Integrated Analysis of Terpenoid Profiles and Full-Length Transcriptome Reveals the Central Pathways of Sesquiterpene Biosynthesis in Atractylodes chinensis (DC.) Koidz
Abstract
:1. Introduction
2. Results
2.1. Identification of an A. chinensis Germplasm and Analysis of Its Volatiles
2.2. High-Throughput Sequencing and Functional Gene Prediction
2.3. Prediction of Key Enzyme Genes Involved in the Terpenoid Biosynthesis Pathway
2.4. Phylogenetic Analysis of Enzymes Involved in the MEP and MVA Pathways
2.5. Identification of Isopentenyl Pyrophosphate Synthase Genes
2.6. The Phylogenetic Relationships of AcTPS1 and AcSTSs with Other Plant Terpene Synthases
2.7. Analysis of Tissue-Specific Gene Expression Patterns
3. Discussion
3.1. Identification of the Sesquiterpenes in A. chinensis Germplasm with High Levels of Essential Oil
3.2. Identification of Full-Length Genes Involved in Terpenoid Biosynthesis Pathways
3.3. Analysis of the Key Gene Targets in the Central Sesquiterpene Biosynthesis Pathway
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction of the Volatiles from the Rhizome Using n-Hexane
4.3. Extraction of Essential Oil from the Rhizome
4.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
4.5. High-Performance Liquid Chromatography
4.6. High-Throughput Sequencing Based on the PacBio and Illumina Platforms
4.7. Gene Prediction and Annotation
4.8. Unveiling the Genes Encoding Enzymes Related to Terpene Production
4.9. Phylogenetic Analysis
4.10. Real-Time Quantitative PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, P.G.; Li, D.P.; Yang, S.L. Modern Chinese Materia Medica (I); Chemical Industry Press: Beijing, China, 2002; p. 501. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (I); China Medical Science and Technology Press: Beijing, China, 2020; p. 168. [Google Scholar]
- Kim, H.Y.; Kim, J.H. Sesquiterpenoids isolated from the rhizomes of genus Atractylodes. Chem. Biodivers. 2022, 19, e202200703. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Y.; Song, B.; Tang, X.; Wu, H.; Jin, Z.; Chen, L. Discovery of quality markers in the rhizome of Atractylodes chinensis using GC-MS fingerprint and network pharmacology. Arab. J. Chem. 2023, 16, 105114. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, X.; Gu, X.; Li, Y.; Zheng, Y.; Fang, H. Predictive analysis of quality markers of Atractylodis Rhizoma based on fingerprint and network pharmacology. J. AOAC Int. 2023, 106, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Q.; Zhang, W.N.; Hao, M.Z.; Liu, X.P.; Xiao, J.; Wang, T.F.; Dong, Y.Z.; Zhao, J. How Chinese herbal medicine prevents epidemics: From ancient pestilences to COVID-19 pandemic. Am. J. Chin. Med. 2021, 49, 1017–1044. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.; Wink, M.; Gershenzon, J. Biochemistry of Terpenoids: Monoterpenes, Sesquiterpenes and Diterpenes. In Annual Plant Reviews, 2nd ed.; Michael Wink; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 40, pp. 263–303. [Google Scholar]
- Bergman, M.E.; Kortbeek, R.W.J.; Gutensohn, M.; Dudareva, N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog. Lipid Res. 2024, 95, 101287. [Google Scholar] [CrossRef]
- Durairaj, J.; Di Girolamo, A.; Bouwmeester, H.J.; de Ridder, D.; Beekwilder, J.; van Dijk, A.D. An analysis of characterized plant sesquiterpene synthases. Phytochemistry 2019, 158, 157–165. [Google Scholar] [CrossRef]
- Ma, S.; Sun, C.; Su, W.; Zhao, W.; Zhang, S.; Su, S.; Xie, B.; Kong, L.; Zheng, J. Transcriptomic and physiological analysis of atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis. BMC Plant Biol. 2024, 24, 91. [Google Scholar] [CrossRef]
- Li, H.; Du, J.; Manzila, T.; Song, X.; Tian, Y.; Wang, J. Three medicinal ingredients of Atractylodes chinensis (DC.) Koidz: Extraction and determination based on HPLC. Chin. Agric. Sci. Bull. 2023, 39, 11. (In Chinese) [Google Scholar]
- Mandel, M.A.; Feldmann, K.A.; Herrera-Estrella, L.; Rocha-Sosa, M.; León, P. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J. 1996, 9, 649–658. [Google Scholar] [CrossRef]
- Walter, M.H.; Hans, J.; Strack, D. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: Differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J. 2002, 31, 243–254. [Google Scholar] [CrossRef]
- Cordoba, E.; Porta, H.; Arroyo, A.; San Román, C.; Medina, L.; Rodríguez-Concepción, M.; León, P. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J. Exp. Bot. 2011, 62, 2023–2038. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Song, Z.; Nikolau, B.J. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. Plant J. 2012, 70, 1015–1032. [Google Scholar] [CrossRef] [PubMed]
- Ahumada, I.; Cairó, A.; Hemmerlin, A.; González, V.; Pateraki, I.; Bach, T.J.; Rodríguez-Concepción, M.; Campos, N.; Boronat, A. Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. Funct. Plant Biol. 2008, 35, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Reumann, S. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol. 2004, 135, 783–800. [Google Scholar] [CrossRef] [PubMed]
- Hemmerlin, A.; Harwood, J.L.; Bach, T.J. A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog. Lipid Res. 2012, 51, 95–148. [Google Scholar] [CrossRef] [PubMed]
- Hoeffler, J.F.; Hemmerlin, A.; Grosdemange-Billiard, C.; Bach, T.J.; Rohmer, M. Isoprenoid biosynthesis in higher plants and in Escherichia coli: On the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem. J. 2002, 366 Pt 2, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Vranová, E.; Hirsch-Hoffmann, M.; Gruissem, W. AtIPD: A curated database of Arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis. Plant Physiol. 2011, 156, 1655–1660. [Google Scholar] [CrossRef]
- Block, A.; Fristedt, R.; Rogers, S.; Kumar, J.; Barnes, B.; Barnes, J.; Elowsky, C.G.; Wamboldt, Y.; Mackenzie, S.A.; Redding, K.; et al. Functional modeling identifies paralogous solanesyl-diphosphate synthases that assemble the side chain of plastoquinone-9 in plastids. J. Biol. Chem. 2013, 288, 27594–27606. [Google Scholar] [CrossRef]
- Hirooka, K.; Izumi, Y.; An, C.I.; Nakazawa, Y.; Fukusaki, E.; Kobayashi, A. Functional analysis of two solanesyl diphosphate synthases from Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2005, 69, 592–601. [Google Scholar] [CrossRef]
- Chang, T.H.; Hsieh, F.L.; Ko, T.P.; Teng, K.H.; Liang, P.H.; Wang, A.H. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 2010, 22, 454–467. [Google Scholar] [CrossRef]
- Rai, A.; Smita, S.S.; Singh, A.K.; Shanker, K.; Nagegowda, D.A. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Mol. Plant. 2013, 6, 1531–1549. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Jin, R.; Chen, Y.; He, S.; Li, K.; Tang, Q.; Wang, Q.; Wang, L.; Kong, M.; Dudareva, N.; et al. The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase. Plant Cell 2023, 35, 2293–2315. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D.; Kish, C.M.; Orlova, I.; Sherman, D.; Gershenzon, J.; Pichersky, E.; Dudareva, N. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 2004, 16, 977–992. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Dixon, R.A. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc. Natl. Acad. Sci. USA 2009, 106, 9914–9919. [Google Scholar] [CrossRef]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Jia, Q.; Brown, R.; Köllner, T.G.; Fu, J.; Chen, X.; Wong, G.K.; Gershenzon, J.; Peters, R.J.; Chen, F. Origin and early evolution of the plant terpene synthase family. Proc. Natl. Acad. Sci. USA 2022, 119, e2100361119. [Google Scholar] [CrossRef]
- Zhou, Z.; Xian, J.; Wei, W.; Xu, C.; Yang, J.; Zhan, R.; Ma, D. Volatile metabolic profiling and functional characterization of four terpene synthases reveal terpenoid diversity in different tissues of Chrysanthemum indicum L. Phytochemistry 2021, 185, 112687. [Google Scholar] [CrossRef]
- Wu, J.; Hu, J.; Yu, H.; Lu, J.; Jiang, L.; Liu, W.; Guan, F.; Yao, J.; Xie, J.; Zhao, Y.; et al. Full-length transcriptome analysis of two chemotype and functional characterization of genes related to sesquiterpene biosynthesis in Atractylodes lancea. Int. J. Biol. Macromol. 2023, 225, 1543–1554. [Google Scholar] [CrossRef]
- Feng, L.; Lin, Y.; Cai, Y.; Wei, W.; Yang, J.; Zhan, R.; Ma, D. Terpenoid VOC profiles and functional characterization of terpene synthases in diploid and tetraploid cytotypes of Chrysanthemum indicum L. Plant Physiol. Biochem. 2023, 200, 107766. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Y.; Lou, Y.; Niu, J.; Yin, C.; Zhao, J.; Du, W.; Yue, A. 3-Hydroxy-3-methylglutaryl coenzyme A reductase genes from Glycine max regulate plant growth and isoprenoid biosynthesis. Sci. Rep. 2023, 13, 3902. [Google Scholar] [CrossRef]
- Kochan, E.; Balcerczak, E.; Szymczyk, P.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Szymańska, G. Abscisic acid regulates the 3-hydroxy-3-methylglutaryl CoA reductase gene promoter and ginsenoside production in Panax quinquefolium hairy root cultures. Int. J. Mol. Sci. 2019, 20, 1310. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Fan, D.; Wang, G. Heteromeric geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers. Mol. Plant 2015, 8, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Chaijaroenkul, W.; Na-Bangchang, K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem. Biol. Drug Des. 2021, 97, 984–996. [Google Scholar] [CrossRef] [PubMed]
- Ohara, K.; Fukuda, T.; Okada, H.; Kitao, S.; Ishida, Y.; Kato, K.; Takahashi, C.; Katayama, M.; Uchida, K.; Tominaga, M. Identification of significant amino acids in multiple transmembrane domains of human transient receptor potential ankyrin 1 (TRPA1) for activation by eudesmol, an oxygenized sesquiterpene in hop essential oil. J. Bio. Chem. 2015, 290, 3161–3171. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, Y.; Liu, L.; Zhang, F.; Ao, H.; Luo, Y. Mechanism of Magnolia volatile oil in the treatment of acute pancreatitis based on GC-MS, network pharmacology, and molecular docking. Evid.-Based Complement. Altern. Med. 2023, 2023, 3503888. [Google Scholar] [CrossRef]
- Yu, F.; Harada, H.; Yamasaki, K.; Okamoto, S.; Hirase, S.; Tanaka, Y.; Misawa, N.; Utsumi, R. Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS lett. 2008, 582, 565–572. [Google Scholar] [CrossRef]
- Chu, S.S.; Jiang, G.H.; Liu, Z.L. Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis. Pest Manag. Sci. 2011, 67, 1253–1257. [Google Scholar] [CrossRef]
- Heo, G.; Kim, Y.; Kim, E.L.; Park, S.; Rhee, S.H.; Jung, J.H.; Im, E. Atractylodin ameliorates colitis via PPARα agonism. Int. J. Mol. Sci. 2023, 24, 802. [Google Scholar] [CrossRef]
- Qu, L.; Lin, X.; Liu, C.; Ke, C.; Zhou, Z.; Xu, K.; Cao, G.; Liu, Y. Atractylodin attenuates dextran sulfate sodium-induced colitis by alleviating gut microbiota dysbiosis and inhibiting inflammatory response through the MAPK Pathway. Front. Pharmacol. 2021, 12, 665376. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, Y.; Chen, F.; Guan, Z.; Wei, G.; Chen, X.; Zhang, C.; Köllner, T.G.; Chen, S.; Chen, F.; et al. Dynamic regulation of volatile terpenoid production and emission from Chrysanthemum morifolium capitula. Plant Physiol. Biochem. 2022, 182, 11–21. [Google Scholar] [CrossRef]
- Jia, Q.; Chen, F. Catalytic functions of the isoprenyl diphosphate synthase superfamily in plants: A growing repertoire. Mol. Plant 2016, 9, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.; Schmidt, A.; Peters, R.J. Isoprenyl diphosphate synthases: The chain length determining step in terpene biosynthesis. Planta 2019, 249, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, H.X.; Su, P.; Chen, T.; Guo, J.; Gao, W.; Huang, L.Q. Molecular cloning and functional characterization of multiple geranylgeranyl pyrophosphate synthases (ApGGPPS) from Andrographis paniculata. Plant Cell Rep. 2019, 38, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Adal, A.M.; Mahmoud, S.S. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula). Plant Mol. Biol. 2020, 102, 517–535. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, C.; Zhan, T.; Li, L.; Liu, S.; Huang, Y.; An, W.; Zheng, X.; Huang, S. Genome-wide identification and functional characterization of the trans-isopentenyl diphosphate synthases gene family in Cinnamomum camphora. Front. Plant Sci. 2021, 12, 708697. [Google Scholar] [CrossRef]
- Movahedi, A.; Wei, H.; Pucker, B.; Ghaderi-Zefrehei, M.; Rasouli, F.; Kiani-Pouya, A.; Jiang, T.; Zhuge, Q.; Yang, L.; Zhou, X. Isoprenoid biosynthesis regulation in poplars by methylerythritol phosphate and mevalonic acid pathways. Front. Plant Sci. 2022, 13, 968780. [Google Scholar] [CrossRef]
- Opitz, S.; Nes, W.D.; Gershenzon, J. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Phytochemistry 2014, 98, 110–119. [Google Scholar] [CrossRef]
- Wölwer-Rieck, U.; May, B.; Lankes, C.; Wüst, M. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2014, 62, 2428–2435. [Google Scholar] [CrossRef]
- Pütter, K.M.; van Deenen, N.; Unland, K.; Prüfer, D.; Schulze Gronover, C. Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biol. 2017, 17, 88. [Google Scholar] [CrossRef]
- Sun, J.; Luo, H.; Jiang, Y.; Wang, L.; Xiao, C.; Weng, L. Influence of nutrient (NPK) factors on growth, and pharmacodynamic component biosynthesis of Atractylodes chinensis: An Insight on Acetyl-CoA Carboxylase (ACC), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGR), and Farnesyl Pyrophosphate Synthase (FPPS) signaling responses. Front. Plant Sci. 2022, 13, 799201. [Google Scholar] [CrossRef]
- Majewska, M.; Szymczyk, P.; Gomulski, J.; Jelen, A.; Grabkowska, R.; Balcerczak, E.; Kuźma, Ł. The expression profiles of the Salvia miltiorrhiza 3-hydroxy-3-methylglutaryl-coenzyme A reductase 4 gene and its influence on the biosynthesis of tanshinones. Molecules 2022, 27, 4354. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xu, C.; Movahedi, A.; Sun, W.; Li, D.; Zhuge, Q. Characterization and function of 3-hydroxy-3-methylglutaryl-CoA reductase in Populus trichocarpa: Overexpression of PtHMGR enhances terpenoids in transgenic poplar. Front. Plant Sci. 2019, 10, 1476. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tan, J.; Duan, X.; Wang, Y.; Wen, J.; Li, W.; Li, Z.; Wang, G.; Xu, H. Plastidial engineering with coupled farnesyl diphosphate pool reconstitution and enhancement for sesquiterpene biosynthesis in tomato fruit. Metab. Eng. 2023, 77, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, G.; Huang, X.; Guo, H.; Su, X.; Han, L.; Zhang, Y.; Qi, Z.; Xiao, Y.; Cheng, H. Overexpression of the caryophyllene synthase gene GhTPS1 in cotton negatively affects multiple pests while attracting parasitoids. Pest Manag. Sci. 2020, 76, 1722–1730. [Google Scholar] [CrossRef]
- Wu, W.G.; Dong, L.L.; Chen, S.L. Development direction of molecular breeding of medicinal plants. Chin. J. Chin. Mater. Med. 2020, 45, 2714–2719. (In Chinese) [Google Scholar] [CrossRef]
- Salmela, L.; Rivals, E. LoRDEC: Accurate and efficient long read error correction. Bioinformatics 2014, 30, 3506–3514. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Briesemeister, S.; Rahnenführer, J.; Kohlbacher, O. YLoc—An interpretable web server for predicting subcellular localization. Nucleic Acids Res. 2010, 38, W497–W502. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Gao, S.; Lercher, M.J.; Chen, W.H.; Hu, S. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016, 44, W236–W241. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Peak | a RT | Compound | Formula | CAS | b RI | c RI | d R (%) | Area% |
---|---|---|---|---|---|---|---|---|
1 | 12.96 | Modephene | C15H24 | 68269-87-4 | 1406 | 1389 | 1.22 | 0.1 |
2 | 13.05 | Berkheyaradulene | C15H24 | 65372-78-3 | 1413 | 1392 | 1.48 | 0.22 |
3 | 13.34 | β-Isocomene | C15H24 | 71596-72-0 | 1434 | 1412 | 1.56 | 0.2 |
4 | 13.61 | γ-Elemene | C15H24 | 29873-99-2 | 1454 | 1465 | 0.75 | 0.52 |
5 | 13.96 | Humulene | C15H24 | 6753-98-6 | 1480 | 1473 | 0.48 | 0.15 |
6 | 14.23 | β-Curcumene | C15H24 | 28976-67-2 | 1500 | 1512 | 0.79 | 0.15 |
7 | 14.29 | α-Muurolene | C15H24 | 483-75-0 | 1504 | 1511 | 0.46 | 0.15 |
8 | 14.44 | β-Selinene | C15H24 | 17066-67-0 | 1514 | 1509 | 0.34 | 0.33 |
9 | 14.69 | δ-Cadinene | C15H24 | 483-76-1 | 1531 | 1521 | 0.66 | 0.1 |
10 | 14.88 | β-Sesquiphellandrene | C15H24 | 20307-83-9 | 1544 | 1529 | 0.98 | 0.46 |
11 | 15.15 | Naphthalene | C15H24 | 58893-88-2 | 1562 | 1544 | 1.18 | 0.37 |
12 | 15.3 | Elemol | C15H26O | 639-99-6 | 1572 | 1557 | 0.98 | 0.87 |
13 | 15.51 | Germacrene B | C15H24 | 15423-57-1 | 1586 | 1578 | 0.54 | 1.36 |
14 | 16.37 | Epicubenol | C15H26O | 19912-67-5 | 1641 | 1629 | 0.75 | 0.15 |
15 | 16.64 | γ-Eudesmol | C15H26O | 1209-71-8 | 1658 | 1635 | 1.41 | 1.51 |
16 | 16.78 | * Hinesol | C15H26O | 23811-08-7 | 1667 | 1642 | 1.51 | 8.52 |
17 | 16.98 | * β-Eudesmol | C15H26O | 473-15-4 | 1679 | 1657 | 1.35 | 45.23 |
18 | 17.08 | Atractylon | C15H20O | 6989-21-5 | 1686 | 1673 | 0.75 | 3.24 |
19 | 18.35 | Aristolone | C15H22O | 6831-17-0 | 1762 | 1752 | 0.54 | 0.29 |
20 | 18.88 | Atractylodin | C13H10O | 55290-63-6 | 1793 | 1786 | 0.39 | 16.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Tian, Y.; Qiao, X.; Li, H.; Ouyang, L.; Li, X.; Geng, X.; Xiao, L.; Ma, Y.; Li, Y. Integrated Analysis of Terpenoid Profiles and Full-Length Transcriptome Reveals the Central Pathways of Sesquiterpene Biosynthesis in Atractylodes chinensis (DC.) Koidz. Int. J. Mol. Sci. 2025, 26, 1074. https://doi.org/10.3390/ijms26031074
Zhang Z, Tian Y, Qiao X, Li H, Ouyang L, Li X, Geng X, Xiao L, Ma Y, Li Y. Integrated Analysis of Terpenoid Profiles and Full-Length Transcriptome Reveals the Central Pathways of Sesquiterpene Biosynthesis in Atractylodes chinensis (DC.) Koidz. International Journal of Molecular Sciences. 2025; 26(3):1074. https://doi.org/10.3390/ijms26031074
Chicago/Turabian StyleZhang, Zheng, Yelin Tian, Xu Qiao, Hanqiu Li, Lizhi Ouyang, Xinyu Li, Xin Geng, Li Xiao, Yimian Ma, and Yuan Li. 2025. "Integrated Analysis of Terpenoid Profiles and Full-Length Transcriptome Reveals the Central Pathways of Sesquiterpene Biosynthesis in Atractylodes chinensis (DC.) Koidz" International Journal of Molecular Sciences 26, no. 3: 1074. https://doi.org/10.3390/ijms26031074
APA StyleZhang, Z., Tian, Y., Qiao, X., Li, H., Ouyang, L., Li, X., Geng, X., Xiao, L., Ma, Y., & Li, Y. (2025). Integrated Analysis of Terpenoid Profiles and Full-Length Transcriptome Reveals the Central Pathways of Sesquiterpene Biosynthesis in Atractylodes chinensis (DC.) Koidz. International Journal of Molecular Sciences, 26(3), 1074. https://doi.org/10.3390/ijms26031074