Characterization of Argonaute Nuclease from Mesophilic Bacterium Chroococcidiopsis
Abstract
:1. Introduction
2. Results
2.1. Sequence Alignment and Phylogenetic Tree of ChAgo
2.2. Single-Stranded Nucleic Acid Cleavage Assay
2.3. Effects of Metal Ions on ChAgo Cleavage Activity
2.4. Effects of Reaction Temperature and Guide Length on ChAgo Cleavage Activity
2.5. Effects of Mismatches in the Guide-Target Duplex on the Cleavage Activity of ChAgo
3. Discussion
4. Materials and Methods
4.1. Protein Expression and Purification
4.2. Phylogenetic Tree and Sequence Alignment of ChAgo
4.3. Cleavage Assays
4.4. Thermostability Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willkomm, S.; Zander, A.; Gust, A.; Grohmann, D. A prokaryotic twist on argonaute function. Life 2015, 5, 538–553. [Google Scholar] [CrossRef] [PubMed]
- Swarts, D.C.; Makarova, K.; Wang, Y.; Nakanishi, K.; Ketting, R.F.; Koonin, E.V.; Patel, D.J.; van der Oost, J. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 2014, 21, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Lisitskaya, L.; Aravin, A.A.; Kulbachinskiy, A. DNA interference and beyond: Structure and functions of prokaryotic Argonaute proteins. Nat. Commun. 2018, 9, 5165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, W.; Jiang, X.; Wang, Y.; Zhang, Z.; Liu, Q.; He, R.; Chen, Q.; Yang, J.; Wang, L.; et al. A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis. Nucleic Acids Res. 2021, 49, 1597–1608. [Google Scholar] [CrossRef]
- Jiang, X.M.; Liu, Y.; Liu, Q.; Ma, L.X. Characterization of a Programmable Argonaute Nuclease from the Mesophilic Bacterium Rummeliibacillus suwonensis. Biomolecules 2022, 12, 355. [Google Scholar] [CrossRef]
- Koopal, B.; Potocnik, A.; Mutte, S.K.; Aparicio-Maldonado, C.; Lindhoud, S.; Vervoort, J.J.M.; Brouns, S.J.J.; Swarts, D.C. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell 2022, 185, 1471–1486.e19. [Google Scholar] [CrossRef] [PubMed]
- Hegge, J.W.; Swarts, D.C.; van der Oost, J. Prokaryotic Argonaute proteins: Novel genome-editing tools? Nat. Rev. Microbiol. 2018, 16, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Yang, X.Y.; Xia, S.; Huang, W.; Taylor, D.J.; Nakanishi, K.; Fu, T.M. Oligomerization-mediated activation of a short prokaryotic Argonaute. Nature 2023, 621, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Esyunina, D.; Okhtienko, A.; Olina, A.; Panteleev, V.; Prostova, M.; Aravin, A.A.; Kulbachinskiy, A. Specific targeting of plasmids with Argonaute enables genome editing. Nucleic Acids Res. 2023, 51, 4086–4099. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, K.; Mayo, S.L. Genome manipulation by guide-directed Argonaute cleavage. Nucleic Acids Res. 2023, 51, 4078–4085. [Google Scholar] [CrossRef]
- Hegge, J.W.; Swarts, D.C.; Chandradoss, S.D.; Cui, T.J.; Kneppers, J.; Jinek, M.; Joo, C.; van der Oost, J. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Nucleic Acids Res. 2019, 47, 5809–5821. [Google Scholar] [CrossRef] [PubMed]
- Swarts, D.C.; Hegge, J.W.; Hinojo, I.; Shiimori, M.; Ellis, M.A.; Dumrongkulraksa, J.; Terns, R.M.; Terns, M.P.; van der Oost, J. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. 2015, 43, 5120–5129. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenko, A.; Yudin, D.; Ryazansky, S.; Kulbachinskiy, A.; Aravin, A.A. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res. 2019, 47, 5822–5836. [Google Scholar] [CrossRef]
- Fang, M.J.; Xu, Z.P.; Huang, D.; Naeem, M.; Zhu, X.C.; Xu, Z.N. Characterization and application of a thermophilic Argonaute from archaeon Thermococcus thioreducens. Biotechnol. Bioeng. 2022, 119, 2388–2398. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Y.; He, R.; Wang, L.; Wang, Y.; Zeng, W.; Zhang, Z.; Wang, F.; Ma, L. A programmable pAgo nuclease with RNA target preference from the psychrotolerant bacterium Mucilaginibacter paludis. Nucleic Acids Res. 2022, 50, 5226–5238. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, W.; Wang, J.; Sheng, G.; Xiang, G.; Zhang, T.; Shi, W.; Li, C.; Wang, Y.; Zhao, F.; et al. Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37 degrees C. Cell Discov. 2019, 5, 38. [Google Scholar] [CrossRef]
- Sun, S.; Xu, D.; Zhu, L.; Hu, B.; Huang, Z. A Programmable, DNA-Exclusively-Guided Argonaute DNase and Its Higher Cleavage Specificity Achieved by 5′-Hydroxylated Guide. Biomolecules 2022, 12, 1340. [Google Scholar] [CrossRef]
- Wang, C.; Shen, Z.; Yang, X.Y.; Fu, T.M. Structures and functions of short argonautes. RNA Biol. 2024, 21, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Graver, B.A.; Chakravarty, N.; Solomon, K.V. Prokaryotic Argonautes for in vivo biotechnology and molecular diagnostics. Trends Biotechnol. 2023, 42, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Chen, X.; Zhuo, R.; Li, Y.; Zhou, Z.; Sun, Y.; Liu, Y.; Liu, M. Efficient manipulation of gene expression using Natronobacterium gregoryi Argonaute in zebrafish. BMC Biol. 2023, 21, 95. [Google Scholar] [CrossRef]
- Qi, J.; Dong, Z.; Shi, Y.; Wang, X.; Qin, Y.; Wang, Y.; Liu, D. NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Res. 2016, 26, 1349–1352. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xie, C.; Jin, Z.; Tu, Z.; Han, L.; Jin, M.; Xiang, Y.; Zhang, A. The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria. Nucleic Acids Res. 2019, 47, 3568–3579. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Z.; Mechikoff, M.A.; Kikla, A.; Liu, A.; Pandolfi, P.; Fitzgerald, K.; Gimble, F.S.; Solomon, K.V. NgAgo possesses guided DNA nicking activity. Nucleic Acids Res. 2021, 49, 9926–9937. [Google Scholar] [CrossRef]
- Kaya, E.; Doxzen, K.W.; Knoll, K.R.; Wilson, R.C.; Strutt, S.C.; Kranzusch, P.J.; Doudna, J.A. A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA 2016, 113, 4057–4062. [Google Scholar] [CrossRef]
- Li, X.; Dong, H.R.; Guo, X.; Huang, F.; Xu, X.Y.; Li, N.L.; Yang, Y.; Yao, T.B.; Feng, Y.; Liu, Q. Mesophilic Argonaute-based isothermal detection of SARS-CoV-2. Front. Microbiol. 2022, 13, 957977. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Han, M.; Ma, A.; Jiang, F.; Chen, R.; Dong, Y.; Wang, X.; Ruan, S.; Chen, Y. A machine vision-assisted Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures. J. Hazard. Mater. 2024, 466, 133648. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, S.; Wen, J.; Feng, N.; Ma, R.; Zhang, H.; Chen, G.; Chu, X.; Chen, Y. Redesigned Guide DNA Enhanced Clostridium butyricum Argonaute Activity for Amplification-Free and Multiplexed Detection of Pathogens. Nano Lett. 2024, 24, 9750–9759. [Google Scholar] [CrossRef]
- Lu, Y.; Wen, J.; Wang, C.; Wang, M.; Jiang, F.; Miao, L.; Xu, M.; Li, Y.; Chen, X.; Chen, Y. Mesophilic Argonaute-Based Single Polystyrene Sphere Aptamer Fluorescence Platform for the Multiplexed and Ultrasensitive Detection of Non-Nucleic Acid Targets. Small 2024, 20, e2308424. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Ye, T.; Li, X.; Wang, G. Protection and Damage Repair Mechanisms Contributed To the Survival of Chroococcidiopsis sp. Exposed To a Mars-Like Near Space Environment. Microbiol. Spectr. 2022, 10, e0344022. [Google Scholar] [CrossRef]
- Lisitskaya, L.; Kropocheva, E.; Agapov, A.; Prostova, M.; Panteleev, V.; Yudin, D.; Ryazansky, S.; Kuzmenko, A.; Aravin, A.A.; Esyunina, D.; et al. Bacterial Argonaute nucleases reveal different modes of DNA targeting in vitro and in vivo. Nucleic Acids Res. 2023, 51, 5106–5124. [Google Scholar] [CrossRef]
- Wang, Y.; Juranek, S.; Li, H.; Sheng, G.; Wardle, G.S.; Tuschl, T.; Patel, D.J. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 2009, 461, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, H.; Dong, H.; Li, X.; Liu, Q.; Feng, Y. Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis. Bioresour. Bioprocess. 2024, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Carey, M.F.; Peterson, C.L.; Smale, S.T. PCR-Mediated Site-Directed Mutagenesis. Cold Spring Harb. Protoc. 2013, 2013, 738–742. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhang, Y.; Liu, Y.; Ma, L. Characterization of Argonaute Nuclease from Mesophilic Bacterium Chroococcidiopsis. Int. J. Mol. Sci. 2025, 26, 1085. https://doi.org/10.3390/ijms26031085
Peng Y, Zhang Y, Liu Y, Ma L. Characterization of Argonaute Nuclease from Mesophilic Bacterium Chroococcidiopsis. International Journal of Molecular Sciences. 2025; 26(3):1085. https://doi.org/10.3390/ijms26031085
Chicago/Turabian StylePeng, Yanhong, Yue Zhang, Yang Liu, and Lixin Ma. 2025. "Characterization of Argonaute Nuclease from Mesophilic Bacterium Chroococcidiopsis" International Journal of Molecular Sciences 26, no. 3: 1085. https://doi.org/10.3390/ijms26031085
APA StylePeng, Y., Zhang, Y., Liu, Y., & Ma, L. (2025). Characterization of Argonaute Nuclease from Mesophilic Bacterium Chroococcidiopsis. International Journal of Molecular Sciences, 26(3), 1085. https://doi.org/10.3390/ijms26031085