A Computational Recognition Analysis of Promising Prognostic Biomarkers in Breast, Colon and Lung Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Union RBP Intersection Master List and Gene Clustering
2.2. The Functional Analysis of the Union RBP Consensus Targets and the Suggested Protein–Protein Network Interactions:
2.3. Cross-Correlation of RBPs
2.4. Survival Analysis
3. Discussion
4. Materials and Methods
4.1. Availability of Data and Union RBP Intersection Master List and Gene Clustering
4.2. Functional and Pathway Enrichment Analysis of Union RBPs
4.3. Protein–Protein Interaction Network Construction and Interrelation Analysis Between Pathways
4.4. RBP Cross-Correlation
4.5. RBP Co-Expression with Oncogene/Tumor Suppressor Genes
4.6. Kaplan–Meier Plot
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef]
- Wang, Z.; Monteiro, C.D.; Jagodnik, K.M.; Fernandez, N.F.; Gundersen, G.W.; Rouillard, A.D.; Jenkins, S.L.; Feldmann, A.S.; Hu, K.S.; McDermott, M.G.; et al. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nat. Commun. 2016, 7, 12846. [Google Scholar] [CrossRef]
- Carioli, G.; Malvezzi, M.; Rodriguez, T.; Bertuccio, P.; Negri, E.; La Vecchia, C. Trends and predictions to 2020 in breast cancer mortality in Europe. Breast 2017, 36, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Gerstberger, S.; Hafner, M.; Ascano, M.; Tuschl, T. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 825, pp. 1–55. [Google Scholar] [CrossRef]
- Kim, M.Y.; Hur, J.; Jeong, S. Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep. 2009, 42, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Lukong, K.E.; Chang, K.W.; Khandjian, E.W.; Richard, S. RNA-binding proteins in human genetic disease. Trends Genet. TIG 2008, 24, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K. Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc. Med. 2003, 13, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Gerstberger, S.; Hafner, M.; Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 2014, 15, 829–845. [Google Scholar] [CrossRef]
- Neelamraju, Y.; Hashemikhabir, S.; Janga, S.C. The human RBPome: From genes and proteins to human disease. J. Proteom. 2015, 127, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef]
- Okayama, H.; Kohno, T.; Ishii, Y.; Shimada, Y.; Shiraishi, K.; Iwakawa, R.; Furuta, K.; Tsuta, K.; Shibata, T.; Yamamoto, S.; et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 2012, 72, 100–111. [Google Scholar] [CrossRef]
- Gyorffy, B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotechnol. J. 2021, 19, 4101–4109. [Google Scholar] [CrossRef] [PubMed]
- Gyorffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef] [PubMed]
- Gyorffy, B. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br. J. Pharmacol. 2024, 181, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; van’t Veer, L.J.; Bogaerts, J.; Slaets, L.; Viale, G.; Delaloge, S.; Pierga, J.Y.; Brain, E.; Causeret, S.; DeLorenzi, M.; et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N. Engl. J. Med. 2016, 375, 717–729. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A., Jr.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Zhang, X.; Wang, L. A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Sci. Rep. 2019, 9, 2615. [Google Scholar] [CrossRef] [PubMed]
- Ludovini, V.; Bianconi, F.; Siggillino, A.; Piobbico, D.; Vannucci, J.; Metro, G.; Chiari, R.; Bellezza, G.; Puma, F.; Della Fazia, M.A.; et al. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: A combined methodology of gene expression profiling and computational gene network analysis. Oncotarget 2016, 7, 30561–30574. [Google Scholar] [CrossRef]
- Wei, J.H.; Haddad, A.; Wu, K.J.; Zhao, H.W.; Kapur, P.; Zhang, Z.L.; Zhao, L.Y.; Chen, Z.H.; Zhou, Y.Y.; Zhou, J.C.; et al. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nat. Commun. 2015, 6, 8699. [Google Scholar] [CrossRef]
- Fontana, R.; Ranieri, M.; La Mantia, G.; Vivo, M. Dual Role of the Alternative Reading Frame ARF Protein in Cancer. Biomolecules 2019, 9, 87. [Google Scholar] [CrossRef]
- Wong, Q.W.; Li, J.; Ng, S.R.; Lim, S.G.; Yang, H.; Vardy, L.A. RPL39L is an example of a recently evolved ribosomal protein paralog that shows highly specific tissue expression patterns and is upregulated in ESCs and HCC tumors. RNA Biol. 2014, 11, 33–41. [Google Scholar] [CrossRef]
- Yan, P.; Yang, X.; Wang, J.; Wang, S.; Ren, H. A novel CpG island methylation panel predicts survival in lung adenocarcinomas. Oncol. Lett. 2019, 18, 1011–1022. [Google Scholar] [CrossRef]
- Meyer-Schuman, R.; Antonellis, A. Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. Human Mol. Genet. 2017, 26, R114–R127. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Smith, D.E.; Issa, M.Y.; Stanley, V.; Wang, R.; Mendes, M.I.; Wright, M.S.; Wigby, K.; Hildreth, A.; Crawford, J.R.; et al. Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nat. Commun. 2019, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, C.; Jean-Jean, O. Proteasomal degradation of human release factor eRF3a regulates translation termination complex formation. RNA 2008, 14, 240–245. [Google Scholar] [CrossRef]
- Chauvin, C.; Salhi, S.; Jean-Jean, O. Human eukaryotic release factor 3a depletion causes cell cycle arrest at G1 phase through inhibition of the mTOR pathway. Mol. Cell. Biol. 2007, 27, 5619–5629. [Google Scholar] [CrossRef] [PubMed]
- Litchfield, K.; Holroyd, A.; Lloyd, A.; Broderick, P.; Nsengimana, J.; Eeles, R.; Easton, D.F.; Dudakia, D.; Bishop, D.T.; Reid, A.; et al. Identification of four new susceptibility loci for testicular germ cell tumour. Nat. Commun. 2015, 6, 8690. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Bora-Singhal, N.; Perumal, D.; Chellappan, S. Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner. Mol. Cancer 2014, 13, 173. [Google Scholar] [CrossRef]
- Pfeffer, S.; Dudek, J.; Schaffer, M.; Ng, B.G.; Albert, S.; Plitzko, J.M.; Baumeister, W.; Zimmermann, R.; Freeze, H.H.; Engel, B.D.; et al. Dissecting the molecular organization of the translocon-associated protein complex. Nat. Commun. 2017, 8, 14516. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Yang, F.; Cheng, R.; Chen, X.; Cui, S.; Gu, Y.; Sun, W.; You, C.; Liu, Z.; et al. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol. Cancer 2017, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Munoz, M.D.; Kiselev, V.Y.; Le Novere, N.; Curk, T.; Ule, J.; Turner, M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat. Commun. 2017, 8, 530. [Google Scholar] [CrossRef]
- Mackenzie, I.R.; Nicholson, A.M.; Sarkar, M.; Messing, J.; Purice, M.D.; Pottier, C.; Annu, K.; Baker, M.; Perkerson, R.B.; Kurti, A.; et al. TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 2017, 95, 808–816 e809. [Google Scholar] [CrossRef] [PubMed]
- Apicco, D.J.; Ash, P.E.A.; Maziuk, B.; LeBlang, C.; Medalla, M.; Al Abdullatif, A.; Ferragud, A.; Botelho, E.; Ballance, H.I.; Dhawan, U.; et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat. Neurosci. 2018, 21, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Wahl, M.C.; Will, C.L.; Luhrmann, R. The spliceosome: Design principles of a dynamic RNP machine. Cell 2009, 136, 701–718. [Google Scholar] [CrossRef] [PubMed]
- Quidville, V.; Alsafadi, S.; Goubar, A.; Commo, F.; Scott, V.; Pioche-Durieu, C.; Girault, I.; Baconnais, S.; Le Cam, E.; Lazar, V.; et al. Targeting the deregulated spliceosome core machinery in cancer cells triggers mTOR blockade and autophagy. Cancer Res. 2013, 73, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Anchi, T.; Tamura, K.; Furihata, M.; Satake, H.; Sakoda, H.; Kawada, C.; Kamei, M.; Shimamoto, T.; Fukuhara, H.; Fukata, S.; et al. SNRPE is involved in cell proliferation and progression of high-grade prostate cancer through the regulation of androgen receptor expression. Oncol. Lett. 2012, 3, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Valles, I.; Pajares, M.J.; Segura, V.; Guruceaga, E.; Gomez-Roman, J.; Blanco, D.; Tamura, A.; Montuenga, L.M.; Pio, R. Identification of novel deregulated RNA metabolism-related genes in non-small cell lung cancer. PLoS ONE 2012, 7, e42086. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.; Sousa, S.; Barros, R.; Carreto, L.; Oliveira, P.; Oliveira, C.; Chartier, N.T.; Plateroti, M.; Rouault, J.P.; Freund, J.N.; et al. CDX2 regulation by the RNA-binding protein MEX3A: Impact on intestinal differentiation and stemness. Nucleic Acids Res. 2013, 41, 3986–3999. [Google Scholar] [CrossRef]
- Barriga, F.M.; Montagni, E.; Mana, M.; Mendez-Lago, M.; Hernando-Momblona, X.; Sevillano, M.; Guillaumet-Adkins, A.; Rodriguez-Esteban, G.; Buczacki, S.J.A.; Gut, M.; et al. Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells. Cell Stem Cell 2017, 20, 801–816 e807. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.W.; Das, B.; Kim, H.S.; Clymer, B.K.; Gehring, D.; Smith, D.R.; Costanzo-Garvey, D.L.; Fernandez, M.R.; Brattain, M.G.; Kelly, D.L.; et al. AMPK Promotes Aberrant PGC1beta Expression To Support Human Colon Tumor Cell Survival. Mol. Cell. Biol. 2015, 35, 3866–3879. [Google Scholar] [CrossRef]
- Kresovich, J.K.; Joyce, B.T.; Gao, T.; Zheng, Y.; Zhang, Z.; Achenbach, C.J.; Murphy, R.L.; Just, A.C.; Shen, J.; Yang, H.; et al. Promoter methylation of PGC1A and PGC1B predicts cancer incidence in a veteran cohort. Epigenomics 2018, 10, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Culjkovic, B.; Topisirovic, I.; Borden, K.L. Controlling gene expression through RNA regulons: The role of the eukaryotic translation initiation factor eIF4E. Cell Cycle 2007, 6, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Osborne, M.J.; Volpon, L.; Kornblatt, J.A.; Culjkovic-Kraljacic, B.; Baguet, A.; Borden, K.L. eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Proc. Natl. Acad. Sci. USA 2013, 110, 3877–3882. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, L.; Fu, L.; Yuan, Y.; Dai, H.; Zhu, T.; Zhou, Y.; Yuan, F. Integrated Bioinformatics Analysis the Function of RNA Binding Proteins (RBPs) and Their Prognostic Value in Breast Cancer. Front. Pharmacol. 2019, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Landon, A.L.; Muniandy, P.A.; Shetty, A.C.; Lehrmann, E.; Volpon, L.; Houng, S.; Zhang, Y.; Dai, B.; Peroutka, R.; Mazan-Mamczarz, K.; et al. MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL. Nat. Commun. 2014, 5, 5413. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Mizuta, T.; Fujimoto, M.; Ohte, S.; Osawa, K.; Miyamoto, A.; Yoneyama, K.; Murata, E.; Machiya, A.; Jimi, E.; et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci. Rep. 2014, 4, 7596. [Google Scholar] [CrossRef] [PubMed]
- Bakheet, T.; Hitti, E.; Al-Saif, M.; Moghrabi, W.N.; Khabar, K.S.A. The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. Biochim. Biophys. Acta Gene Regul. Mech. 2018, 1861, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, L.; Moghrabi, W.; Khabar, K.S.A.; Hitti, E.G. Bi-phased regulation of the post-transcriptional inflammatory response by Tristetraprolin levels. RNA Biol. 2019, 16, 309–319. [Google Scholar] [CrossRef]
- Hitti, E.; Bakheet, T.; Al-Souhibani, N.; Moghrabi, W.; Al-Yahya, S.; Al-Ghamdi, M.; Al-Saif, M.; Shoukri, M.M.; Lanczky, A.; Grepin, R.; et al. Systematic Analysis of AU-Rich Element Expression in Cancer Reveals Common Functional Clusters Regulated by Key RNA-Binding Proteins. Cancer Res. 2016, 76, 4068–4080. [Google Scholar] [CrossRef]
- Sidali, A.; Teotia, V.; Solaiman, N.S.; Bashir, N.; Kanagaraj, R.; Murphy, J.J.; Surendranath, K. AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. Int. J. Mol. Sci. 2021, 23, 96. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, H.; Fukao, A.; Funakami, Y.; Duncan, K.E.; Fujiwara, T. Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. Front. Genet. 2019, 10, 332. [Google Scholar] [CrossRef]
Dataset | No Samples | No Array Genes | Portal | Platform | Reference |
---|---|---|---|---|---|
TCGA, Breast | 593 | 20,423 | Oncomine | Not defined | No associated paper 3 June 2013 |
TCGA, Colorectal | 237 | 20,423 | Oncomine | Not Defined | [10] |
Okayama, Lung | 246 | 19,574 | Oncomine | Human Genome U133 Plus 2.0 Array | [11] |
A: Breast | ||||
Cluster | Count | Fold | HR | p-Value |
1 | 13 | −3.0899 | 0.7487 | 0.0053 |
2 | 4 | −3.0786 | 1.1749 | 0.0531 |
3 | 15 | 1.8787 | 0.7468 | 0.0018 |
4 | 7 | 2.4200 | 1.0572 | 0.0715 |
5 | 18 | 2.2835 | 1.4526 | 0.0001 |
6 | 1 | 1.8811 | 1.0600 | 0.4300 |
B: Colon | ||||
Cluster | Count | Fold | HR | p-Value |
1 | 8 | −3.4020 | 0.6750 | 0.0347 |
2 | 12 | −3.0220 | 1.6226 | 0.0090 |
3 | 5 | −2.8213 | 0.9812 | 0.3408 |
4 | 21 | 1.9641 | 0.6320 | 0.0042 |
5 | 5 | 1.7852 | 0.8115 | 0.1130 |
6 | 7 | 2.4175 | 1.3280 | 0.0573 |
C: Lung | ||||
Cluster | Count | Fold | HR | p-Value |
1 | 11 | −2.2714 | 0.5686 | 0.0008 |
2 | 17 | 1.7615 | 0.6425 | 0.0046 |
3 | 3 | −2.0165 | 0.8606 | 0.2137 |
4 | 1 | 1.5968 | 1.1200 | 0.2700 |
5 | 2 | −2.0638 | 1.7699 | 0.0002 |
6 | 24 | 1.9161 | 1.5380 | 0.0086 |
Up-Regulated | Down-Regulated | |
---|---|---|
Breast/Colon/Lung | Breast/Colon/Lung | |
(FI > 1.5) | (FI < 1.5) | |
High-risk (HR > 1) | (Class 1) | (Class 3) |
MEX3A | NA | |
CDKN2A | ||
RPL39L | ||
VARS | ||
Low-risk (HR < 1) | (Class 2) | (Class 4) |
GSPT1 | PPARGC1B | |
SNRPE | EIF4E3 | |
SSR1 | SMAD9 | |
TIA1 |
Breast | Colon | Lung | Average Fold Induction | Average HR-Value | Cosensus | Faunction | |
---|---|---|---|---|---|---|---|
FI | FI | FI | Breast, Colon & Lung | Breast, Colon & Lung | Target | ||
CDKN2A | 2.317773 | 3.7912054 | 2.7925382 | 2.967172 | 1.36098 | unknown | TS that encoding p14 and p16 which are involved in different cellular processes. |
MEX3A | 2.8456798 | 4.859792 | 1.980403 | 3.228625 | 1.500737 | mRNA | Putative RBP involve in polarity and stremness that contributes with cellular homeostasis and carcinogenesis. |
RPL39L | 1.6922513 | 1.72875 | 2.2474358 | 1.889479 | 1.49 | ribosome | Ribosomal Protein Paralogs that are involved in gene transiations. |
VARS | 1.6565965 | 1.5851151 | 1.5416017 | 1.594438 | 1.31837 | tRNA | Changing and catalysing the bond between tRNA and designated amino acid. |
GSPT1 | 1.7117828 | 1.804728 | 1.636707 | 1.717739 | 0.613333 | mRNA | Termination of protein translation. |
SNRPE | 1.8730097 | 1.96655 | 1.5880028 | 1.809188 | 0.686667 | snRNA | Cellulare splicesome complex that involve in mRNA maturation process. |
SSR1 | 1.759067 | 1.5236051 | 1.7405431 | 1.674405 | 0.683333 | unknown | Proteins-specific transportation across ER membrane. |
TIA1 | 1.5232474 | 1.7893108 | 1.5973161 | 1.636625 | 0.66 | mRNA | Cosider as a TS that involved in controlling the translation and co-localization of target genes in SGs. |
PPARGC1B | −1.9268708 | −3.055817 | −2.537169 | −2.50662 | 0.6805 | unknown | unknown. |
EIF4E3 | −2.5564525 | −4.619756 | −1.8139602 | −2.99672 | 0.605903 | mRNA | Play essentials roles in initiation the protein translation that are involved in mRNA metabolism. |
SMAD9 | −2.2608936 | −2.207682 | −2.8138292 | −2.42747 | 0.663987 | putative miRNA | Belong to receptor SMAD protein complex, binds to DNA in process of suppressing of target gene transcription. |
Symbol | Desccriptions | Motif | Binding Site | STRING:PPI with elavl1/TTP | % ONCO Correlation | % TS Correlation |
---|---|---|---|---|---|---|
CDKN2A | Cyclin-dependent kinase inhibitor 2A | unknown | N/A | none | 11.37% | 4.07% |
MEX3A | RNA-binding protein MEX3A | AURICH motif | KHx2; Znf_CCCHx1 | none | ** | ** |
RPL39L | Ribosomal protein L39 like | unknown | N/A | none | 0.26% | 4.26% |
VARS | Valine--tRNA ligase; Aminoacyl tRNA synthetases, Class I | unknown | GST c-terminal | none | 2.38% | 0.74% |
GSPT1 | Eukaryotic peptide chain release factor GTP-binding subunit ERF3A | AURICH motif | N/A | none | 2.38% | 3.89% |
SNRPE | Small nuclear ribonucleoprotein E | unknown | LSmx1 | elavl1 | ** | ** |
SSR1 | Translocon-associated protein subunit alpha | AURICH motif | N/A | none | 6.61% | 7.04% |
TIA1 | Nucleolysin TIA-1 isoform p40 | AURICH motif | UUUUUGU / RRMX3 | elavl1 | 8.99% | 6.11% |
PPARGC1B | Peroxisome proliferator-activated receptor gamma coactivator 1-beta | AURICH motif | RRMx1 | none | ** | ** |
EIF4E3 | karyotic translation initiation factor 4E type 3 | AURICH motif | N/A | none | 7.14% | 8.15% |
SMAD9 | Mothers against decapentaplegic homolog 9 | AURICH motif | N/A | none | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakheet, T.; Al-Mutairi, N.; Doubi, M.; Al-Ahmadi, W.; Alhosaini, K.; Al-Zoghaibi, F. A Computational Recognition Analysis of Promising Prognostic Biomarkers in Breast, Colon and Lung Cancer Patients. Int. J. Mol. Sci. 2025, 26, 1017. https://doi.org/10.3390/ijms26031017
Bakheet T, Al-Mutairi N, Doubi M, Al-Ahmadi W, Alhosaini K, Al-Zoghaibi F. A Computational Recognition Analysis of Promising Prognostic Biomarkers in Breast, Colon and Lung Cancer Patients. International Journal of Molecular Sciences. 2025; 26(3):1017. https://doi.org/10.3390/ijms26031017
Chicago/Turabian StyleBakheet, Tala, Nada Al-Mutairi, Mosaab Doubi, Wijdan Al-Ahmadi, Khaled Alhosaini, and Fahad Al-Zoghaibi. 2025. "A Computational Recognition Analysis of Promising Prognostic Biomarkers in Breast, Colon and Lung Cancer Patients" International Journal of Molecular Sciences 26, no. 3: 1017. https://doi.org/10.3390/ijms26031017
APA StyleBakheet, T., Al-Mutairi, N., Doubi, M., Al-Ahmadi, W., Alhosaini, K., & Al-Zoghaibi, F. (2025). A Computational Recognition Analysis of Promising Prognostic Biomarkers in Breast, Colon and Lung Cancer Patients. International Journal of Molecular Sciences, 26(3), 1017. https://doi.org/10.3390/ijms26031017