Regeneration. J. Dev. Biol. 2016, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Q.; Shi, J.; Xu, X.; Xu, J. The Role of TNF-α in the Fate Regulation and Functional Reprogramming of Mesenchymal Stem Cells in an Inflammatory Microenvironment. Front. Immunol. 2023, 14, 1074863. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.Z.; Stevenson, A.W.; Prêle, C.M.; Fear, M.W.; Wood, F.M. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing. Biomedicines 2020, 8, 101. [Google Scholar] [CrossRef]
- Zhou, X.; Ruan, Q.; Ye, Z.; Chu, Z.; Xi, M.; Li, M.; Hu, W.; Guo, X.; Yao, P.; Xie, W. Resveratrol Accelerates Wound Healing by Attenuating Oxidative Stress-Induced Impairment of Cell Proliferation and Migration. Burns 2021, 47, 133–139. [Google Scholar] [CrossRef]
- Al Haq, A.T.; Tseng, H.-Y.; Chen, L.-M.; Wang, C.-C.; Hsu, H.-L. Targeting Prooxidant MnSOD Effect Inhibits Triple-Negative Breast Cancer (TNBC) Progression and M2 Macrophage Functions under the Oncogenic Stress. Cell Death Dis. 2022, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Ding, J.; Tang, Z. Resveratrol Inhibits Proliferation and Induces Apoptosis of Pathological Scar Fibroblasts Through the Mechanism Involving TGF-Β1/Smads Signaling Pathway. Cell Biochem. Biophys. 2015, 71, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Bashir, M.A.; Shao, C.; Wang, H.; Zhu, J.; Huang, Q. Astaxanthin Targets IL-6 and Alleviates the LPS-Induced Adverse Inflammatory Response of Macrophages. Food Funct. 2024, 15, 4207–4222. [Google Scholar] [CrossRef]
- Lawal, B.; Lee, C.-Y.; Mokgautsi, N.; Sumitra, M.R.; Khedkar, H.; Wu, A.T.H.; Huang, H.-S. mTOR/EGFR/iNOS/MAP2K1/FGFR/TGFB1 Are Druggable Candidates for N-(2,4-Difluorophenyl)-2′,4′-Difluoro-4-Hydroxybiphenyl-3-Carboxamide (NSC765598), With Consequent Anticancer Implications. Front. Oncol. 2021, 11, 656738. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Gupta, C.; Yennamalli, R.M.; Sharma, S.; Roy, S.; Hasan, S.; Gupta, P.; Sharma, V.K.; Kashyap, S.; Kumar, S.; et al. Author Correction: Novel Peptide Inhibitor of Human Tumor Necrosis Factor-α Has Antiarthritic Activity. Sci. Rep. 2024, 14, 14306. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Schell, D.; Thurlkill, R.L.; Imura, S.; Scholtz, J.M.; Gajiwala, K.; et al. Contribution of Hydrogen Bonds to Protein Stability. Protein Sci. 2014, 23, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Hennessey, E.; Mooij, M.; Legendre, C.; Reen, F.; O’Callaghan, J.; Adams, C.; O’Gara, F. Statins Inhibit in Vitro Virulence Phenotypes of Pseudomonas aeruginosa. J. Antibiot. 2013, 66, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Zakova, T.; Rondevaldova, J.; Bernardos, A.; Landa, P.; Kokoska, L. The Relationship between Structure and in Vitro Antistaphylococcal Effect of Plant-Derived Stilbenes. Acta Microbiol. Immunol. Hung. 2018, 65, 467–476. [Google Scholar] [CrossRef]
- Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug Pump Inhibitors Uncover Remarkable Activity of Plant Antimicrobials. Antimicrob. Agents Chemother. 2002, 46, 3133–3141. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Thej, C.; Venugopal, P.; Priya, N.; Zakaria, Z.; SundarRaj, S.; Majumdar, A.S. Higher Propensity of Wharton’s Jelly Derived Mesenchymal Stromal Cells towards Neuronal Lineage in Comparison to Those Derived from Adipose and Bone Marrow. Cell Biol. Int. 2013, 37, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Niazy, A.A.; Lambarte, R.N.A.; Sumague, T.S.; Vigilla, M.G.B.; Bin Shwish, N.M.; Kamalan, R.; Daeab, E.K.; Aljehani, N.M. FTY720 Reduces the Biomass of Biofilms in Pseudomonas aeruginosa in a Dose-Dependent Manner. Antibiotics 2024, 13, 621. [Google Scholar] [CrossRef] [PubMed]
- Alswieleh, A.M.; Alshahrani, M.M.; Alzahrani, K.E.; Alghamdi, H.S.; Niazy, A.A.; Alsilme, A.S.; Beagan, A.M.; Alsheheri, B.M.; Alghamdi, A.A.; Almeataq, M.S. Surface Modification of pH-Responsive Poly(2-(Tert-Butylamino)Ethyl Methacrylate) Brushes Grafted on Mesoporous Silica Nanoparticles. Des. Monomers Polym. 2019, 22, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, O.O.; Panasiuk, Y.V.; Korda, M.M. Locally Delivered Lovastatin-Containing Chitosan Nanoparticles Promote Bone Regeneration in Rats. Ukr. Biochem. J. 2021, 93, 24–37. [Google Scholar] [CrossRef]
- Aldoss, A.; Lambarte, R.; Alsalleeh, F. High-Glucose Media Reduced the Viability and Induced Differential Pro-Inflammatory Cytokines in Human Periodontal Ligament Fibroblasts. Biomolecules 2023, 13, 690. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In Vitro Scratch Assay: A Convenient and Inexpensive Method for Analysis of Cell Migration in Vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Fu, A.; Shi, W.; Yeo, D.; Luo, K.Q.; Ow, H.; Xu, C. Tracking Mesenchymal Stem Cell Tumor-Homing Using Fluorescent Silica Nanoparticles. J. Mater. Chem. B 2015, 3, 1245–1253. [Google Scholar] [CrossRef]
- Chen, Q.; Liang, Q.; Zhuang, W.; Zhou, J.; Zhang, B.; Xu, P.; Ju, Y.; Morita, Y.; Luo, Q.; Song, G. Tenocyte Proliferation and Migration Promoted by Rat Bone Marrow Mesenchymal Stem Cell-Derived Conditioned Medium. Biotechnol. Lett. 2018, 40, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Guarino, M.; Hernández-Bule, M.L.; Bacci, S. Cellular and Molecular Processes in Wound Healing. Biomedicines 2023, 11, 2526. [Google Scholar] [CrossRef] [PubMed]
- Binanzan, N.; Alsalleeh, F. Cytokine Expression and Anti-Microbial Effectiveness of Different Calcium Hydroxide Dilutions: An: In Vitro: Study. Indian J. Dent. Res. 2022, 33, 69. [Google Scholar] [CrossRef] [PubMed]
- Alsalleeh, F.; Young, A.; Petro, T. C. Albicans Biofilm Formation Is Restricted by Periodontal Ligament Cells and Induces Differential Cytokines Response Compared to Planktonic, C. Albicans. J. Dent. Appl. 2014, 1, 139–144. [Google Scholar]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N. Statistical Analysis of Real-Time PCR Data. BMC Bioinform. 2006, 7, 85. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 9 January 2025).
- Team, T.A. Avogadro—Free Cross-Platform Molecular Editor. Avogadro. Available online: https://avogadro.cc/ (accessed on 9 January 2025).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- RCSB PDB: Homepage. Available online: https://www.rcsb.org/ (accessed on 9 January 2025).
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. 1995, 8, 127–134. [Google Scholar] [CrossRef]
- Brichta, D.M.; Azad, K.N.; Ralli, P.; O’Donovan, G.A. Pseudomonas aeruginosa Dihydroorotases: A Tale of Three pyrCs. Arch. Microbiol. 2004, 182, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Alayed, H.S.; Devanesan, S.; AlSalhi, M.S.; Alkindi, M.G.; Alghamdi, O.G.; Alqhtani, N.R. Investigation of Antibacterial Activity of Carob-Mediated Calcium Hydroxide Nanoparticles against Different Aerobic and Anaerobic Bacteria. Appl. Sci. 2022, 12, 12624. [Google Scholar] [CrossRef]
- Lalitha, M. Manual on antimicrobial susceptibility testing. Perform. Stand. Antimicrob.Test. Twelfth Inf. Suppl. 2004, 56238, 454–456. [Google Scholar]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-Based 96-Well Plate Microdilution Method for the Determination of Minimum Inhibitory Concentration of Biosurfactants. Biotechnol. Lett. 2016, 38, 1015. [Google Scholar] [CrossRef] [PubMed]
- Bellio, P.; Fagnani, L.; Nazzicone, L.; Celenza, G. New and Simplified Method for Drug Combination Studies by Checkerboard Assay. MethodsX 2021, 8, 101543. [Google Scholar] [CrossRef] [PubMed]
- Niazy, A.A.; Alrashed, M.M.; Lambarte, R.N.A.; Niazy, A.A. 5-Fluorouracil Inhibits Bacterial Growth and Reduces Biofilm in Addition to Having Synergetic Effects with Gentamicin Against Pseudomonas aeruginosa. Microorganisms 2024, 12, 2257. [Google Scholar] [CrossRef] [PubMed]
Res/Lov-Receptor Complex | Affinity (kcal/mol−1) | Total H-Bonds | Residue—Length |
---|---|---|---|
IL-6 | −6.0 | 2 | ASP34—2.98 * GLU106—2.86 ** |
TGF-β1 | −5.5 | 3 | LYS77—2.77 * CYS264—2.95 ** CYS358—3.10 ** |
TNF-α | −6.5 | 4 | TYR151—3.09 * LEU120—3.02 ** SER60—3.92 ** SER60—3.16 ** |
Target | Forward Primer Sequence | Reverse Primer Sequence |
---|---|---|
IL-6 | 5′-AGGAGACTTGCCTGGTGAAA-3′ | 5′-CAGGGGTGGTTATTGCATCT-3′ |
TGF-β1 | 5’-GGGACTATCCACCIGCAAGA-3′ | 5′-CCTCCTIGGCGTAGTAGICG-3′ |
TNF-α | 5′-TCCTTCAGACACCCTCAACC-3′ | 5′-AGGCCCCAGTTTGAATTCTT-3′ |
GAPDH | 5′-CAGCCTCCCGCTTCGCTCTC-3′ | 5′-CCAGGCGCCCAATACGACCA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlJunaydil, N.A.; Lambarte, R.N.A.; Sumague, T.S.; Alghamdi, O.G.; Niazy, A.A. Lovastatin and Resveratrol Synergistically Improve Wound Healing and Inhibit Bacterial Growth. Int. J. Mol. Sci. 2025, 26, 851. https://doi.org/10.3390/ijms26020851
AlJunaydil NA, Lambarte RNA, Sumague TS, Alghamdi OG, Niazy AA. Lovastatin and Resveratrol Synergistically Improve Wound Healing and Inhibit Bacterial Growth. International Journal of Molecular Sciences. 2025; 26(2):851. https://doi.org/10.3390/ijms26020851
Chicago/Turabian StyleAlJunaydil, Norah A., Rhodanne Nicole A. Lambarte, Terrence S. Sumague, Osama G. Alghamdi, and Abdurahman A. Niazy. 2025. "Lovastatin and Resveratrol Synergistically Improve Wound Healing and Inhibit Bacterial Growth" International Journal of Molecular Sciences 26, no. 2: 851. https://doi.org/10.3390/ijms26020851
APA StyleAlJunaydil, N. A., Lambarte, R. N. A., Sumague, T. S., Alghamdi, O. G., & Niazy, A. A. (2025). Lovastatin and Resveratrol Synergistically Improve Wound Healing and Inhibit Bacterial Growth. International Journal of Molecular Sciences, 26(2), 851. https://doi.org/10.3390/ijms26020851