Novel RNA-Based Therapies in the Management of Dyslipidemias
Abstract
:1. Introduction
2. RNA Agents in the Management of Dyslipidemias
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berberich, A.J.; Hegele, R.A. A Modern Approach to Dyslipidemia. Endocr. Rev. 2022, 43, 611–653. [Google Scholar] [CrossRef] [PubMed]
- Bennet, A.; Di Angelantonio, E.; Erqou, S.; Eiriksdottir, G.; Sigurdsson, G.; Woodward, M.; Rumley, A.; Lowe, G.D.O.; Danesh, J.; Gudnason, V. Lipoprotein(a) levels and risk of future coronary heart disease: Large-scale prospective data. Arch. Intern. Med. 2008, 168, 598–608, Erratum in: Arch. Intern. Med. 2008, 168, 1089. Erratum in: Arch. Intern. Med. 2008, 168, 1096. [Google Scholar] [CrossRef] [PubMed]
- Emerging Risk Factors Collaboration. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 2009, 302, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Gurdasani, D.; Sjouke, B.; Tsimikas, S.; Hovingh, G.K.; Luben, R.N.; Wainwright, N.W.J.; Pomilla, C.; Wareham, N.J.; Khaw, K.-T.; Boekholdt, S.M.; et al. Lipoprotein(a) and risk of coronary, cerebrovascular, and peripheral artery disease: The EPIC-Norfolk prospective population study. Arter. Thromb. Vasc. Biol. 2012, 32, 3058–3065. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Bousvarou, M.D.; Papakonstantinou, E.J.; Tsamoulis, D.; Koulopoulos, A.; Uceta, R.E.; Guzman, E.; Rallidis, L.S. Novel Pharmacological Therapies for the Management of Hyperlipoproteinemia(a). Int. J. Mol. Sci. 2023, 24, 13622. [Google Scholar] [CrossRef]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Gibbs, B.B.; Beaton, A.Z.; Boehme, A.K.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913, Erratum in Circulation 2024, 149, e1164. [Google Scholar] [CrossRef] [PubMed]
- Belgrad, J.; Fakih, H.H.; Khvorova, A. Nucleic Acid Therapeutics: Successes, Milestones, and Upcoming Innovation. Nucleic Acid. Ther. 2024, 34, 52–72. [Google Scholar] [CrossRef]
- Egli, M.; Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 2023, 51, 2529–2573. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol. 2021, 905, 174178. [Google Scholar] [CrossRef] [PubMed]
- Barale, C.; Melchionda, E.; Morotti, A.; Russo, I. PCSK9 Biology and Its Role in Atherothrombosis. Int. J. Mol. Sci. 2021, 22, 5880. [Google Scholar] [CrossRef]
- Blanchard, V.; Khantalin, I.; Ramin-Mangata, S.; Chémello, K.; Nativel, B.; Lambert, G. PCSK9: From biology to clinical applications. Pathology. 2019, 51, 177–183. [Google Scholar] [CrossRef]
- Jang, H.D.; Lee, S.E.; Yang, J.; Lee, H.C.; Shin, D.; Lee, H.; Lee, J.; Jin, S.; Kim, S.; Lee, S.J.; et al. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9. Eur. Heart J. 2020, 41, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Inclisiran: First Approval. Drugs 2021, 81, 389–395, Erratum in: Drugs 2021, 81, 1129. https://doi.org/10.1007/s40265-021-01529-7. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.; Turner, T.; Visseren, F.L.; et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N. Engl. J. Med. 2017, 376, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Nishikido, T.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.L.J.; Kastelein, J.J.P. Effect of 1 or 2 Doses of Inclisiran on Low-Density Lipoprotein Cholesterol Levels: One-Year Follow-up of the ORION-1 Randomized Clinical Trial. JAMA Cardiol. 2019, 4, 1067–1075. [Google Scholar] [CrossRef]
- Ray, K.K.; Troquay, R.P.T.; Visseren, F.L.J.; Leiter, L.A.; Wright, R.S.; Vikarunnessa, S.; Talloczy, Z.; Zang, X.; Maheux, P.; Lesogor, A.; et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): Results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes Endocrinol. 2023, 11, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.; et al. ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020, 382, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. ORION-9 Investigators. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 382, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.S.; Raal, F.J.; Koenig, W.; Landmesser, U.; A Leiter, L.; Vikarunnessa, S.; Lesogor, A.; Maheux, P.; Talloczy, Z.; Zang, X.; et al. Inclisiran administration potently and durably lowers LDL-C over an extended-term follow-up: The ORION-8 trial. Cardiovasc. Res. 2024, 120, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.; Durst, R.; Bi, R.; Talloczy, Z.; Maheux, P.; Lesogor, A.; Kastelein, J.J.; ORION-5 Study Investigators. Efficacy, Safety, and Tolerability of Inclisiran in Patients with Homozygous Familial Hypercholesterolemia: Results From the ORION-5 Randomized Clinical Trial. Circulation 2024, 149, 354–362. [Google Scholar] [CrossRef] [PubMed]
- A Study of Inclisiran to Prevent Cardiovascular Events in High-Risk Primary Prevention Patients. Available online: https://clinicaltrials.gov/study/NCT05739383 (accessed on 5 November 2024).
- A Randomized Trial Assessing the Effects of Inclisiran on Clinical Outcomes Among People with Cardiovascular Disease (ORION-4). Available online: https://clinicaltrials.gov/study/NCT03705234 (accessed on 5 November 2024).
- Study of Inclisiran to Prevent Cardiovascular (CV) Events in Participants with Established Cardiovascular Disease (VICTORION-2P). Available online: https://www.clinicaltrials.gov/study/NCT05030428 (accessed on 5 November 2024).
- Sosnowska, B.; Surma, S.; Banach, M. Targeted Treatment against Lipoprotein (a): The Coming Breakthrough in Lipid Lowering Therapy. Pharmaceuticals 2022, 15, 1573. [Google Scholar] [CrossRef]
- Langsted, A.; Nordestgaard, B.G. Antisense Oligonucleotides Targeting Lipoprotein(a). Curr. Atheroscler. Rep. 2019, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J.-C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; et al. AKCEA-APO(a)-LRx Study Investigators. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med. 2020, 382, 244–255. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov Identifier: NCT04023552. Assessing the Impact of Lipoprotein (a) Lowering with Pelacarsen (TQJ230) on Major Cardiovascular Events in Patients with CVD [Lp(a)HORIZON]. Available online: https://clinicaltrials.gov/study/NCT04023552 (accessed on 7 November 2024).
- O’Donoghue, M.L.; Rosenson, R.S.; Gencer, B.; López, J.A.G.; Lepor, N.E.; Baum, S.J.; Stout, E.; Gaudet, D.; Knusel, B.; Kuder, J.F.; et al. OCEAN(a)-DOSE Trial Investigators. Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N. Engl. J. Med. 2022, 387, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov Identifier: NCT05581303. A Double-Blind, Randomized, Placebo-controlled, Multicenter Study Assessing the Impact of Olpasiran on Major Cardiovascular Events in Participants with Atherosclerotic Cardiovascular Disease and Elevated Lipoprotein(a). Available online: https://clinicaltrials.gov/study/NCT05581303 (accessed on 10 November 2024).
- Nissen, S.E.; Wolski, K.; Balog, C.; Swerdlow, D.I.; Scrimgeour, A.C.; Rambaran, C.; Wilson, R.J.; Boyce, M.; Ray, K.K.; Cho, L.; et al. Single Ascending Dose Study of a Short Interfering RNA Targeting Lipoprotein(a) Production in Individuals with Elevated Plasma Lipoprotein(a) Levels. JAMA 2022, 327, 1679–1687. [Google Scholar] [CrossRef]
- Nissen, S.E.; Wang, Q.; Nicholls, S.J.; Navar, A.M.; Ray, K.K.; Schwartz, G.G.; Szarek, M.; Stroes, E.S.G.; Troquay, R.; Dorresteijn, J.A.N.; et al. Zerlasiran-A Small-Interfering RNA Targeting Lipoprotein(a): A Phase 2 Randomized Clinical Trial. JAMA 2024, 332, 1992–2002. [Google Scholar] [CrossRef]
- Nissen, S.E.; Linnebjerg, H.; Shen, X.; Wolski, K.; Ma, X.; Lim, S.; Michael, L.F.; Ruotolo, G.; Gribble, G.; Navar, A.M.; et al. Lepodisiran, an Extended-Duration Short Interfering RNA Targeting Lipoprotein(a): A Randomized Dose-Ascending Clinical Trial. JAMA 2023, 330, 2075–2083. [Google Scholar] [CrossRef]
- A Phase 2, Randomized, Double-Blind, Placebo-Controlled Study to Investigate the Efficacy and Safety of LY3819469 in Adults with Elevated Lipoprotein(a). Available online: https://clinicaltrials.gov/study/NCT05565742 (accessed on 11 November 2024).
- A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study to Investigate the Effect of Lepodisiran on the Reduction of Major Adverse Cardiovascular Events in Adults with Elevated Lipoprotein(a) Who Have Established Atherosclerotic Cardiovascular Disease or Are at Risk for a First Cardiovascular Event–ACCLAIM-Lp(a). Available online: https://clinicaltrials.gov/study/NCT06292013 (accessed on 11 November 2024).
- Giammanco, A.; Spina, R.; Cefalù, A.B.; Averna, M. APOC-III: A Gatekeeper in Controlling Triglyceride Metabolism. Curr. Atheroscler. Rep. 2023, 25, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef]
- Lazarte, J.; Hegele, R.A. Volanesorsen for treatment of familial chylomicronemia syndrome. Expert. Rev. Cardiovasc. Ther. 2021, 19, 685–693. [Google Scholar] [CrossRef]
- Witztum, J.L.; Gaudet, D.; Freedman, S.D.; Alexander, V.J.; Digenio, A.; Williams, K.R.; Yang, Q.; Hughes, S.G.; Geary, R.S.; Arca, M.; et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2019, 381, 531–542. [Google Scholar] [CrossRef]
- Gouni-Berthold, I.; Alexander, V.J.; Yang, Q.; Hurh, E.; Steinhagen-Thiessen, E.; Moriarty, P.M.; Hughes, S.G.; Gaudet, D.; A Hegele, R.; O’Dea, L.S.L.; et al. COMPASS study group. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021, 9, 264–275. [Google Scholar] [CrossRef]
- Witztum, J.L.; Gaudet, D.; Arca, M.; Jones, A.; Soran, H.; Gouni-Berthold, I.; Stroes, E.S.; Alexander, V.J.; Jones, R.; Watts, L.; et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome: Long-term efficacy and safety data from patients in an open-label extension trial. J. Clin. Lipidol. 2023, 17, 342–355, Erratum in: J. Clin. Lipidol. 2024, 18, e482–e483. https://doi.org/10.1016/j.jacl.2023.09.010. [Google Scholar] [CrossRef]
- Calcaterra, I.; Lupoli, R.; Di Minno, A.; Di Minno, M.N.D. Volanesorsen to treat severe hypertriglyceridaemia: A pooled analysis of randomized controlled trials. Eur. J. Clin. Investig. 2022, 52, e13841. [Google Scholar] [CrossRef] [PubMed]
- Oral, E.A.; Garg, A.; Tami, J.; Huang, E.A.; O’Dea, L.S.; Schmidt, H.; Tiulpakov, A.; Mertens, A.; Alexander, V.J.; Watts, L.; et al. Assessment of efficacy and safety of volanesorsen for treatment of metabolic complications in patients with familial partial lipodystrophy: Results of the BROADEN study: Volanesorsen in FPLD; The BROADEN Study. J. Clin. Lipidol. 2022, 16, 833–849. [Google Scholar] [CrossRef] [PubMed]
- Paik, J.; Duggan, S. Volanesorsen: First Global Approval. Drugs 2019, 79, 1349–1354. [Google Scholar] [CrossRef]
- Akcea and Ionis Receive Complete Response Letter for WAYLIVRA from FDA. Available online: https://ir.ionis.com/news-releases/news-release-details/akcea-and-ionis-receive-complete-response-letter-waylivra-fda (accessed on 16 November 2024).
- Tardif, J.C.; Karwatowska-Prokopczuk, E.; Amour, E.S.; Ballantyne, C.M.; Shapiro, M.D.; Moriarty, P.M.; Baum, S.J.; Hurh, E.; Bartlett, V.J.; Kingsbury, J.; et al. Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur. Heart J. 2022, 43, 1401–1412. [Google Scholar] [CrossRef]
- Bergmark, B.A.; Marston, N.A.; Prohaska, T.A.; Alexander, V.J.; Zimerman, A.; Moura, F.A.; Murphy, S.A.; Goodrich, E.L.; Zhang, S.; Gaudet, D.; et al. Bridge–TIMI 73a Investigators. Olezarsen for Hypertriglyceridemia in Patients at High Cardiovascular Risk. N. Engl. J. Med. 2024, 390, 1770–1780. [Google Scholar] [CrossRef]
- Stroes, E.S.G.; Alexander, V.J.; Karwatowska-Prokopczuk, E.; Hegele, R.A.; Arca, M.; Ballantyne, C.M.; Soran, H.; Prohaska, T.A.; Xia, S.; Ginsberg, H.N.; et al. Balance Investigators. Olezarsen, Acute Pancreatitis, and Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2024, 390, 1781–1792. [Google Scholar] [CrossRef]
- Olezarsen Receives Orphan Drug Designation from U.S. FDA for Familial Chylomicronemia Syndrome. Available online: https://ir.ionis.com/news-releases/news-release-details/olezarsen-receives-orphan-drug-designation-us-fda-familial (accessed on 20 November 2024).
- A Study of Olezarsen Administered Subcutaneously to Participants with Severe Hypertriglyceridemia. Available online: https://clinicaltrials.gov/study/NCT05552326 (accessed on 20 November 2024).
- A Study of Olezarsen (ISIS 678354) Administered to Participants with Severe Hypertriglyceridemia. Available online: https://clinicaltrials.gov/study/NCT05079919 (accessed on 20 November 2024).
- A Study of Olezarsen (ISIS 678354) in Participants with Hypertriglyceridemia and Atherosclerotic Cardiovascular Disease, or with Severe Hypertriglyceridemia. Available online: https://clinicaltrials.gov/study/NCT05610280 (accessed on 20 November 2024).
- Ballantyne, C.M.; Vasas, S.; Azizad, M.; Clifton, P.; Rosenson, R.S.; Chang, T.; Melquist, S.; Zhou, R.; Mushin, M.; Leeper, N.J.; et al. Plozasiran, an RNA Interference Agent Targeting APOC3, for Mixed Hyperlipidemia. N. Engl. J. Med. 2024, 391, 899–912. [Google Scholar] [CrossRef]
- Gaudet, D.; Pall, D.; Watts, G.F.; Nicholls, S.J.; Rosenson, R.S.; Modesto, K.; Martin, J.S.; Hellawell, J.; Ballantyne, C.M. Plozasiran (ARO-APOC3) for Severe Hypertriglyceridemia: The SHASTA-2 Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 620–630. [Google Scholar] [CrossRef] [PubMed]
- A Phase 3 Study to Evaluate the Efficacy and Safety of ARO-APOC3 in Adults with Familial Chylomicronemia Syndrome. Available online: https://www.clinicaltrials.gov/study/NCT05089084 (accessed on 20 November 2024).
- Watts, G.F.; Rosenson, R.S.; Hegele, R.A.; Goldberg, I.J.; Gallo, A.; Mertens, A.; Baass, A.; Zhou, R.; Muhsin, M.; Hellawell, J.; et al. Plozasiran for Managing Persistent Chylomicronemia and Pancreatitis Risk. N. Engl. J. Med. 2025, 392, 127–137. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Bousvarou, M.D.; Sourlas, A.; Papakonstantinou, E.J.; Genao, E.P.; Uceta, R.E.; Guzman, E. Angiopoietin-Like Protein 3 (ANGPTL3) Inhibitors in the Management of Refractory Hypercholesterolemia. Clin. Pharmacol. 2022, 14, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Gaudet, D.; Hegele, R.A.; Ballantyne, C.M.; Nicholls, S.J.; Lucas, K.J.; Martin, J.S.; Zhou, R.; Muhsin, M.; Chang, T.; et al. ARCHES-2 Trial Team. Zodasiran, an RNAi Therapeutic Targeting ANGPTL3, for Mixed Hyperlipidemia. N. Engl. J. Med. 2024, 391, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Study of ARO-ANG3 in Participants with Homozygous Familial Hypercholesterolemia (HOFH) (Gateway). Available online: https://www.clinicaltrials.gov/study/NCT05217667 (accessed on 21 November 2024).
- Dudek, H.; Abrams, M.; Saxena, U.; Turanov, A.; Brown, B.; Ruotolo, G.; Michael, L. Identification and Characterization of Solbinsiran, a GalNAc Conjugated siRNA Targeting Angiopoietin-Like 3. Circulation 2023, 148 (Suppl. S1), A12705. [Google Scholar] [CrossRef]
- Ray, K.; Ruotolo, G.; Michael, L.; Shen, X.; Ma, X.; Lim, S.; Nicholls, S.J.; Linnebjerg, H. Solbinsiran, a galnac-conjugated sirna targeting angptl3, reduces atherogenic lipoproteins in individuals with mixed dyslipidaemia in a durable and dosedependent manner. J. Am. Coll. Cardiol. 2024, 83 (Suppl. S13), 1673. [Google Scholar] [CrossRef]
- A Study of LY3561774 in Participants with Mixed Dyslipidemia (PROLONG-ANG3). Available online: https://www.clinicaltrials.gov/study/NCT05256654 (accessed on 21 November 2024).
Type of Nucleic Acid Therapeutic | Agent | Target |
---|---|---|
Antisense Oligonucleotides (ASOs) | Pelacarsen (AKCEA-APO(a)-LRx, APO(a)-LRx, TQJ230) | Lp(a) |
Volanesorsen | ApoC-III | |
Olezarsen (ISIS 678354, AKCEA-APOCIII-LRx) | ||
Plozasiran (ARO-APOC3) | ||
Small Interfering RNAs (siRNAs) | Inclisiran | PCSK9 |
Olpasiran | Lp(a) | |
Zerlasiran (SLN360) | ||
Lepodisiran (LY3819469) | ||
Zodasiran (ARO-ANG3) | ANGPTL3 | |
Solbinsiran (LY3561774) |
Target/Name | Study Design | Purpose/Intervention | Results |
---|---|---|---|
PCSK9 | |||
Inclisiran | |||
[14] ORION-1 | Phase 2, multicenter, double-blinded, placebo-controlled (501 patients at high risk for CVD) | Inclisiran (SC administration, 300 mg) vs. placebo | Dose-dependent LDL-C reduction up to 52.6%; similar safety profiles. |
[15] Ray et al.: One-Year Follow-up of the ORION-1 Randomized Clinical Trial | Phase 2, multicenter, double-blinded, placebo-controlled | Inclisiran (300 mg subcutaneous injection, days 1 and 90) vs. placebo | 50% LDL-C reduction at 6 months, 30% at 12 months; optimal dosing regimen identified. |
[16] ORION-3 | Open-label extension of ORION-1 | Inclisiran (long-term administration) | 44.2% LDL-C reduction over 4 years; no serious treatment-related AEs. |
[17] ORION-10 & ORION-11 | Phase 3, randomized, double-blind, placebo-controlled in patients with established CVD or an ASCVD equivalent | Inclisiran (284 mg, SC injections at day 1, 90, and every 6 months) vs. placebo | 50% LDL-C reduction; mild injection-site AEs in inclisiran group (ORION-10: 2.6% vs. 0.9%—ORION-11: 4.7% vs. 0.5%). |
[18] ORION-9 | Phase 3, multicenter, double-blinded, placebo-controlled (482 patients with HeFH and LDL-C > 100 mg/dL) | Inclisiran (300 mg, multiple doses) vs. placebo | 47.9% LDL-C reduction; similar, non-significant serious AEs between groups. |
[19] ORION-8 | Phase 3, open-label extension of ORION-9, 10, 11 | Inclisiran (300 mg) vs. placebo | 49.4% LDL-C reduction; 78.4% of patients achieved LDL-C targets; safety data consistent with previous studies. |
[20] ORION-5 | Phase 3, randomized, double-blind/open-label study (56 patients with HoFH and baseline LDL-C > 500 mg/dL before treatment or LDL-C ≥ 130 mg/dL despite treatment with the maximum tolerated statin dose, with or without ezetimibe) | Inclisiran (300 mg) vs. placebo | 60.6% reduction in PCSK9, but no significant LDL-C reduction. |
[21] VICTORION-1 PREVENT | Phase 3, randomized, double-blind, placebo-controlled (estimated recruitment: 14,000 patients) | Inclisiran (300 mg) vs. placebo | Ongoing. Aims to evaluate the effect of inclisiran on MACE reduction in high-risk patients without CVD. Estimated completion in 2029. |
[22] ORION-4 | Phase 3, randomized, double-blind, placebo-controlled (estimated recruitment: 15,000 patients) | Inclisiran (300 mg) vs. placebo | Ongoing. Aims to evaluate the effect of inclisiran on MACE reduction in established CVD patients. Estimated completion in 2049. |
[23] VICTORION-2 PREVENT | Phase 3, randomized, double-blind, placebo-controlled (estimated recruitment: 17,000 patients) | Inclisiran (300 mg) vs. placebo | Ongoing. Secondary prevention of cardiovascular events in established CVD patients. Estimated completion in 2027. |
Lipoprotein (a) | |||
Pelacarsen | |||
[26] AKCEA-APO(a)-LRx Study | Phase 2, double-blind, dose-ranging, placebo-controlled, randomized trial (286 patients with established CVD and Lp(a) > 60 mg/dL) | Pelacarsen (20 mg weekly or other dosing regimens), subcutaneously vs. placebo | Dose-dependent reduction in Lp(a) by 35% to 80% (p < 0.003 to 0.001), LDL-C reduced by 16.4%, ApoB reduced by 10.9%, OxPL-apoB reduced by 88%, OxPL-apo(a) reduced by 70%. No significant difference in hsCRP or major adverse events. Common AE: injection-site reactions. |
[27] Lp(a) HORIZON Trial | Ongoing, phase 3, multicenter, double-blind, randomized, placebo-controlled (8323 patients) | Pelacarsen vs. placebo, subcutaneously | Ongoing. Aims to evaluate the effect of pelacarsen on MACEs in participants with ASCVD and Lp(a) > 70 mg/dL. Estimated completion date: May 30, 2025. |
Olpasiran | |||
[28] OCEAN(a)-DOSE Trial | Phase 2, randomized, double-blinded, placebo-controlled (281 patients) | Olpasiran in four ascending subcutaneous dosage regimens vs. placebo | Lp(a) reduction ranged from 70.5% to 101.1% (p < 0.001). No significant difference in adverse events; most common: injection-site reactions. |
[29] OCEAN(a)-DOSE Outcomes Trial | Ongoing, phase 3, multicenter, randomized, double-blinded, placebo-controlled (7297 patients) | Olpasiran vs. placebo, subcutaneously | Ongoing. Aims to evaluate the impact of olpasiran on MACE. Results expected by December 2026. |
Zerlasiran | |||
[30] APOLLO Study | Phase 1, single-ascending-dose (32 patients) | Subcutaneous zerlasiran administration in five ascending doses (30–600 mg) vs. placebo | Dose-dependent Lp(a) reduction of 46% to 96%, maintained through day 150. No serious adverse events observed. |
[31] ALPACAR-360 | Phase 2, randomized, placebo-controlled (178 patients) | Subcutaneous zerlasiran administration: 300 mg every 16 or 24 weeks, or 450 mg every 24 weeks, vs. placebo | At 36 weeks, Lp(a) reductions of 80% or more across all regimens. No serious adverse events reported. |
Lepodisiran | |||
[32] Nissen et al. | Phase 1, single-ascending-dose, placebo-controlled (48 healthy participants) | Subcutaneous lepodisiran (4–608 mg) vs. placebo | Mean Lp(a) reduction of 97% at the highest dose, sustained for nearly a year. Treatment was generally safe. |
[33] ClinicalTrials.gov ID: NCT05565742 | Phase 2, randomized, double-blind, placebo-controlled (216 participants with Lp(a) ≥ 175 nmol/L) | Subcutaneous lepodisiran over 20 months vs. placebo | Results pending. |
[34] ACCLAIM-Lp(a) Trial | Ongoing, phase 3, randomized, double-blind, placebo-controlled (12,500 participants with established CVD or at high CVD risk and Lp(a) ≥ 175 nmol/L) | Subcutaneous lepodisiran vs. placebo to assess impact on major adverse cardiovascular events (MACEs) | Ongoing. Aims to evaluate the effect of lepodisiran on MACE reduction. Completion expected by March 2031. |
ApoC-III | |||
Volanesorsen | |||
[38] APPROACH Trial | Phase 3, randomized, double-blind, placebo-controlled (66 patients with FCS) | Subcutaneous volanesorsen (300 mg weekly) vs. placebo | 77% TG reduction, 58% VLDL-C reduction, 84% ApoC-III reduction (p < 0.001). LDL-C increased by 136%. Thrombocytopenia in 45.4%; injection-site reactions in 60.6%. |
[39] COMPASS Trial | Phase 3, multicenter, double-blind, randomized, placebo-controlled (133 patients with multifactorial chylomicronemia) | Subcutaneous volanesorsen vs. placebo | 71.2% TG reduction, 76.1% ApoC-III reduction, 95.5% LDL-C increase (p < 0.001). Thrombocytopenia in 13%. No cases of pancreatitis in volanesorsen group. |
[40] Witzum et al. | Based on phase 3 trials (number of patients not specified) | Subcutaneous volanesorsen | Sustained reduction in TG levels over long-term use. |
[41] Calcaterra et al. | Analysis of four randomized trials (139 patients) | Subcutaneous volanesorsen vs. placebo | TG reduced by 74%, VLDL-C by 71%, ApoC-III by 80%, ApoB48 by 69%; HDL-C increased by 46%. Thrombocytopenia strongly associated with volanesorsen use. |
[42] BROADEN Study | Phase 2/3, randomized, placebo-controlled (40 patients with familial partial lipodystrophy) | Subcutaneous volanesorsen | TG reduction by 88%. |
Olezarsen | |||
[45] Tardif et al. | Phase 2, double-blind, randomized, placebo-controlled (114 patients with established/high-risk CVD; TG, 200–500 mg/dL) | Olezarsen: 10 mg monthly, 15 mg every two weeks, 10 mg weekly, 50 mg monthly, or placebo | At 6 months: 60% TG reduction, 74% ApoC-III reduction, 58% VLDL-C reduction. HDL-C increased by 30%. No differences in platelet counts, liver, or renal function. Injection-site reactions were the most common adverse event. |
[46] Bridge–TIMI 73a | Phase 2b, double-blind, randomized, placebo-controlled (154 patients with high-risk CVD; TG, 200–499 mg/dL or ≥500 mg/dL) | Olezarsen: SC doses of 50 mg or 80 mg vs. placebo | At 6 months: TG reduced by up to and 53.1%, ApoC-III reduced by up to 73.2%, and VLDL-C reduced by up to 49.7% (p < 0.001 vs. placebo). Lipid reductions were sustained for 12 months. No notable safety concerns. |
[47] Balance | Phase 3, randomized, double-blind, placebo-controlled (66 patients with FCS; TG > 880 mg/dL) | Olezarsen: monthly doses of 80 mg or 50 mg vs. placebo | At 6 months: TG reduced by 43.5% (80 mg, p < 0.001) and 22.4% (50 mg, p < 0.08); ApoC-III reduced by 73.7% (80 mg) and 65.5% (50 mg). 88% reduction in acute pancreatitis risk. Moderate adverse events in four patients (80 mg group). |
[49] ClinicalTrials.gov ID: NCT05552326 | Phase 3, randomized, double-blind, placebo-controlled (446 patients; fasting plasma TG ≥ 500 mg/dL) | Olezarsen vs. placebo; 53-week treatment phase with 78 weeks total follow-up. | Ongoing. Aims to evaluate efficacy of olezarsen (vs. placebo) in reducing serum TG levels from baseline. Estimated completion: July 2025. |
[50] ClinicalTrials.gov ID: NCT05079919 | Phase 3, randomized, double-blind, placebo-controlled (617 patients; fasting plasma TG ≥ 500 mg/dL) | Olezarsen vs. placebo; 53 week-treatment with a 78-week total follow-up. | Ongoing. Aims to evaluate efficacy of olezarsen (vs. placebo) in reducing serum TG levels from baseline. Estimated completion: July 2025. |
[51] ClinicalTrials.gov ID: NCT05610280 | Phase 3, randomized, double-blind, placebo-controlled (1478 patients with either established CVD or of high CVD risk and TG 200–500 mg/dL or with TG ≥ 500 mg/dL) | Olezarsen vs. placebo; 53-week treatment phase and 13-week post-intervention follow-up | Ongoing. Aims to evaluate efficacy of olezarsen (vs. placebo) in reducing serum TG levels from baseline. Estimated completion: June 2025. |
Plozasiran | |||
[52] MUIR | Phase 2b, randomized, double-blind, placebo-controlled (353 patients; fasting plasma TG, 150–499 mg/dL, LDL-C ≥ 70 mg/dL, or non-HDL-C ≥ 100 mg/dL) | Plozasiran (10, 25, 50 mg at day 1 and week 12; or 50 mg at day 1 and week 24) vs. placebo | TG reduced by 62.4%, ApoC-III by 78.5%, non-HDL-C by 24.2%, and LDL-C by 13.6% at 24 weeks. Adverse events similar between groups. |
[53] SHASTA-2 | Phase 2b, randomized, double-blind, placebo-controlled (226 patients; fasting serum TG ≥ 500 mg/dL) | Plozasiran (10, 25, or 50 mg on day 1 and week 12) vs. placebo | Dose-dependent reductions: TG by up to 57%, ApoC-III by up to 77%, non-HDL-C by up to 20.2%. HDL-C increased by up to 57%. Well tolerated. |
[54,55] ClinicalTrials.gov ID: NCT05089084—PALISADE | Phase 3, multicenter, double-blind, randomized, placebo-controlled (75 patients; mean fasting TG = 2044 mg/dL; familial chylomicronemia syndrome) | Plozasiran (25 mg or 50 mg every 3 months) vs. placebo | By month 10: TG reduced by up to 80%, ApoC-III by up to 96%, and acute pancreatitis risk by 83% (OR 0.17, p = 0.03). Open-label, extension, ongoing. |
ANGPTL3 | |||
Zodasiran | |||
[57] ARCHES-2 | Phase 2, dose-ranging, double-blind, randomized, placebo-controlled (204 patients; mixed hyperlipidemia) | Zodasiran (50, 100, or 200 mg SC on day 1 and week 12) vs. placebo | At week 24: TG reduced by 63%, ANGPTL3 by 73.7%, non-HDL-C by 36.4%, LDL-C by 20%, and Lp(a) by 20%. No hepatic fat increase; transient HbA1C elevation. Well tolerated. |
[58] Gateway | Phase 2, open-label (18 patients; homozygous familial hypercholesterolemia (HoFH), LDL-C > 100 mg/dL) | Zodasiran (SC administration for 36 weeks, followed by up to eight open-label doses in a 24-month extension) | Ongoing. Aims to evaluate the efficacy and safety of zodasiran in HoFH. Estimated completion: May 2025. |
Solbinsiran | |||
[60] Ray, Ruotolo et al. | Phase 1, multicenter, double-blind, randomized, placebo-controlled (40 individuals; fasting TG 150–499 mg/dL; LDL-C ≥ 70 mg/dL) | Solbinsiran (seven dose regimens) vs. placebo | Dose-dependent reductions: ANGPTL3 by up to 86%, TG by up to 73%, non-HDL-C by up to 46%, ApoB by up to 36%. Sustained for 169 days. Most adverse events mild, reported in 17–67% (solbinsiran) vs. 20–50% (placebo). |
[61] Clinicaltrials.gov ID: NCT05256654—PROLONG-ANG3 | Phase 2b, multicenter, double-blind, placebo-controlled, parallel-group (175 patients; mixed dyslipidemia) | Solbinsiran (three dosage regimens) vs. placebo | Study completed. Publication of results pending. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmas, C.E.; Bousvarou, M.D.; Tsamoulis, D.; Gianniou, M.; Papakonstantinou, E.J.; Rallidis, L.S. Novel RNA-Based Therapies in the Management of Dyslipidemias. Int. J. Mol. Sci. 2025, 26, 1026. https://doi.org/10.3390/ijms26031026
Kosmas CE, Bousvarou MD, Tsamoulis D, Gianniou M, Papakonstantinou EJ, Rallidis LS. Novel RNA-Based Therapies in the Management of Dyslipidemias. International Journal of Molecular Sciences. 2025; 26(3):1026. https://doi.org/10.3390/ijms26031026
Chicago/Turabian StyleKosmas, Constantine E., Maria D. Bousvarou, Donatos Tsamoulis, Maria Gianniou, Evangelia J. Papakonstantinou, and Loukianos S. Rallidis. 2025. "Novel RNA-Based Therapies in the Management of Dyslipidemias" International Journal of Molecular Sciences 26, no. 3: 1026. https://doi.org/10.3390/ijms26031026
APA StyleKosmas, C. E., Bousvarou, M. D., Tsamoulis, D., Gianniou, M., Papakonstantinou, E. J., & Rallidis, L. S. (2025). Novel RNA-Based Therapies in the Management of Dyslipidemias. International Journal of Molecular Sciences, 26(3), 1026. https://doi.org/10.3390/ijms26031026