Prenatal Constant Light Exposure Induces Behavioral Deficits in Male and Female Rat Offspring: Effects of Prenatal Melatonin Treatment
Abstract
:1. Introduction
2. Results
2.1. Melatonin Treatment Corrected Anxiety in Both Offspring Sexes with Prenatal CLE
2.2. Prenatal Melatonin Treatment Caused Up-Regulation of Melatonin MT1A and MT1b Receptors in the Hippocampus, but Did Not Affect Prenatal CLE-Induced Elevated Plasma Corticosterone Levels
3. Discussion
4. Materials and Methods
4.1. The Animals and Experimental Design
4.2. Behavioral Tests
4.2.1. Open Field Test (OF)
4.2.2. Elevated Plus Maze Test (EPM)
4.2.3. Light/Dark Test (LDT)
4.2.4. Sucrose Preference Test (SPT)
4.2.5. Splash Test
4.3. ELISA Test
4.3.1. Measurement of Plasma Adrenocorticotropic Hormone (ACTH) and Corticosterone (CORT) Levels
4.3.2. Measurement of Melatonin Receptors in the Hippocampus
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CLE | Constant light exposure |
LD | Light/dark |
CL | Constant light |
OF | Open field |
References
- Alder, J.; Fink, N.; Bitzer, J.; Hösli, I.; Holzgreve, W. Depression and Anxiety during Pregnancy: A Risk Factor for Obstetric, Fetal and Neonatal Outcome? A Critical Review of the Literature. J. Matern.-Fetal Neonatal Med. 2007, 20, 189–209. [Google Scholar] [CrossRef]
- Dunkel Schetter, C. Psychological Science on Pregnancy: Stress Processes, Biopsychosocial Models, and Emerging Research Issues. Annu. Rev. Psychol. 2011, 62, 531–558. [Google Scholar] [CrossRef]
- Shahhosseini, Z.; Pourasghar, M.; Khalilian, A.; Salehi, F. A Review of the Effects of Anxiety During Pregnancy on Children’s Health. Mater. Sociomed. 2015, 27, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Heck, A.L.; Handa, R.J. Sex Differences in the Hypothalamic–Pituitary–Adrenal Axis’ Response to Stress: An Important Role for Gonadal Hormones. Neuropsychopharmacology 2019, 44, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions*. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef] [PubMed]
- De Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the Brain: From Adaptation to Disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef]
- Seckl, J.R. Physiologic Programming of the Fetus. Clin. Perinatol. 1998, 25, 939–962. [Google Scholar] [CrossRef]
- Palagini, L.; Gemignani, A.; Banti, S.; Manconi, M.; Mauri, M.; Riemann, D. Chronic Sleep Loss during Pregnancy as a Determinant of Stress: Impact on Pregnancy Outcome. Sleep Med. 2014, 15, 853–859. [Google Scholar] [CrossRef]
- Talge, N.M.; Neal, C.; Glover, V.; the Early Stress, Translational Research and Prevention Science Network: Fetal and Neonatal Experience on Child and Adolescent Mental Health. Antenatal Maternal Stress and Long-term Effects on Child Neurodevelopment: How and Why? Child Psychol. Psychiatry 2007, 48, 245–261. [Google Scholar] [CrossRef]
- Mairesse, J.; Lesage, J.; Breton, C.; Bréant, B.; Hahn, T.; Darnaudéry, M.; Dickson, S.L.; Seckl, J.; Blondeau, B.; Vieau, D.; et al. Maternal Stress Alters Endocrine Function of the Feto-Placental Unit in Rats. Am. J. Physiol.-Endocrinol. Metab. 2007, 292, E1526–E1533. [Google Scholar] [CrossRef]
- Siemienowicz, K.J.; Wang, Y.; Marečková, M.; Nio-Kobayashi, J.; Fowler, P.A.; Rae, M.T.; Duncan, W.C. Early Pregnancy Maternal Progesterone Administration Alters Pituitary and Testis Function and Steroid Profile in Male Fetuses. Sci. Rep. 2020, 10, 21920. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, M. Alterations Induced by Gestational Stress in Brain Morphology and Behaviour of the Offspring. Prog. Neurobiol. 2001, 65, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.; Carneiro, R.; Oh, C.-S. Melatonin in Relation to Cellular Antioxidative Defense Mechanisms. Horm. Metab. Res. 1997, 29, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R. Melatonin, Hormone of Darkness and More—Occurrence, Control Mechanisms, Actions and Bioactive Metabolites. Cell. Mol. Life Sci. 2008, 65, 2001–2018. [Google Scholar] [CrossRef]
- Depres-Brummer, P.; Levi, F.; Metzger, G.; Touitou, Y. Light-Induced Suppression of the Rat Circadian System. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1995, 268, R1111–R1116. [Google Scholar] [CrossRef]
- Simko, F. Experimental Models of Melatonin-Deficient Hypertension. Front. Biosci. 2013, 18, 616. [Google Scholar] [CrossRef]
- Vermouth, N.T.; Carriazo, C.S.; Gallará, R.V.; Carpentieri, A.R.; Bellavía, S.L. Maternal Coordination of the Daily Rhythm of Malate Dehydrogenase Activity in Testes from Young Rats: Effect of Maternal Sympathetic Denervation of the Pineal Gland and Administration of Melatonin. Chronobiol. Int. 1995, 12, 8–18. [Google Scholar] [CrossRef]
- Cisternas, C.D.; Compagnucci, M.V.; Conti, N.R.; Ponce, R.H.; Vermouth, N.T. Protective Effect of Maternal Prenatal Melatonin Administration on Rat Pups Born to Mothers Submitted to Constant Light during Gestation. Braz. J. Med. Biol. Res. 2010, 43, 874–882. [Google Scholar] [CrossRef]
- Tamura, H.; Takayama, H.; Nakamura, Y.; Reiter, R.J.; Sugino, N. Fetal/Placental Regulation of Maternal Melatonin in Rats. J. Pineal Res. 2008, 44, 335–340. [Google Scholar] [CrossRef]
- Williams, L.M.; Martinoli, M.G.; Titchener, L.T.; Pelletier, G. The Ontogeny of Central Melatonin Binding Sites in the Rat. Endocrinology 1991, 128, 2083–2090. [Google Scholar] [CrossRef]
- Deguchi, T. Ontogenesis of a Biological Clock for Serotonin:Acetyl Coenzyme A N-Acetyltransferase in Pineal Gland of Rat. Proc. Natl. Acad. Sci. USA 1975, 72, 2814–2818. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.-C.; Chen, Y.-X.; Sun, X.-R.; Jiang, N.; Chang, Q.; Liu, X.-M.; Pan, R.-L. One-Week Maternal Separation Caused Sex-Specific Changes in Behavior and Hippocampal Metabolomics of Offspring Rats. Brain Sci. 2024, 14, 1275. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Valentino, R.J. Sex Differences in Stress-Related Psychiatric Disorders: Neurobiological Perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Nassiri, A.; Lamtai, M.; Berkiks, I.; Benmhammed, H.; Coulibaly, S.M.; Chakit, M.; Ibouzine-dine, L.; Mesfioui, A.; El-Hessni, A. Age and Sex Dependent Effects of Maternal Deprivation on Anxiety-Like and Depressive-Like Behaviors and Oxidative Stress in the Prefrontal Cortex of Rats. Adv. Anim. Vet. Sci. 2024, 12, 457–466. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Stoynova, T.; Ilieva, K.; Mitreva, R.; Atanasova, M. Agomelatine Treatment Corrects Symptoms of Depression and Anxiety by Restoring the Disrupted Melatonin Circadian Rhythms of Rats Exposed to Chronic Constant Light. Pharmacol. Biochem. Behav. 2018, 171, 1–9. [Google Scholar] [CrossRef]
- Repova, K.; Baka, T.; Krajcirovicova, K.; Stanko, P.; Aziriova, S.; Reiter, R.J.; Simko, F. Melatonin as a Potential Approach to Anxiety Treatment. Int. J. Mol. Sci. 2022, 23, 16187. [Google Scholar] [CrossRef]
- Liu, J.; Clough, S.J.; Dubocovich, M.L. Role of the MT1 and MT2 Melatonin Receptors in Mediating Depressive- and Anxiety-like Behaviors in C3H/HeN Mice. Genes Brain Behav. 2017, 16, 546–553. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyanova, T.; Nocheva, H.; Nenchovska, Z.; Krushovlieva, D.; Ivanova, P.; Tchekalarova, J. Prenatal Constant Light Exposure Induces Behavioral Deficits in Male and Female Rat Offspring: Effects of Prenatal Melatonin Treatment. Int. J. Mol. Sci. 2025, 26, 1036. https://doi.org/10.3390/ijms26031036
Stoyanova T, Nocheva H, Nenchovska Z, Krushovlieva D, Ivanova P, Tchekalarova J. Prenatal Constant Light Exposure Induces Behavioral Deficits in Male and Female Rat Offspring: Effects of Prenatal Melatonin Treatment. International Journal of Molecular Sciences. 2025; 26(3):1036. https://doi.org/10.3390/ijms26031036
Chicago/Turabian StyleStoyanova, Tsveta, Hristina Nocheva, Zlatina Nenchovska, Desislava Krushovlieva, Petya Ivanova, and Jana Tchekalarova. 2025. "Prenatal Constant Light Exposure Induces Behavioral Deficits in Male and Female Rat Offspring: Effects of Prenatal Melatonin Treatment" International Journal of Molecular Sciences 26, no. 3: 1036. https://doi.org/10.3390/ijms26031036
APA StyleStoyanova, T., Nocheva, H., Nenchovska, Z., Krushovlieva, D., Ivanova, P., & Tchekalarova, J. (2025). Prenatal Constant Light Exposure Induces Behavioral Deficits in Male and Female Rat Offspring: Effects of Prenatal Melatonin Treatment. International Journal of Molecular Sciences, 26(3), 1036. https://doi.org/10.3390/ijms26031036