Preparation of Diosgenin-Functionalized Gold Nanoparticles: From Synthesis to Antitumor Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry and Characterization
2.2. In Vitro Viability/Cytotoxicity
3. Materials and Methods
3.1. Materials—Chemicals and Reagents
3.2. Instruments
3.2.1. UV-Vis Spectroscopy Measurements
3.2.2. NMR Spectroscopy Measurement
3.2.3. IR Spectroscopy Measurement
3.2.4. SP-ICP-MS Measurement
3.2.5. Morphological Studies
3.2.6. Electrophoretic Light Scattering (ELS)
3.2.7. Thermogravimetry (TGA) Analysis
3.3. In Vitro Study
3.4. Methods
3.4.1. Synthesis of Functionalized Gold Nanoparticles (AuNPs) with MPA
3.4.2. Synthesis of Gold Nanoparticles (AuNPs-TDG) by Exchange
3.4.3. Synthesis of Gold Nanoparticles (AuNPs-MPAm2-DG)—DCC/DMAP Coupling Reaction
3.4.4. Synthesis of Gold Nanoparticles (AuNPs-MPAm1-DG NHS/EDCl Coupling Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muddapur, U.M.; Alshehri, S.; Ghoneim, M.M.; Mahnashi, M.H.; Alshahrani, M.A.; Khan, A.A.; Iqubal, S.M.S.; Bahafi, A.; More, S.S.; Shaikh, I.A.; et al. Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review. Molecules 2022, 27, 1391. [Google Scholar] [CrossRef] [PubMed]
- Selegård, R. Polypeptide Functionalized Gold Nanoparticles for Bioanalytical Applications; Linköping University Electronic Press: Linköping, Sweden, 2014; ISBN 9789175193212. [Google Scholar]
- Zhang, T.; Chen, P.; Sun, Y.; Xing, Y.; Yang, Y.; Dong, Y.; Xu, L.; Yang, Z.; Liu, D. A New Strategy Improves Assembly Efficiency of DNA Mono-Modified Gold Nanoparticles. Chem. Commun. 2011, 47, 5774–5776. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Bhattacharya, R.; Bone, N.; Lee, Y.K.; Patra, C.; Wang, S.; Lu, L.; Secreto, C.; Banerjee, P.C.; Yaszemski, M.J.; et al. Potential Therapeutic Application of Gold Nanoparticles in B-Chronic Lymphocytic Leukemia (BCLL): Enhancing Apoptosis. J. Nanobiotechnol. 2007, 5, 4. [Google Scholar] [CrossRef]
- Calzolai, L.; Franchini, F.; Gilliland, D.; Rossi, F. Protein-Nanoparticle Interaction: Identification of the Ubiquitin-Gold Nanoparticle Interaction Site. Nano Lett. 2010, 10, 3101–3105. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Sidoryk, K.; Cybulski, M.; Kubiszewski, M.; Stolarczyk, K. Design of Therapeutic Self-Assembled Monolayers of Thiolated Abiraterone. Nanomaterials 2018, 8, 1018. [Google Scholar] [CrossRef]
- Lanterna, A.E.; Coronado, E.A.; Granados, A.M. When Nanoparticle Size and Molecular Geometry Matter: Analyzing the Degree of Surface Functionalization of Gold Nanoparticles with Sulfur Heterocyclic Compounds. J. Phys. Chem. C 2012, 116, 6520–6529. [Google Scholar] [CrossRef]
- Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M.H.; Benítez, G.; Rubert, A.A.; Salvarezza, R.C. The Chemistry of the Sulfur-Gold Interface: In Search of a Unified Model. Acc. Chem. Res. 2012, 45, 1183–1192. [Google Scholar] [CrossRef]
- Stolarczyk, K.; Bilewicz, R. Catalytic Oxidation of Ascorbic Acid on 2D and 3D Monolayers of 4-Hydroxythiophenol. Electroanalysis 2004, 16, 1609–1615. [Google Scholar] [CrossRef]
- Stolarczyk, K.; Bilewicz, R. Electron Transport through Alkanethiolate Films Decorated with Monolayer Protected Gold Clusters. Electrochim. Acta 2006, 51, 2358–2365. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M. Gold Nanoparticle Research before and after the Brust-Schiffrin Method. Chem. Commun. 2013, 49, 16–18. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Stolarczyk, E.U.; Leś, A.; Łaszcz, M.; Kubiszewski, M.; Strzempek, W.; Menaszek, E.; Fusaro, M.; Sidoryk, K.; Stolarczyk, K. The Ligand Exchange of Citrates to Thioabiraterone on Gold Nanoparticles for Prostate Cancer Therapy. Int. J. Pharm. 2020, 583, 119319. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31–63. [Google Scholar] [CrossRef]
- Jamison, J.A.; Bryant, E.L.; Kadali, S.B.; Wong, M.S.; Colvin, V.L.; Matthews, K.S.; Calabretta, M.K. Altering Protein Surface Charge with Chemical Modification Modulates Protein-Gold Nanoparticle Aggregation. J. Nanoparticle Res. 2011, 13, 625–636. [Google Scholar] [CrossRef]
- Uehara, N. Polymer-Functionalized Gold Nanoparticles as Versatile Sensing Materials. Anal. Sci. 2010, 26, 1219–1228. [Google Scholar] [CrossRef]
- Khan, J.A.; Kudgus, R.A.; Szabolcs, A.; Dutta, S.; Wang, E.; Cao, S.; Curran, G.L.; Shah, V.; Curley, S.; Mukhopadhyay, D.; et al. Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells In Vitro and In Vivo. PLoS ONE 2011, 6, e20347. [Google Scholar] [CrossRef]
- Brown, S.D.; Nativo, P.; Smith, J.A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. J. Am. Chem. Soc. 2010, 132, 4678–4684. [Google Scholar] [CrossRef]
- Petros, R.A.; DeSimone, J.M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug Discov. 2010, 9, 615–627. [Google Scholar] [CrossRef]
- Vigderman, L.; Zubarev, E.R. Therapeutic Platforms Based on Gold Nanoparticles and Their Covalent Conjugates with Drug Molecules. Adv. Drug Deliv. Rev. 2013, 65, 663–676. [Google Scholar] [CrossRef]
- Truong, L.; Zaikova, T.; Baldock, B.L.; Balik-Meisner, M.; To, K.; Reif, D.M.; Kennedy, Z.C.; Hutchison, J.E.; Tanguay, R.L. Systematic Determination of the Relationship between Nanoparticle Core Diameter and Toxicity for a Series of Structurally Analogous Gold Nanoparticles in Zebrafish. Nanotoxicology 2019, 13, 879–893. [Google Scholar] [CrossRef]
- Javier, D.J.; Castellanos-Gonzalez, A.; Weigum, S.E.; White, A.C.; Richards-Kortum, R. Oligonucleotide-Gold Nanoparticle Networks for Detection of Cryptosporidium Parvum Heat Shock Protein 70 MRNA. J. Clin. Microbiol. 2009, 47, 4060–4066. [Google Scholar] [CrossRef] [PubMed]
- Sidoryk, K.; Michalak, O.; Kubiszewski, M.; Leś, A.; Cybulski, M.; Stolarczyk, E.U.; Doubsky, J. Synthesis of Thiol Derivatives of Biological Active Compounds for Nanotechnology Application. Molecules 2020, 25, 3470. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Cheol Oh, H.; Soo Noh, H.; Ji, J.H.; Soo Kim, S. Metal Nanoparticle Generation Using a Small Ceramic Heater with a Local Heating Area. J. Aerosol Sci. 2006, 37, 1662–1670. [Google Scholar] [CrossRef]
- Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Shape Control in Gold Nanoparticle Synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791. [Google Scholar] [CrossRef]
- Sardar, R.; Shumaker-Parry, J.S. Spectroscopic and Microscopic Investigation of Gold Nanoparticle Formation: Ligand and Temperature Effects on Rate and Particle Size. J. Am. Chem. Soc. 2011, 133, 8179–8190. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Stolarczyk, K.; Łaszcz, M.; Kubiszewski, M.; Leś, A.; Michalak, O. Pemetrexed Conjugated with Gold Nanoparticles—Synthesis, Characterization and a Study of Noncovalent Interactions. Eur. J. Pharm. Sci. 2017, 109, 13–20. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Stolarczyk, K.; Łaszcz, M.; Kubiszewski, M.; Maruszak, W.; Olejarz, W.; Bryk, D. Synthesis and Characterization of Genistein Conjugated with Gold Nanoparticles and the Study of Their Cytotoxic Properties. Eur. J. Pharm. Sci. 2017, 96, 176–185. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Łaszcz, M.; Leś, A.; Kubiszewski, M.; Kuziak, K.; Sidoryk, K.; Stolarczyk, K. Design and Molecular Modeling of Abiraterone-Functionalized Gold Nanoparticles. Nanomaterials 2018, 8, 641. [Google Scholar] [CrossRef]
- Ahmed, S.; Annu; Ikram, S.; Yudha, S.S. Biosynthesis of Gold Nanoparticles: A Green Approach. J. Photochem. Photobiol. B 2016, 161, 141–153. [Google Scholar] [CrossRef]
- Santhoshkumar, J.; Rajeshkumar, S.; Venkat Kumar, S. Phyto-Assisted Synthesis, Characterization and Applications of Gold Nanoparticles—A Review. Biochem. Biophys. Rep. 2017, 11, 46–57. [Google Scholar] [CrossRef]
- Botteon, C.E.A.; Silva, L.B.; Ccana-Ccapatinta, G.V.; Silva, T.S.; Ambrosio, S.R.; Veneziani, R.C.S.; Bastos, J.K.; Marcato, P.D. Biosynthesis and Characterization of Gold Nanoparticles Using Brazilian Red Propolis and Evaluation of Its Antimicrobial and Anticancer Activities. Sci. Rep. 2021, 11, 1974. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Watkins, R.; Wu, L.; Zhang, C.; Davis, R. Natural Product-Based Nanomedicine: Recent Advances and Issues. Int. J. Nanomed. 2015, 10, 6055. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Ahn, E.-Y.; Park, Y. Shape-Dependent Cytotoxicity and Cellular Uptake of Gold Nanoparticles Synthesized Using Green Tea Extract. Nanoscale Res. Lett. 2019, 14, 129. [Google Scholar] [CrossRef]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Shipway, A.N.; Katz, E.; Willner, I. Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications. ChemPhysChem 2000, 1, 18–52. [Google Scholar] [CrossRef]
- Hostetler, M.J.; Wingate, J.E.; Zhong, C.-J.; Harris, J.E.; Vachet, R.W.; Clark, M.R.; Londono, J.D.; Green, S.J.; Stokes, J.J.; Wignall, G.D.; et al. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 Nm: Core and Monolayer Properties as a Function of Core Size. Langmuir 1998, 14, 17–30. [Google Scholar] [CrossRef]
- Bakur, A.; Niu, Y.; Kuang, H.; Chen, Q. Synthesis of Gold Nanoparticles Derived from Mannosylerythritol Lipid and Evaluation of Their Bioactivities. AMB Express 2019, 9, 62. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J. Funct. Biomater. 2021, 12, 70. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-Gold Catalysis in Fine Chemical Synthesis. Chem. Rev. 2012, 112, 2467–2505. [Google Scholar] [CrossRef]
- Rajeshkumar, S. Anticancer Activity of Eco-Friendly Gold Nanoparticles against Lung and Liver Cancer Cells. J. Genet. Eng. Biotechnol. 2016, 14, 195–202. [Google Scholar] [CrossRef]
- Kim, K.; Jung, B.; Kim, J.; Kim, W. Effects of Embedding Non-Absorbing Nanoparticles in Organic Photovoltaics on Power Conversion Efficiency. Sol. Energy Mater. Sol. Cells 2010, 94, 1835–1839. [Google Scholar] [CrossRef]
- Ju-Nam, Y.; Lead, J.R. Manufactured Nanoparticles: An Overview of Their Chemistry, Interactions and Potential Environmental Implications. Sci. Total Environ. 2008, 400, 396–414. [Google Scholar] [CrossRef] [PubMed]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55. [Google Scholar] [CrossRef]
- Zhao, P.; Li, N.; Astruc, D. State of the Art in Gold Nanoparticle Synthesis. Coord. Chem. Rev. 2013, 257, 638–665. [Google Scholar] [CrossRef]
- Dinkel, R.; Braunschweig, B.; Peukert, W. Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 1673–1682. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid–Liquid System. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Lin, S.Y.; Tsai, Y.T.; Chen, C.C.; Lin, C.M.; Chen, C.H. Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles. J. Phys. Chem. B 2004, 108, 2134–2139. [Google Scholar] [CrossRef]
- Aslan, K.; Pérez-Luna, V.H. Surface Modification of Colloidal Gold by Chemisorption of Alkanethiols in the Presence of a Nonionic Surfactant. Langmuir 2002, 18, 6059–6065. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Sperling, R.A.; Garciá-Fernández, L.; Ojea-Jiménez, I.; Piella, J.; Bastús, N.G.; Puntes, V. One-Pot Synthesis of Cationic Gold Nanoparticles by Differential Reduction. Z. Fur Phys. Chem. 2017, 231, 7–18. [Google Scholar] [CrossRef]
- Lin, C.; Tao, K.; Hua, D.; Ma, Z.; Zhou, S. Size Effect of Gold Nanoparticles in Catalytic Reduction of P-Nitrophenol with NaBH4. Molecules 2013, 18, 12609–12620. [Google Scholar] [CrossRef] [PubMed]
- Deraedt, C.; Salmon, L.; Gatard, S.; Ciganda, R.; Hernandez, R.; Mayor, M.; Astruc, D. Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalysts. Chem. Commun. 2014, 50, 14194–14196. [Google Scholar] [CrossRef] [PubMed]
- Jesus, M.; Martins, A.P.J.; Gallardo, E.; Silvestre, S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J. Anal. Methods Chem. 2016, 2016, 4156293. [Google Scholar] [CrossRef] [PubMed]
- Son, I.S.; Kim, J.H.; Sohn, H.Y.; Son, K.H.; Kim, J.S.; Kwon, C.S. Antioxidative and Hypolipidemic Effects of Diosgenin, a Steroidal Saponin of Yam (Dioscorea spp.), on High-Cholesterol Fed Rats. Biosci. Biotechnol. Biochem. 2007, 71, 3063–3071. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Narasimha Rao, G.; Narendar, C.; Bharathi, J.; Justin, A. Diosgenin as a Novel Therapeutic Natural Product for Various Diseases: An Overview. J. Nat. Remedies 2023, 23, 339–350. [Google Scholar] [CrossRef]
- Huang, N.; Yu, D.; Wu, J.; Du, X. Diosgenin: An Important Natural Pharmaceutical Active Ingredient. Food Sci. Technol. 2022, 42, e94521. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, J.; Hu, J.; Lou, G.; Xiong, H.; Peng, C.; Zheng, S.; Huang, Q. The Role of Diosgenin in Diabetes and Diabetic Complications. J. Steroid Biochem. Mol. Biol. 2020, 198, 105575. [Google Scholar] [CrossRef]
- Liao, W.-L.; Huang, C.-P.; Wang, H.-P.; Lei, Y.-J.; Lin, H.-J.; Huang, Y.-C. Diosgenin, a Natural Steroidal Sapogenin, Alleviates the Progression of Diabetic Retinopathy in Diabetic Mice. In Vivo 2023, 37, 661–666. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Niu, C.; Cheng, Y. Diosgenin Increased DDX3 Expression in Hepatocellular Carcinoma. Am. J. Transl. Res. 2018, 10, 3590–3599. [Google Scholar]
- Ren, Q.; Wang, Q.; Zhang, X.; Wang, M.; Hu, H.; Tang, J.; Yang, X.; Ran, Y.; Liu, H.; Song, Z.; et al. Anticancer Activity of Diosgenin and Its Molecular Mechanism. Chin. J. Integr. Med. 2023, 29, 738–749. [Google Scholar] [CrossRef]
- Michalak, O.; Krzeczyński, P.; Jaromin, A.; Cmoch, P.; Cybulski, M.; Trzcińska, K.; Miszta, P.; Mehta, P.; Gubernator, J.; Filipek, S. Antioxidant Activity of Novel Diosgenin Derivatives: Synthesis, Biological Evaluation, and in Silico ADME Prediction. Steroids 2022, 188, 109115. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, D.; Li, Z.; Gao, Y.; Chen, H. Synthesis and Potent Cytotoxic Activity of a Novel Diosgenin Derivative and Its Phytosomes against Lung Cancer Cells. Beilstein J. Nanotechnol. 2019, 10, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, H.; Xin, G.; Zeng, Z.; Li, S.; Ming, Y.; Zhang, X.; Xing, Z.; Li, L.; Li, Y.; et al. A PH-Sensitive Prodrug Nanocarrier Based on Diosgenin for Doxorubicin Delivery to Efficiently Inhibit Tumor Metastasis. Int. J. Nanomed. 2020, 15, 6545–6560. [Google Scholar] [CrossRef]
- Li, C.; Dai, J.; Zheng, D.; Zhao, J.; Tao, Y.; Lei, J.; Xi, X.; Liu, J. An Efficient Prodrug-Based Nanoscale Delivery Platform Constructed by Water Soluble Eight-Arm-Polyethylene Glycol-Diosgenin Conjugate. Mater. Sci. Eng. C 2019, 98, 153–160. [Google Scholar] [CrossRef]
- Rajadurai, U.M.; Hariharan, A.; Durairaj, S.; Ameen, F.; Dawoud, T.; Alwakeel, S.; Palanivel, I.; Azhagiyamanavalan, L.P.; Jacob, J.A. Assessment of Behavioral Changes and Antitumor Effects of Silver Nanoparticles Synthesized Using Diosgenin in Mice Model. J. Drug Deliv. Sci. Technol. 2021, 66, 102766. [Google Scholar] [CrossRef]
- Ghosh, S.; More, P.; Derle, A.; Kitture, R.; Kale, T.; Gorain, M.; Avasthi, A.; Markad, P.; Kundu, G.C.; Kale, S.; et al. Diosgenin Functionalized Iron Oxide Nanoparticles as Novel Nanomaterial Against Breast Cancer. J. Nanosci. Nanotechnol. 2015, 15, 9464–9472. [Google Scholar] [CrossRef]
- Amina, S.J.; Iqbal, M.; Faisal, A.; Shoaib, Z.; Niazi, M.B.K.; Ahmad, N.M.; Khalid, N.; Janjua, H.A. Synthesis of Diosgenin Conjugated Gold Nanoparticles Using Algal Extract of Dictyosphaerium sp. and In-Vitro Application of Their Antiproliferative Activities. Mater. Today Commun. 2021, 27, 102360. [Google Scholar] [CrossRef]
- Fan, R.; He, W.; Fan, Y.; Xu, W.; Xu, W.; Yan, G.; Xu, S. Recent Advances in Chemical Synthesis, Biocatalysis, and Biological Evaluation of Diosgenin Derivatives—A Review. Steroids 2022, 180, 108991. [Google Scholar] [CrossRef]
- Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An Analysis of FDA-Approved Drugs: Natural Products and Their Derivatives. Drug Discov. Today 2016, 21, 204–207. [Google Scholar] [CrossRef]
- Hernández-Vázquez, J.M.V.; López-Muñoz, H.; Escobar-Sánchez, M.L.; Flores-Guzmán, F.; Weiss-Steider, B.; Hilario-Martínez, J.C.; Sandoval-Ramírez, J.; Fernández-Herrera, M.A.; Sánchez Sánchez, L. Apoptotic, Necrotic, and Antiproliferative Activity of Diosgenin and Diosgenin Glycosides on Cervical Cancer Cells. Eur. J. Pharmacol. 2020, 871, 172942. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Anand, U.; Gadekar, V.S.; Jha, N.K.; Gupta, P.K.; Behl, T.; Kumar, M.; Radha; Shekhawat, M.S.; Dey, A. Dioscin: A Review on Pharmacological Properties and Therapeutic Values. BioFactors 2022, 48, 22–55. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Sharma, M.; Sharma, R. Bioactive Compound from Lagerstroemia Speciosa: Activating Apoptotic Machinery in Pancreatic Cancer Cells. 3 Biotech. 2022, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, Q.; Sun, H.; Li, W. Novel Diosgenin-1,4-Quinone Hybrids: Synthesis, Antitumor Evaluation, and Mechanism Studies. J. Steroid Biochem. Mol. Biol. 2021, 214, 105993. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Z.; Chen, X.; Ni, S.; Jia, Y.; Fan, L.; Ma, L. DG-8d, a Novel Diosgenin Derivative, Decreases the Proliferation and Induces the Apoptosis of A549 Cells by Inhibiting the PI3k/Akt Signaling Pathway. Steroids 2021, 174, 108898. [Google Scholar] [CrossRef]
- Martínez-Gallegos, A.A.; Guerrero-Luna, G.; Ortiz-González, A.; Cárdenas-García, M.; Bernès, S.; Hernández-Linares, M.G. Azasteroids from Diosgenin: Synthesis and Evaluation of Their Antiproliferative Activity. Steroids 2021, 166, 108777. [Google Scholar] [CrossRef]
- Nanda, S.S.; Yi, D.K. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int. J. Mol. Sci. 2024, 25, 3266. [Google Scholar] [CrossRef]
- Alaizeri, Z.A.M.; Alhadlaq, H.A.; Aldawood, S.; Akhtar, M.J.; Ahamed, M. Bi2O3-Doped WO3 Nanoparticles Decorated on RGO Sheets: Simple Synthesis, Characterization, Photocatalytic Performance, and Selective Cytotoxicity toward Human Cancer Cells. ACS Omega 2023, 8, 25020–25033. [Google Scholar] [CrossRef]
- Alaizeri, Z.A.M.; Alhadlaq, H.A.; Aldawood, S.; Akhtar, M.J.; Ahamed, M. Photodeposition Mediated Synthesis of Silver-Doped Indium Oxide Nanoparticles for Improved Photocatalytic and Anticancer Performance. Environ. Sci. Pollut. Res. 2023, 30, 6055–6067. [Google Scholar] [CrossRef]
- Esmaeilzadeh, A.A.; Rasoolzadegan, S.; Arabi, A.R.; Soofi, D.; Ramsheh, S.S.R.; Ahmed, W.S.; Pour, R.M. Cytotoxic Study of Green Synthesized Pure and Ag-Doped α-Fe2O3 Nanoparticles on Breast Cancer (MCF-7) Cell Line. Nanomed. Res. J. 2022, 7, 370–377. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Dias, A.M.; Zille, A. Synergistic Effects Between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACS Appl. Nano Mater. 2022, 5, 3030–3064. [Google Scholar] [CrossRef]
- Wen, L.; Liu, H.; Hu, C.; Wei, Z.; Meng, Y.; Lu, C.; Su, Y.; Lu, L.; Liang, H.; Xu, Q.; et al. Thermoacoustic Imaging-Guided Thermo-Chemotherapy for Hepatocellular Carcinoma Sensitized by a Microwave-Responsive Nitric Oxide Nanogenerator. ACS Appl. Mater. Interfaces 2023, 15, 10477–10491. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kataoka, K. Chemo-Physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation. J. Am. Chem. Soc. 2021, 143, 538–559. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Ke, W.; Dirisala, A.; Toh, K.; Tanaka, M.; Li, J. Stealth and Pseudo-Stealth Nanocarriers. Adv. Drug Deliv. Rev. 2023, 198, 114895. [Google Scholar] [CrossRef] [PubMed]
- Steglich Esterification. Available online: https://www.organic-chemistry.org/namedreactions/steglich-esterification.shtm (accessed on 11 January 2025).
- Hineman, A.; Stephan, C. Effect of Dwell Time on Single Particle Inductively Coupled Plasma Mass Spectrometry Data Acquisition Quality. J. Anal. At. Spectrom. 2014, 29, 1252–1257. [Google Scholar] [CrossRef]
- Montaño, M.D.; Badiei, H.R.; Bazargan, S.; Ranville, J.F. Improvements in the Detection and Characterization of Engineered Nanoparticles Using SpICP-MS with Microsecond Dwell Times. Environ. Sci. Nano 2014, 1, 338–346. [Google Scholar] [CrossRef]
- Montaño, M.D.; Olesik, J.W.; Barber, A.G.; Challis, K.; Ranville, J.F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal. Bioanal. Chem. 2016, 408, 5053–5074. [Google Scholar] [CrossRef]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Gray, E.P.; Higgins, C.P.; Ranville, J.F. Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size. Environ. Sci. Technol. 2012, 46, 12272–12280. [Google Scholar] [CrossRef]
- Witzler, M.; Küllmer, F.; Günther, K. Validating a Single-Particle ICP-MS Method to Measure Nanoparticles in Human Whole Blood for Nanotoxicology. Anal. Lett. 2018, 51, 587–599. [Google Scholar] [CrossRef]
- Witzler, M.; Küllmer, F.; Hirtz, A.; Günther, K. Validation of Gold and Silver Nanoparticle Analysis in Fruit Juices by Single-Particle ICP-MS without Sample Pretreatment. J. Agric. Food Chem. 2016, 64, 4165–4170. [Google Scholar] [CrossRef]
- Wang, L.; Yao, M.; Hu, Y.; Chen, C.; Jin, L.; Ma, X.; Yang, H. Synthesis and Antitumor Activity of Diosgenin Hydroxamic Acid and Quaternary Phosphonium Salt Derivatives. ACS Med. Chem. Lett. 2022, 13, 786–791. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, J.; Yang, X. Deformable Nanocarriers for Enhanced Drug Delivery and Cancer Therapy. Exploration 2024, 4, 20230037. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Y.; Li, H.; Huang, N.; Jin, Q.; Ren, K.; Ji, J. Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano 2013, 7, 6244–6257. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.H.; Nayeem, N.; He, Y.; Morales, J.; Graham, D.; Klajn, R.; Contel, M.; O’Brien, S.; Ulijn, R.V. Self-Complementary Zwitterionic Peptides Direct Nanoparticle Assembly and Enable Enzymatic Selection of Endocytic Pathways. Adv. Mater. 2022, 34, 2104962. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Sun, R.; Yin, L.; Chai, Z.; Shi, H.; Gao, M. Light-Triggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo. Adv. Mater. 2017, 29, 1604894. [Google Scholar] [CrossRef] [PubMed]
- Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D.J.; Kiely, C. Synthesis and Reactions of Functionalised Gold Nanoparticles. J. Chem. Soc. Chem. Commun. 1995, 16, 1655–1656. [Google Scholar] [CrossRef]
Sample ID | Most Freq. Size (nm) | Mean Size (nm) | Part. Conc. (parts/mL) | Au in Ionic Form (mg/L) | Au in NPs Form (mg/L) |
---|---|---|---|---|---|
AuNPs-MPAm1 | 16 ± 0.35 | 27.8 ± 0.1 | 5.82 × 1012 ± 7.45 × 1010 | 640 ± 29.8 | 1264.36 ± 29.84 |
AuNPs-MPAm2 | 31.5 ± 0.5 | 58.85 ± 4.35 | 4.04 × 1010 ± 2.37 × 109 | <LOD | 83.06 ± 11.46 |
AuNPs-MPAm2-DG | 65.5 ± 1.5 | 93.15 ± 0.95 | 4.23 × 1010 ± 5.44 × 108 | 2.5 ± 0.06 | 345.85 ± 6.14 |
AuNPs-TDG | 15.5 ± 0.5 | 21.6 ± 1.1 | 3.81 × 1012 ± 6.80 × 1011 | <LOD | 381.31 ± 10.44 |
AuNPs-MPAm1-DG | 45 ± 0.11 | 53.25 ± 0.51 | 1.70 × 1011 ± 1.66 × 109 | 31.43 ± 4.04 | 290.51 ± 2.5 |
Samples | ζ-Potential | s (Standard Deviation) |
---|---|---|
AuNPs-MPAm1 | −52.3 | 0.33 |
AuNPs-MPAm2 | −27.0 | 0.36 |
AuNPs-TDG | −21.8 | 0.51 |
AuNPs-MPAm1-DG | −30.1 | 0.31 |
AuNPs-MPAm2-DG | −22.7 | 0.50 |
Samples | TGA, Δ m, [%] (m/m) |
---|---|
AuNPs-TDG | −6.38 |
AuNPs-MPAm1-DG | −27.61 |
AuNPs-MPAm2-DG | −3.47 |
Parameter | Characteristics | ||
---|---|---|---|
Unit | SP-ICP-MS | ||
Spray chamber | Quartz cyclonic | ||
Nebulizer | Meinhard concentric | ||
Torch | Quartz | ||
Injector | Material | Quartz | |
I.D. | mm | 2.0 | |
Sampler, skimmer, hyper skimmer with OmniRing | Ni | ||
Generator | Frequency | MHz | 34 |
Power | W | 1600 | |
Plasma gas flow | L/min | 15 | |
Auxiliary gas flow | L/min | 1.2 | |
Nebulizer gas flow * | L/min | 0.98–1.04 | |
UCT Measurement mode | STD | ||
UCT gas flow | mL/min | 0 | |
Measured isotopes | 197Au | ||
Peristaltic pump | Numbers of rollers | 12 | |
Turns | rpm | −35 | |
Sample tube | Material, marks | PVC, Orange/Green | |
I.D. | mm | 0.38 | |
Waste tube | Material, marks | Santoprene, Gray/Gray | |
I.D. | mm | 1.3 | |
Sample flow rate * | mL/min | 0.19–0.24 | |
Dwell time | µs | 50 | |
Transport efficiency * | % | 7.8–8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolarczyk, E.U.; Strzempek, W.; Muszyńska, M.; Kubiszewski, M.; Witkowska, A.B.; Trzcińska, K.; Wojdasiewicz, P.; Stolarczyk, K. Preparation of Diosgenin-Functionalized Gold Nanoparticles: From Synthesis to Antitumor Activities. Int. J. Mol. Sci. 2025, 26, 1088. https://doi.org/10.3390/ijms26031088
Stolarczyk EU, Strzempek W, Muszyńska M, Kubiszewski M, Witkowska AB, Trzcińska K, Wojdasiewicz P, Stolarczyk K. Preparation of Diosgenin-Functionalized Gold Nanoparticles: From Synthesis to Antitumor Activities. International Journal of Molecular Sciences. 2025; 26(3):1088. https://doi.org/10.3390/ijms26031088
Chicago/Turabian StyleStolarczyk, Elżbieta U., Weronika Strzempek, Magdalena Muszyńska, Marek Kubiszewski, Anna B. Witkowska, Kinga Trzcińska, Piotr Wojdasiewicz, and Krzysztof Stolarczyk. 2025. "Preparation of Diosgenin-Functionalized Gold Nanoparticles: From Synthesis to Antitumor Activities" International Journal of Molecular Sciences 26, no. 3: 1088. https://doi.org/10.3390/ijms26031088
APA StyleStolarczyk, E. U., Strzempek, W., Muszyńska, M., Kubiszewski, M., Witkowska, A. B., Trzcińska, K., Wojdasiewicz, P., & Stolarczyk, K. (2025). Preparation of Diosgenin-Functionalized Gold Nanoparticles: From Synthesis to Antitumor Activities. International Journal of Molecular Sciences, 26(3), 1088. https://doi.org/10.3390/ijms26031088