Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Baseline Metabolic Characteristics in Prostate Cell Lines
2.2. Dose-Response Effects of SFN and DCT Treatments and Combination Analysis
2.3. Effects of Individual and Combined DCT and SFN Treatments on Metabolic Parameters and Redox State in LNCaP and PC-3 Cell Lines
2.4. Effects of Individual and Combined SFN and DCT Treatments on Cell Death
3. Materials and Methods
3.1. Cell Cultures
3.2. Treatments
3.3. Cell Viability Assay
3.4. Cytotoxicity Assay
3.5. Combination Assays
3.6. Detection and Apoptosis Characterization
3.7. Characterization of the Effects of Combined Treatments in Metabolic and Redox Status of the Prostate Cancer Model
3.8. Determination of Intracellular ROS
3.9. Relative Mitochondrial Mass
3.10. Determination of GSH, GSSG, and GSH/GSSG Ratio
3.11. Glucose Consumption and Lactate Production Determination
3.12. Expression Levels (mRNA) of SOD2 and LDHA Gene Expression
3.13. Respirometry Analysis
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, S.; Omlin, A.; Attard, G.; de Bono, J.S.; Efstathiou, E.; Fizazi, K.; Halabi, S.; Nelson, P.S.; Sartor, O.; Smith, M.R.; et al. Management of patients with advanced prostate cancer: Recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann. Oncol. 2015, 26, 1589–1604. [Google Scholar] [CrossRef]
- Tsaur, I.; Heidegger, I.; Kretschmer, A.; Borgmann, H.; Gandaglia, G.; Briganti, A.; de Visschere, P.; Mathieu, R.; Valerio, M.; van den Bergh, R.; et al. Aggressive variants of prostate cancer–are we ready to apply specific treatment right now? Cancer Treat. Rev. 2019, 75, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.-K.; Cutting, E.; Martin, J.; Oh, W.K. The role of cabazitaxel in the treatment of metastatic castration-resistant prostate cancer. Ther. Adv. Urol. 2014, 6, 97–104. [Google Scholar] [CrossRef]
- Seng, S.M.; Tsao, C.-K.; Galsky, M.D.; Oh, W.K. Cytotoxic chemotherapy for castration resistant prostate cancer: 2010 and beyond. Drug Discov. Today Ther. Strateg. 2010, 7, 17–22. [Google Scholar] [CrossRef]
- Ho, M.Y.; Mackey, J.R. Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Manag. Res. 2014, 6, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Hozaeel, W.; Tauchert, F.; Hofheinz, R.-D.; Hinke, A.; Windemuth-Kieselbach, C.; Hübner, A.; Burmester, M.; Koenigsmann, M.; Wiegand, J.; et al. The impact of docetaxel-related toxicities on health-related quality of life in patients with metastatic cancer (QoliTax). Ann. Oncol. 2015, 26, 1244–1248. [Google Scholar] [CrossRef]
- Alimbetov, D.; Askarova, S.; Umbayev, B.; Davis, T.; Kipling, D. Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int. J. Mol. Sci. 2018, 19, 1690. [Google Scholar] [CrossRef]
- Negrette-Guzman, M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur. J. Pharmacol. 2019, 859, 172513. [Google Scholar] [CrossRef]
- Chaiswing, L.; Bourdeau-Heller, J.M.; Zhong, W.; Oberley, T.D. Characterization of redox state of two human prostate carcinoma cell lines with different degrees of aggressiveness. Free Radic. Biol. Med. 2007, 43, 202–215. [Google Scholar] [CrossRef]
- Samaranayake, G.J.; Troccoli, C.I.; Huynh, M.; Lyles, R.D.Z.; Kage, K.; Win, A.; Lakshmanan, V.; Kwon, D.; Ban, Y.; Chen, S.X.; et al. Thioredoxin-1 protects against androgen receptor-induced redox vulnerability in castration-resistant prostate cancer. Nat. Commun. 2017, 8, 1204. [Google Scholar] [CrossRef]
- Negrette-Guzmán, M.; Huerta-Yepez, S.; Tapia, E.; Pedraza-Chaverri, J. Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: A seemingly contradictory dual role and an integrative hypothesis. Free. Radic. Biol. Med. 2013, 65, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.M.; Akter, S.; Lin, C.-N.; Nazzal, S. Sulforaphane as an anticancer molecule: Mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch. Pharmacal Res. 2020, 43, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.E.; Baniasadi, M.; Giansiracusa, D.; Giansiracusa, M.; Garcia, M.; Fryda, Z.; Wong, T.L.; Bishayee, A. Sulforaphane: A broccoli bioactive phytocompound with cancer preventive potential. Cancers 2021, 13, 4796. [Google Scholar] [CrossRef]
- Kahroba, H.; Shirmohamadi, M.; Hejazi, M.S.; Samadi, N. The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance. Life Sci. 2019, 239, 116986. [Google Scholar] [CrossRef]
- Piantadosi, C.A.; Carraway, M.S.; Babiker, A.; Suliman, H.B. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res. 2008, 103, 1232–1240. [Google Scholar] [CrossRef]
- MacGarvey, N.C.; Suliman, H.B.; Bartz, R.R.; Fu, P.; Withers, C.M.; Welty-Wolf, K.E.; Piantadosi, C.A. Activation of mitochondrial biogenesis by heme oxygenase-1–mediated NF-E2–related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am. J. Respir. Crit. Care Med. 2012, 185, 851–861. [Google Scholar] [CrossRef]
- Kim, D.H.; Sung, B.; Kang, Y.J.; Hwang, S.Y.; Kim, M.J.; Yoon, J.-H.; Im, E.; Kim, N.D. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells. Int. J. Oncol. 2015, 47, 2226–2232. [Google Scholar] [CrossRef]
- Yagishita, Y.; Fahey, J.W.; Dinkova-Kostova, A.T.; Kensler, T.W. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 2019, 24, 3593. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.N.; Karami-Tehrani, F.; Salami, S. Targeting prostate cancer cell metabolism: Impact of hexokinase and CPT-1 enzymes. Tumor Biol. 2015, 36, 2893–2905. [Google Scholar] [CrossRef]
- Burnett, J.P.; Lim, G.; Li, Y.; Shah, R.B.; Lim, R.; Paholak, H.J.; McDermott, S.P.; Sun, L.; Tsume, Y.; Bai, S.; et al. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett. 2017, 394, 52–64. [Google Scholar] [CrossRef]
- Myzak, M.C.; Hardin, K.; Wang, R.; Dashwood, R.H.; Ho, E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 2006, 27, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Herman-Antosiewicz, A.; Johnson, D.E.; Singh, S.V. Sulforaphane Causes Autophagy to Inhibit Release of Cytochrome c and Apoptosis in Human Prostate Cancer Cells. Cancer Res. 2006, 66, 5828–5835. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.V.; Srivastava, S.K.; Choi, S.; Lew, K.L.; Antosiewicz, J.; Xiao, D.; Zeng, Y.; Watkins, S.C.; Johnson, C.S.; Trump, D.L.; et al. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J. Biol. Chem. 2005, 280, 19911–19924. [Google Scholar] [CrossRef]
- Negrette-Guzmán, M.; Huerta-Yepez, S.; Vega, M.I.; León-Contreras, J.C.; Hernández-Pando, R.; Medina-Campos, O.N.; Rodríguez, E.; Tapia, E.; Pedraza-Chaverri, J. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem. Toxicol. 2017, 100, 90–102. [Google Scholar] [CrossRef]
- Panieri, E.; Pinho, S.A.; Afonso, G.J.M.; Oliveira, P.J.; Cunha-Oliveira, T.; Saso, L. NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells 2022, 11, 2401. [Google Scholar] [CrossRef]
- Buttari, B.; Arese, M.; Oberley-Deegan, R.E.; Saso, L.; Chatterjee, A. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Front. Physiol. 2022, 13, 989793. [Google Scholar] [CrossRef]
- Cao, D.; Hou, M.; Guan, Y.S.; Jiang, M.; Yang, Y.; Gou, H.F. Expression of HIF-1alpha and VEGF in colorectal cancer: Association with clinical outcomes and prognostic implications. BMC Cancer 2009, 9, 432. [Google Scholar] [CrossRef]
- Kim, S.-H.; Park, H.-J.; Moon, D.-O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway. Oncol. Lett. 2017, 13, 4427–4432. [Google Scholar] [CrossRef]
- Milczarek, M.; Wiktorska, K.; Mielczarek, L.; Koronkiewicz, M.; Dąbrowska, A.; Lubelska, K.; Matosiuk, D.; Chilmonczyk, Z. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 111, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.-X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef] [PubMed]
- Cutruzzolà, F.; Giardina, G.; Marani, M.; Macone, A.; Paiardini, A.; Rinaldo, S.; Paone, A. Glucose Metabolism in the Progression of Prostate Cancer. Front. Physiol. 2017, 8, 97. [Google Scholar] [CrossRef]
- Venditti, P.; Di Meo, S. The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion. Int. J. Mol. Sci. 2020, 21, 2173. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Sharifi, N. SOD mimetics: A novel class of androgen receptor inhibitors that suppresses castration-resistant growth of prostate cancer. Mol. Cancer Ther. 2012, 11, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Daverio, Z.; Kolkman, M.; Perrier, J.; Brunet, L.; Bendridi, N.; Sanglar, C.; Berger, M.-A.; Panthu, B.; Rautureau, G.J.P. Warburg-associated acidification represses lactic fermentation independently of lactate, contribution from real-time NMR on cell-free systems. Sci. Rep. 2023, 13, 17733. [Google Scholar] [CrossRef]
- Daverio, Z.; Balcerczyk, A.; Rautureau, G.J.P.; Panthu, B. How Warburg-Associated Lactic Acidosis Rewires Cancer Cell Energy Metabolism to Resist Glucose Deprivation. Cancers 2023, 15, 1417. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gillies, R.J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 2008, 8, 56–61. [Google Scholar] [CrossRef]
- Vaupel, P. Metabolic microenvironment of tumor cells: A key factor in malignant progression. Exp. Oncol. 2010, 32, 125–127. [Google Scholar]
- He, T.-L.; Zhang, Y.-J.; Jiang, H.; Li, X.-H.; Zhu, H.; Zheng, K.-L. The c-Myc–LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer. Med. Oncol. 2015, 32, 187. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Ye, X.; Yan, D.; Deng, C.; Li, Z.; Tian, B. FAM46B Promotes Apoptosis and Inhibits Glycolysis of Prostate Cancer Through Inhibition of the MYC-LDHA Axis. Onco. Targets Ther. 2020, 13, 8771–8782. [Google Scholar] [CrossRef] [PubMed]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Foti, R.S.; Dalvie, D.K. Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics. Drug Metab. Dispos. 2016, 44, 1229–1245. [Google Scholar] [CrossRef]
- Chacko, B.K.; Kramer, P.A.; Ravi, S.; Benavides, G.A.; Mitchell, T.; Dranka, B.P.; Ferrick, D.; Singal, A.K.; Ballinger, S.W.; Bailey, S.M.; et al. The Bioenergetic Health Index: A new concept in mitochondrial translational research. Clin. Sci. 2014, 127, 367–373. [Google Scholar] [CrossRef]
- Vaz, C.V.; Alves, M.G.; Marques, R.; Moreira, P.I.; Oliveira, P.F.; Maia, C.J.; Socorro, S. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int. J. Biochem. Cell Biol. 2012, 44, 2077–2084. [Google Scholar] [CrossRef]
- Pertega-Gomes, N.; Felisbino, S.; Massie, C.E.; Vizcaino, J.R.; Coelho, R.; Sandi, C.; Simoes-Sousa, S.; Jurmeister, S.; Ramos-Montoya, A.; Asim, M.; et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: A role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol. 2015, 236, 517–530. [Google Scholar] [CrossRef]
- Kocianova, E.; Piatrikova, V.; Golias, T. Revisiting the Warburg Effect with Focus on Lactate. Cancers 2022, 14, 6028. [Google Scholar] [CrossRef]
- Jaworska, M.; Szczudło, J.; Pietrzyk, A.; Shah, J.; Trojan, S.E.; Ostrowska, B.; Kocemba-Pilarczyk, K.A. The Warburg effect: A score for many instruments in the concert of cancer and cancer niche cells. Pharmacol. Rep. 2023, 75, 876–890. [Google Scholar] [CrossRef]
- Lai, H.W.; Kasai, M.; Yamamoto, S.; Fukuhara, H.; Karashima, T.; Kurabayashi, A.; Furihata, M.; Hanazaki, K.; Inoue, K.; Ogura, S.-I. Metabolic shift towards oxidative phosphorylation reduces cell-density-induced cancer-stem-cell-like characteristics in prostate cancer in vitro. Biol. Open 2023, 12. [Google Scholar] [CrossRef]
- Chen, C.L.; Lin, C.Y.; Kung, H.J. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int. J. Mol. Sci. 2021, 22, 13435. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Park, J.H.; Jung, K.H.; Levine, H.; Kaipparettu, B.A. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Dinkova-Kostova, A.T.; Wade, K.L.; Zhang, Y.; Shapiro, T.A.; Talalay, P. Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: Pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin. Chim. Acta 2002, 316, 43–53. [Google Scholar] [CrossRef]
- Atwell, L.L.; Hsu, A.; Wong, C.P.; Stevens, J.F.; Bella, D.; Yu, T.W.; Pereira, C.B.; Löhr, C.V.; Christensen, J.M.; Dashwood, R.H.; et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol. Nutr. Food Res. 2015, 59, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Cornblatt, B.S.; Ye, L.; Dinkova-Kostova, A.T.; Erb, M.; Fahey, J.W.; Singh, N.K.; Chen, M.-S.A.; Stierer, T.; Garrett-Mayer, E.; Argani, P.; et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 2007, 28, 1485–1490. [Google Scholar] [CrossRef]
- Zhang, Z.; Garzotto, M.; Davis, E.W.; 2nd Mori, M.; Stoller, W.A.; Farris, P.E.; Wong, C.P.; Beaver, L.M.; Thomas, G.V.; Williams, D.E.; et al. Sulforaphane Bioavailability and Chemopreventive Activity in Men Presenting for Biopsy of the Prostate Gland: A Randomized Controlled Trial. Nutr. Cancer 2020, 72, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Kensler, T.W. The Challenges of Designing and Implementing Clinical Trials With Broccoli Sprouts… and Turning Evidence Into Public Health Action. Front. Nutr. 2021, 8, 648788. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Albrecht, W.; Edlund, K.; Kappenberg, F.; Rahnenführer, J.; Leist, M.; Moritz, W.; Godoy, P.; Cadenas, C.; Marchan, R.; et al. Relevance of the incubation period in cytotoxicity testing with primary human hepatocytes. Arch. Toxicol. 2018, 92, 3505–3515. [Google Scholar] [CrossRef]
- Kramer, N.I.; Di Consiglio, E.; Blaauboer, B.J.; Testai, E. Biokinetics in repeated-dosing in vitro drug toxicity studies. Toxicol. Vitr. 2015, 30 Pt A, 217–224. [Google Scholar] [CrossRef]
- Rutz, J.; Thaler, S.; Maxeiner, S.; Chun, F.K.; Blaheta, R.A. Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7. Int. J. Mol. Sci. 2020, 21, 8724. [Google Scholar] [CrossRef]
- Jastroch, M.; Divakaruni, A.S.; Mookerjee, S.; Treberg, J.R.; Brand, M.D. Mitochondrial proton and electron leaks. Essays Biochem. 2010, 47, 53–67. [Google Scholar] [PubMed]
- Vayalil, P.K. Mitochondrial oncobioenergetics of prostate tumorigenesis. Oncol. Lett. 2019, 18, 4367–4376. [Google Scholar] [CrossRef]
- Singh, K.B.; Hahm, E.R.; Alumkal, J.J.; Foley, L.M.; Hitchens, T.K.; Shiva, S.S.; Parikh, R.A.; Jacobs, B.L.; Singh, S.V. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. Carcinogenesis 2019, 40, 1545–1556. [Google Scholar] [CrossRef]
- Cardoso, H.J.; Figueira, M.I.; Vaz, C.V.; Carvalho, T.M.A.; Brás, L.A.; Madureira, P.A.; Oliveira, P.J.; Sardão, V.A.; Socorro, S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell. Oncol. 2021, 44, 385–403. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, N.M.; McCullough, C.; Shanmugavelandy, S.; Lee, J.; Lee, Y.; Dutta, P.; McHenry, J.; Nguyen, L.; Norton, W.; Jones, L.W.; et al. Metabolic Differences in Glutamine Utilization Lead to Metabolic Vulnerabilities in Prostate Cancer. Sci. Rep. 2017, 7, 16159. [Google Scholar] [CrossRef]
- Chetta, P.; Sriram, R.; Zadra, G. Lactate as Key Metabolite in Prostate Cancer Progression: What Are the Clinical Implications? Cancers 2023, 15, 3473. [Google Scholar] [CrossRef] [PubMed]
- Xinyi, X.; Gong, Y. The role of ATP-binding cassette subfamily G member 1 in tumor progression. Cancer Med. 2024, 13, e7285. [Google Scholar] [CrossRef]
- Karatas, O.F.; Guzel, E.; Duz, M.B.; Ittmann, M.; Ozen, M. The role of ATP-binding cassette transporter genes in the progression of prostate cancer. Prostate 2016, 76, 434–444. [Google Scholar] [CrossRef]
- Montero, A.J.; Jassem, J. Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs 2011, 71, 1385–1396. [Google Scholar] [CrossRef]
- Cho, E.; Montgomery, R.B.; Mostaghel, E.A. Minireview: SLCO and ABC transporters: A role for steroid transport in prostate cancer progression. Endocrinology 2014, 155, 4124–4132. [Google Scholar] [CrossRef]
- Kallifatidis, G.; Labsch, S.; Rausch, V.; Mattern, J.; Gladkich, J.; Moldenhauer, G.; Büchler, M.W.; Salnikov, A.V.; Herr, I. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther. 2011, 19, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Jiang, C.-H.; Li, N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef]
- Xu, R.-H.; Pelicano, H.; Zhou, Y.; Carew, J.S.; Feng, L.; Bhalla, K.N.; Keating, M.J.; Huang, P. Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005, 65, 613–621. [Google Scholar] [CrossRef]
- Cunha, A.; Silva, P.M.; Sarmento, B.; Queirós, O. Targeting Glucose Metabolism in Cancer Cells as an Approach to Overcoming Drug Resistance. Pharmaceutics 2023, 15, 2610. [Google Scholar] [CrossRef]
- Hsieh, M.-S.; Ling, H.H.; Setiawan, S.A.; Hardianti, M.S.; Fong, I.-H.; Yeh, C.-T.; Chen, J.-H. Therapeutic targeting of thioredoxin reductase 1 causes ferroptosis while potentiating anti-PD-1 efficacy in head and neck cancer. Chem. Biol. Interact. 2024, 395, 111004. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Kim, J.S.; Lee, H.; Ryu, J.Y.; Lee, H.J.; Sonn, J.K.; Lim, Y.-B. Auranofin, an Anti-rheumatic Gold Drug, Aggravates the Radiation-Induced Acute Intestinal Injury in Mice. Front. Pharmacol. 2019, 10, 417. [Google Scholar] [CrossRef]
- Shankar, S.; Ganapathy, S.; Srivastava, R.K. Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin. Cancer Res. 2008, 14, 6855–6866. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.R.; Hahm, E.-R.; Arlotti, J.A.; Watkins, S.; Stolz, D.B.; Desai, D.; Amin, S.; Singh, S.V. Chemoprevention of Prostate Cancer by d,l-Sulforaphane Is Augmented by Pharmacological Inhibition of Autophagy. Cancer Res. 2013, 73, 5985–5995. [Google Scholar] [CrossRef] [PubMed]
- Kubli, D.A.; Gustafsson, Å.B. Mitochondria and mitophagy: The yin and yang of cell death control. Circ. Res. 2012, 111, 1208–1221. [Google Scholar] [CrossRef]
- Ruscica, M.; Botta, M.; Ferri, N.; Giorgio, E.; Macchi, C.; Franceschini, G.; Magni, P.; Calabresi, L.; Gomaraschi, M. High Density Lipoproteins Inhibit Oxidative Stress-Induced Prostate Cancer Cell Proliferation. Sci. Rep. 2018, 8, 2236. [Google Scholar] [CrossRef]
- Camargo, A.C.; Constantino, F.B.; Santos, S.A.; Colombelli, K.T.; Portela, L.M.; Fioretto, M.N.; Barata, L.A.; Valente, G.T.; Moreno, C.S.; Justulin, L.A. Deregulation of ABCG1 early in life contributes to prostate carcinogenesis in maternally malnourished offspring rats. Mol. Cell. Endocrinol. 2024, 580, 112102. [Google Scholar] [CrossRef] [PubMed]
- Dulińska-Litewka, J.; Gąsiorkiewicz, B.; Litewka, A.; Gil, D.; Gołąbek, T.; Okoń, K. Could the kinetin riboside be used to inhibit human prostate cell epithelial–mesenchymal transition? Med. Oncol. 2020, 37, 17. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 2016, 2016, pdb.prot087379. [Google Scholar] [CrossRef]
- Maschmeyer, I.; Hasenberg, T.; Jaenicke, A.; Lindner, M.; Lorenz, A.K.; Zech, J.; Garbe, L.-A.; Sonntag, F.; Hayden, P.; Ayehunie, S.; et al. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 2015, 95 Pt A, 77–87. [Google Scholar] [CrossRef]
- Negrette-Guzmán, M.; García-Niño, W.R.; Tapia, E.; Zazueta, C.; Huerta-Yepez, S.; León-Contreras, J.C.; Hernández-Pando, R.; Aparicio-Trejo, O.E.; Madero, M.; Pedraza-Chaverri, J. Curcumin attenuates gentamicin-induced kidney mitochondrial alterations: Possible role of a mitochondrial biogenesis mechanism. Evid. Based Complement. Altern. Med. 2015, 2015, 917435. [Google Scholar] [CrossRef] [PubMed]
- Śliwka, L.; Wiktorska, K.; Suchocki, P.; Milczarek, M.; Mielczarek, S.; Lubelska, K.; Cierpiał, T.; Łyżwa, P.; Kiełbasiński, P.; Jaromin, A.; et al. The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS ONE 2016, 11, e0155772. [Google Scholar] [CrossRef] [PubMed]
- Dueregger, A.; Schöpf, B.; Eder, T.; Höfer, J.; Gnaiger, E.; Aufinger, A.; Kenner, L.; Perktold, B.; Ramoner, R.; Klocker, H.; et al. Differential utilization of dietary fatty acids in benign and malignant cells of the prostate. PLoS ONE 2015, 10, e0135704. [Google Scholar] [CrossRef]
- Tsui, K.H.; Chung, L.C.; Wang, S.W.; Feng, T.H.; Chang, P.L.; Juang, H.H. Hypoxia upregulates the gene expression of mitochondrial aconitase in prostate carcinoma cells. J. Mol. Endocrinol. 2013, 51, 131–141. [Google Scholar] [CrossRef]
Parameters | RWPE-1 Mean ± SD | LNCaP Mean ± SD | PC-3 Mean ± SD | p-Value | ||
---|---|---|---|---|---|---|
RWPE-1 vs. LNCaP | RWPE-1 vs. PC-3 | LNCaP vs. PC-3 Cells | ||||
Glucose (pg remaining/µL/cell) | 2.98 ± 2.49 | 4.44 ± 3.78 | 0.41 ± 0.39 | 0.39 | 0.04 | 0.01 |
Lactate (nmol/L/cell) | 0.64 ± 0.95 | 1.39 ± 0.19 | 0.08 ± 0.01 | 0.00 | 0.00 | 0.00 |
GSH (umoles/µL) | 0.16 ± 0.002 | 0.22 ± 0.045 | 0.37 ± 0.047 | 0.13 | 0.13 | 0.03 |
GSSG (umoles/µL) | 0.001879 ± 0.00013 | 0.0026 ± 0.0013 | 0.0032 ± 0.0008 | 0.80 | 0.13 | 0.72 |
GSH/GSSG | 84.88 ± 4.63 | 139.33 ± 50.07 | 91.73 ± 16.70 | 0.33 | 1.00 | 0.33 |
ROS (RFI) | 431,200.00 ± 53,204.51 | 12,417.5 ± 881.76 | 14,687.00 ± 1089.02 | 0.20 | 0.10 | 0.20 |
Mitochondrial mass (RFI) | 1,040,000.00 ± 38,400.00 | 14,400.0 ± 11,900.00 | 160,000 ± 26,519.19 | 0.10 | 0.10 | 0.40 |
SOD2 (Relative mRNA expression) | 0.0000009 ± 0.0000004 | 0.0000003 ± 0.0000001 | 0.000005 ± 0.000002 | 0.10 | 0.10 | 0.20 |
LDHA (Relative mRNA expression) | 0.000006 ± 0.000003 | 0.000013 ± 0.000006 | 0.000001 ± 0.0000005 | 0.08 | 0.10 | 0.08 |
Basal respiration (% OCR) | 12.20 ± 3.04 | 8.67 ± 2.52 | 29.30 ± 5.03 | 0.40 | 0.20 | 0.10 |
Proton leak (% OCR) | 10.0 ± 2.83 | 21.3 ± 5.86 | 27.00 ± 8.19 | 0.20 | 0.20 | 0.40 |
Max respiratory capacity (% OCR) | 5.35 ± 1.90 | 8.67 ± 5.51 | 16.0 ± 5.29 | 0.80 | 0.20 | 0.20 |
Non mitochondrial respiration (% OCR) | 6.00 ± 0.00 | 6.33 ± 2.52 | 15.33 ± 3.51 | 1.00 | 0.14 | 0.10 |
Parameters | LNCaP Cells | PC-3 Cells | ||||||
---|---|---|---|---|---|---|---|---|
Treatments | Treatments | |||||||
Control | SFN | DCT | SFN:DCT | Control | SFN | DCT | SFN:CT | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Glucose (pg remaining/µL/cell) | 0.0035 ± 0.0003 | 0.00979 ± 0.0002 | 0.1045 ± 0.0034 | 0.0879 ± 0.0061 | 0.0005 ± 0.0001 | 0.0752 ± 0.0041 | 0.0690 ± 0.0002 | 0.0684 ± 0.055 |
Lactate (nmol/L/cell) | 1.5695 ± 0.0021 | 1.0026 ± 0.0290 | 1.7761 ± 0.0432 | 1.2973 ± 0.0856 | 0.0955 ± 0.0039 | 1.4391 ± 0.1467 | 1.0941 ± 0.0669 | 1.4535 ± 1.1167 |
GSH (umoles/µL) | 0.1848 ± 0.0331 | 0.0171 ± 0.0022 | 0.1084 ± 0.00259 | 1.2822 ± 0.0017 | 0.3685 ± 0.0252 | 0.9673 ± 0.0673 | 0.3339 ± 0.0082 | 0.5952 ± 0.0918 |
GSSG (umoles/µL) | 0.002926 ± 0.001574 | 0.002255 ± 0.000133 | 0.002818 ± 0.000930 | 0.003946 ± 0.000664 | 0.0026 ± 0.0007 | 0.0168 ± 0.0024 | 0.0044 ± 0.0005 | 0.0039 ± 0.0017 |
Ratio GSH/GSSG | 70.2873 ± 26.5011 | 7.5893 ± 0.5406 | 39.0867 ± 3.7018 | 72.5876 ± 12.6478 | 145.93 ± 46.43 | 57.74 ± 4.10 | 76.29 ± 11.04 | 172.47 ± 98.75 |
ROS (RFI*) | 1.0 ± 0.2664 | 0.7873 ± 0.0498 | 1.4793 ± 0.1658 | 1.4391 ± 0.0988 | 1.0 ± 0.528 | 0.3716 ± 0.0065 | 0.7456 ± 0.0711 | 0.4600 ± 0.0192 |
Mitochondrial mass (RFI*) | 1.0 ± 0.1311 | 9.7365 ± 0.06823 | 5.4570 ± 1.4079 | 9.1872 ± 2.8282 | 1.0 ± 0.1637 | 0.4925 ± 0.1724 | 0.6605 ± 0.1039 | 0.8903 ± 0.1359 |
SOD2 (Relative mRNA expression) | 1.0 ± 0.1708 | 1.8895 ± 0.02642 | 0.0525 ± 0.0062 | 0.1551 ± 0.0407 | 1.0 ± 0.1175 | 19.7233 ± 3.0496 | 0.6506 ± 0.1284 | 5.3560 ± 1.3269 |
LDHA (Relative mRNA expression) | 1.0 ± 0.1708 | 1.5596 ± 0.2064 | 0.1274 ± 0.1294 | 0.1953 ± 0.0478 | 1.0 ± 0.1708 | 0.5062 ± 0.3967 | 0.9243 ± 0.0657 | 0.4789 ± 0.0855 |
Basal respiration (% OCR) | 100 ± 27.47 | 81.95 ± 54.81 | 198.96 ± 39.10 | 66.50 ± 19.52 | 100 ± 30.32 | 88.89 ± 31.28 | 73.15 ± 44.17 | 59.26 ± 9.80 |
Proton leak (% OCR) | 100 ± 63.55 | 164.42 ± 161.09 | 307.69 ± 203.26 | 161.54 ± 66.62 | 100 ± 56.83 | 112.50 ± 7.22 | 125.00 ± 72.35 | 97.92 ± 9.55 |
Max respiratory capacity (% OCR) | 100 ± 29.04 | 242.31 ± 124.81 | 265.38 ± 196.04 | 181.73 ± 76.75 | 100 ± 17.16 | 95.45 ± 7.87 | 75.00 ± 28.66 | 61.36 ± 10.23 |
Non-mitochondrial respiration (% OCR) | 100 ± 39.74 | 257.89 ± 165.85 | 431.58 ± 63.81 | 201.32 ± 86.84 | 100 ± 22.90 | 115.73 ± 30.83 | 115.76 ± 50.90 | 89.13 ± 7.53 |
Compounds | Cell Death | Early Apoptosis | Late Apoptosis | Dead | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | |
Control | — | — | — | — | — | — | — | — | ||||
DCT | 3 | 1.4–4.5 | <0.001 | 2.9 | 1.6–4.3 | <0.001 | 2.1 | 1.1–3.2 | <0.001 | −0.12 | −1.2–0.99 | 0.8 |
SFN | 3.5 | 1.9–5.1 | <0.001 | 3.3 | 1.9–4.6 | <0.001 | 2.7 | 1.7–3.7 | <0.001 | 0.29 | −0.76–1.3 | 0.6 |
SFN: DCT | 3.1 | 1.6–4.6 | <0.001 | 2.9 | 1.5–4.2 | <0.001 | 2.2 | 1.2–3.3 | <0.001 | −0.25 | −1.4–0.88 | 0.7 |
Parameters | ||||||||||||
Glucose | 58 | 43–72 | <0.001 | 50 | 38–62 | <0.001 | 22 | 12–32 | <0.001 | −3.9 | −12–4.5 | 0.4 |
Lactato | −0.96 | −4.2–2.3 | 0.6 | −1.7 | −4.7–1.4 | 0.3 | −0.85 | −32–2.8. 1.1 | 0.4 | 0.73 | −0.60–2.1 | 0.3 |
GSH | −0.76 | −9.6–8.1 | 0.9 | −3.2 | −12–5.4 | 0.5 | −0.44 | −5.9–5.0 | 0.9 | 0.28 | −3.5–4.1 | 0.9 |
GSSG | 188 | −763–1.140 | 0.7 | 43 | −877–964 | >0.9 | 194 | −374–761 | 0.5 | 155 | −241–551 | 0.4 |
GSH_GSSG | −0.01 | −0.04–0.03 | 0.7 | −0.02 | −0.05–0.02 | 0.3 | −0.01 | −0.03–0.02 | 0.6 | 0 | −0.01–0.02 | >0.9 |
ROS | 0.56 | −1.7–2.8 | 0.6 | 0.71 | −1.4–2.8 | 0.5 | 0.57 | −0.93–2.1 | 0.5 | −0.34 | −1.7–1.0 | 0.6 |
Mitochondrial mass | 0.28 | 0.14–0.42 | <0.001 | 0.24 | 0.11–0.36 | <0.001 | 0.15 | 0.07–0.24 | <0.001 | −0.01 | −0.10–0.08 | 0.9 |
SOD2 | −0.09 | −1.1–0.88 | 0.9 | −0.2 | −1.1–0.71 | 0.7 | −0.11 | −0.76–0.54 | 0.7 | 0.2 | −0.38–0.77 | 0.5 |
LDHA | −0.3 | −1.5–0.91 | 0.6 | −0.47 | −1.6–0.66 | 0.4 | −0.44 | −1.2–0.36 | 0.3 | 0.17 | −0.56–0.90 | 0.6 |
Basal respiration | 0 | −0.01–0.01 | 0.7 | 0.01 | −0.01–0.02 | 0.3 | 0 | −0.01–0.01 | 0.7 | 0 | −0.01–0.00 | 0.3 |
Proton leak | 0 | 0.00–0.01 | 0.3 | 0 | 0.00–0.01 | 0.1 | 0 | 0.00–0.00 | 0.3 | 0 | −0.01–0.00 | 0.12 |
Max respiratory capacity | 0 | 0.00–0.01 | 0.4 | 0 | 0.00.–0.01 | 0.2 | 0 | 0.00–0.00 | 0.4 | 0 | 0.00–0.00 | 0.8 |
Non-mitochondrial respiration | 0.01 | 0.00–0.01 | 0.018 | 0.01 | 0.00–0.01 | 0.002 | 0 | 0.00–0.01 | 0.058 | 0 | 0.00–0.00 | 0.5 |
Compounds | Cell Death | Early Apoptosis | Late Apoptosis | Dead | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | |
Control | — | — | — | — | — | — | — | — | ||||
DCT | 2.4 | 1.8–3.0 | <0.001 | 2.1 | 0.99–3.1 | <0.001 | 0.79 | −0.46–2.0 | 0.2 | −0.68 | −1.8–0.41 | 0.2 |
SFN | 2.0 | 1.4–2.6 | <0.001 | 1.9 | 0.85–3.0 | <0.001 | 0.28 | −1.0–1.6 | 0.7 | −0.75 | −1.8–0.35 | 0.2 |
SFN:DCT | 2.0 | 1.4–2.6 | <0.001 | 1.8 | 0.77–2.9 | <0.001 | 0.50 | −0.78–1.8 | 0.4 | −0.66 | −1.7–0.43 | 0.2 |
Parameters | ||||||||||||
Glucose | 33 | 23–42 | <0.001 | 30 | 12–47 | <0.001 | 5.1 | −16–26 | 0.6 | −11 | −28–5.5 | 0.2 |
Lactato | 1.5 | 0.84–2.2 | <0.001 | 1.6 | 0.66–2.5 | <0.001 | 0.13 | −1.0–1.3 | 0.8 | −0.68 | −1.6–0.23 | 0.14 |
GSH | 1.4 | −0.67–3.5 | 0.2 | 1.8 | −0.46–4.0 | 0.12 | −0.04 | −2.5–2.4 | >0.9 | −0.78 | −3.1–1.5 | 0.5 |
GSSG | 62 | −28–152 | 0.2 | 67 | −32–165 | 0.2 | 21 | −86–127 | 0.7 | −7.5 | −107–92 | 0.9 |
GSH/GSSG | 0.00 | −0.01–0.01 | 0.5 | 0.00 | −0.01–0.01 | 0.8 | −0.01 | −0.02–0.00 | 0.2 | 0.00 | −0.01–0.01 | 0.5 |
ROS | −2.2 | −3.9–0.47 | 0.012 | −2.1 | −4.1–0.10 | 0.039 | −1.1 | −3.2–0.91 | 0.3 | 0.51 | −1.4–2.4 | 0.6 |
Mitochondrial mass | −2.0 | −3.3–0.68 | 0.003 | −2.0 | −3.6–0.49 | 0.010 | −0.42 | −2.1–1.3 | 0.6 | 1.1 | −0.37–2.7 | 0.14 |
SOD2 | 0.03 | −0.03–0.09 | 0.3 | 0.03 | −0.04–0.10 | 0.4 | 0.03 | −0.03–0.09 | 0.3 | 0.01 | −0.05–0.07 | 0.7 |
LDHA | −1.3 | −2.8–0.23 | 0.10 | −1.5 | −3.2–0.18 | 0.079 | 0.10 | −1.6–1.8 | >0.9 | 0.63 | −0.97–2.2 | 0.4 |
Basal respiration | −0.01 | −0.02–0.00 | 0.2 | −0.01 | −0.03–0.00 | 0.13 | 0.00 | −0.02–0.01 | 0.9 | 0.01 | −0.01–0.02 | 0.2 |
Proton leak | 0.00 | 0.00–0.01 | 0.3 | 0.00 | −0.01–0.01 | 0.5 | 0.00 | −0.01–0.01 | >0.9 | 0.00 | −0.01–0.01 | 0.7 |
Max respiratory capacity | −0.02 | −0.04–0.00 | 0.068 | −0.02 | −0.04–0.00 | 0.11 | −0.01 | −0.03–0.01 | 0.5 | 0.01 | −0.01–0.03 | 0.5 |
Non-mitochondrial respiration | 0.00 | −0.01–0.01 | >0.9 | 0.00 | −0.02–0.01 | 0.7 | 0.00 | −0.01–0.02 | 0.6 | 0.00 | −0.01–0.02 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñata-Taborda, A.; Espitia-Pérez, P.; Espitia-Pérez, L.; Coneo-Pretelt, A.; Brango, H.; Ricardo-Caldera, D.; Arteaga-Arroyo, G.; Jiménez-Vidal, L.; Galeano-Páez, C.; Pastor-Sierra, K.; et al. Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines. Int. J. Mol. Sci. 2025, 26, 1013. https://doi.org/10.3390/ijms26031013
Peñata-Taborda A, Espitia-Pérez P, Espitia-Pérez L, Coneo-Pretelt A, Brango H, Ricardo-Caldera D, Arteaga-Arroyo G, Jiménez-Vidal L, Galeano-Páez C, Pastor-Sierra K, et al. Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines. International Journal of Molecular Sciences. 2025; 26(3):1013. https://doi.org/10.3390/ijms26031013
Chicago/Turabian StylePeñata-Taborda, Ana, Pedro Espitia-Pérez, Lyda Espitia-Pérez, Andrés Coneo-Pretelt, Hugo Brango, Dina Ricardo-Caldera, Gean Arteaga-Arroyo, Luisa Jiménez-Vidal, Claudia Galeano-Páez, Karina Pastor-Sierra, and et al. 2025. "Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines" International Journal of Molecular Sciences 26, no. 3: 1013. https://doi.org/10.3390/ijms26031013
APA StylePeñata-Taborda, A., Espitia-Pérez, P., Espitia-Pérez, L., Coneo-Pretelt, A., Brango, H., Ricardo-Caldera, D., Arteaga-Arroyo, G., Jiménez-Vidal, L., Galeano-Páez, C., Pastor-Sierra, K., Humanez-Alvarez, A., Bru-Cordero, O., Jones-Cifuentes, N., Rincón-Orozco, B., Mendez-Sanchez, S., & Negrette-Guzmán, M. (2025). Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines. International Journal of Molecular Sciences, 26(3), 1013. https://doi.org/10.3390/ijms26031013