Monoclonal Antibodies in Metastatic Gastro-Esophageal Cancers: An Overview of the Latest Therapeutic Advances
Abstract
:1. Introduction
2. Gastro-Esophageal Cancer Clinical Studies
2.1. The PD-1/PD-L1 Axis
2.2. The Case of HER2 Positive GC/EC
2.3. The Case of FGFR2b
2.4. The Case of Claudin18.2
2.5. Other Promising Agents
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, A.L.; Dhimolea, E.; Reichert, J.M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 2010, 9, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, Z. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol. Sin. 2010, 31, 1198–1207. [Google Scholar] [CrossRef]
- KÖHler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Vijayasankaran, N.; Shen, A.Y.; Kiss, R.; Amanullah, A. Cell culture processes for monoclonal antibody production. MAbs 2010, 2, 466–479. [Google Scholar] [CrossRef]
- Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet 2019, 394, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Liao, K.H.; Palani, S.; Yin, D.; Meng, X. Antibody-drug conjugate (ADC) joint disposition properties and their clinical utilities for comparative assessments in terms of favorable pharmacokinetic (PK) characteristics. J. Clin. Oncol. 2022, 40, e15005. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Corso, S.; Pietrantonio, F.; Apicella, M.; Migliore, C.; Conticelli, D.; Petrelli, A.; D’Errico, L.; Durando, S.; Moya-Rull, D.; Bellomo, S.E.; et al. Optimized EGFR Blockade Strategies in EGFR Addicted Gastroesophageal Adenocarcinomas. Clin. Cancer Res. 2021, 27, 3126–3140. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Jüttner, S.; Wissmann, C.; Jöns, T.; Vieth, M.; Hertel, J.; Gretschel, S.; Schlag, P.M.; Kemmner, W.; Höcker, M. Vascular endothelial growth factor-D and its receptor VEGFR-3: Two novel independent prognostic markers in gastric adenocarcinoma. J. Clin. Oncol. 2006, 24, 228–240. [Google Scholar] [CrossRef]
- Basile, D.; Simionato, F.; Cappetta, A.; Garattini, S.K.; Roviello, G.; Aprile, G. State-of-the-Art of Monoclonal Antibodies for the Treatment of Gastric Cancer. Biologics 2021, 15, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.-H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.H.; Doi, T.; Moriwaki, T.; Kim, S.B.; Lee, S.H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.P.; Li, Z.; Kim, S.B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Dai, G.; Wang, Y.; Jia, R.; Wang, Z.; Si, H.; Han, L.; Gou, M.; Tan, Z.; Han, L.; Jiang, D.Z. 1416P First-line tislelizumab combined with bevacizumab and CAPOX for metastatic gastroesophageal adenocarcinoma (mGEA) with PD-L1 CPS<5: Updated results of a phase II, prospective, single-arm study. Ann. Oncol. 2024, 35, S884. [Google Scholar] [CrossRef]
- Cruz-Correa, M.; Oh, D.Y.; Kato, K.; Tabernero, J.; Bai, Y.; Shi, J.; Lee, K.W.; Hirano, H.; Spigel, D.R.; Wyrwicz, L.S.; et al. 1437P Tislelizumab (TIS) + chemotherapy (CT) vs. placebo (PBO) + CT in HER2-negative advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GC/GEJC): RATIONALE-305 study minimum 3-year survival follow-up. Ann. Oncol. 2024, 35, S893–S894. [Google Scholar] [CrossRef]
- Xu, J.; Bai, Y.; Xu, N.; Li, E.; Wang, B.; Wang, J.; Li, X.; Wang, X.; Yuan, X. Tislelizumab Plus Chemotherapy as First-line Treatment for Advanced Esophageal Squamous Cell Carcinoma and Gastric/Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2020, 26, 4542–4550. [Google Scholar] [CrossRef]
- Shen, L.; Kato, K.; Kim, S.B.; Ajani, J.A.; Zhao, K.; He, Z.; Yu, X.; Shu, Y.; Luo, Q.; Wang, J.; et al. Tislelizumab Versus Chemotherapy as Second-Line Treatment for Advanced or Metastatic Esophageal Squamous Cell Carcinoma (RATIONALE-302): A Randomized Phase III Study. J. Clin. Oncol. 2022, 40, 3065–3076. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, S.; Goetze, T.O.; Thuss-Patience, P.C.; Riera Knorrenschild, J.; Goekkurt, E.; Dechow, T.N.; Ettrich, T.J.; Hofheinz, R.D.; Luley, K.; Pink, D.; et al. LBA59 Modified FOLFOX plus/minus nivolumab and ipilimumab vs. FLOT plus nivolumab in patients with previously untreated advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction: Final results of the IKF-AIO-Moonlight trial. Ann. Oncol. 2024, 35, S1249–S1250. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Bai, Y.; Xu, J.; Lonardi, S.; Metges, J.P.; Yanez Weber, P.E.; Wyrwicz, L.S.; Shen, L.; Ostapenko, Y.V.; et al. 1400O Final overall survival for the phase III, KEYNOTE-811 study of pembrolizumab plus trastuzumab and chemotherapy for HER2+ advanced, unresectable or metastatic G/GEJ adenocarcinoma. Ann. Oncol. 2024, 35, S877–S878. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Oh, D.-Y.; Rha, S.Y.; Lee, K.W.; Steeghs, N.; Chao, Y.; Bartolomeo, M.D.; Garcia, M.D.; Mohammad, N.H.; Stein, A.; et al. Dose-escalation and dose-expansion study of trastuzumab deruxtecan (T-DXd) monotherapy and combinations in patients (pts) with advanced/metastatic HER2+ gastric cancer (GC)/gastroesophageal junction adenocarcinoma (GEJA): DESTINY-Gastric03. J. Clin. Oncol. 2022, 40, 295. [Google Scholar] [CrossRef]
- Powles, T.B.; Bhatia, A.K.; Burtness, B.; Kogawa, T.; Nishina, T.; Nakayama, I.; Fountzilas, C.; Castillo, D.R.; McKean, M.; Meric-Bernstam, F.; et al. 690TiP HERTHENA-PanTumor01: A global phase II trial of HER3-DXd in metastatic solid tumors. Ann. Oncol. 2024, 35, S534–S535. [Google Scholar] [CrossRef]
- Lin, F.; Huang, Y.; Huang, Y.; Lu, Y.; Rao, X.; Wang, X.; Wang, F.; Huang, X. 335P First-in-human phase I/IIa clinical trial of ZV0203, a novel pertuzumab-based antibody-drug conjugate (ADC), in patients (pts) with Her2 positive advanced solid tumors. Ann. Oncol. 2024, 35, S354–S355. [Google Scholar] [CrossRef]
- Gong, J.; Lemech, C.; Day, D.; Shan, J.; Morris, M.; Nagrial, A.; Chen, M.; Huang, X.; Zong, H.; Wang, N.; et al. 576P Safety and efficacy of IBI354 (anti-HER2 ADC) in patients (pts) with advanced gastrointestinal (GI) cancers: Results from a phase I study. Ann. Oncol. 2024, 35, S467–S468. [Google Scholar] [CrossRef]
- Deng, T.; Sun, Y.; Wang, B.; Zhang, J.; Zhou, C.; Wang, J.; Yang, H.; Yang, B.; Wei, J.; Lin, R.; et al. 644P Preliminary results of GQ1005 in metastatic HER2-low expressing breast cancer and HER2 positive gastric cancer. Ann. Oncol. 2024, 35, S509–S510. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Rosales, M.; Chung, H.C.; Yoon, H.H.; Shen, L.; Moehler, M.; Kang, Y.-K. MAHOGANY: Margetuximab Combination in HER2+ Unresectable/metastatic Gastric/gastroesophageal Junction Adenocarcinoma. Future Oncol. 2021, 17, 1155–1164. [Google Scholar] [CrossRef]
- Elimova, E.; Ajani, J.A.; Burris, H.A.; Denlinger, C.S.; Iqbal, S.; Kang, Y.K.; Kim, J.H.; Lee, K.W.; Lin, B.; Mehta, R.; et al. 1423P Zanidatamab + chemotherapy for first-line (1L) treatment of HER2+ advanced or metastatic gastro-oesophageal adenocarcinoma (mGEA): New and updated data from a phase II trial. Ann. Oncol. 2024, 35, S887–S888. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Enzinger, P.C.; Kang, Y.-K.; Yamaguchi, K.; Qin, S.; Lee, K.-W.; Oh, S.C.; Li, J.; Turk, H.M.; Teixeira, A.C.; et al. Randomized double-blind placebo-controlled phase 2 study of bemarituzumab combined with modified FOLFOX6 (mFOLFOX6) in first-line (1L) treatment of advanced gastric/gastroesophageal junction adenocarcinoma (FIGHT). J. Clin. Oncol. 2021, 39, 160. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yu, Y.; Ni, S.; Liu, B.; Li, N.; Zhu, J.; Liang, X.; Liang, X.; Xiao, M.; Xu, N.; et al. 1456P First in human phase I/II trial of claudin 18.2 ADC RC118 in patients with advanced gastric/gastroesophageal junction cancer. Ann. Oncol. 2024, 35, S903. [Google Scholar] [CrossRef]
- Shitara, K.; Shah, M.A.; Lordick, F.; Cutsem, E.V.; Ilson, D.H.; Klempner, S.J.; Kang, Y.-K.; Lonardi, S.; Hung, Y.-P.; Yamaguchi, K.; et al. Zolbetuximab in Gastric or Gastroesophageal Junction Adenocarcinoma. N. Engl. J. Med. 2024, 391, 1159–1162. [Google Scholar] [CrossRef]
- Yu, J.; Sun, Y.; Liu, T.; Gao, S.G.; Guo, Z.; Liang, X.; Ning, F.; Zhang, M.; Zhang, Y.; Zhang, N.; et al. 651P Phase I study of XNW27011, a novel claudin 18.2 ADC, in patients with locally advanced and/or metastatic solid tumors. Ann. Oncol. 2024, 35, S514. [Google Scholar] [CrossRef]
- Xu, R.H.; Ruan, D.; Luo, S.; Liang, X.; Niu, Z.; Dang, Q.; Pan, Z.; Zhang, Y.; Li, X.; Li, H.; et al. 609O CLDN18.2 targeted antibody-drug conjugate (ADC), SHR-A1904, in patients (pts) with gastric/gastroesophageal junction cancer (GC/GEJC): A phase I study. Ann. Oncol. 2024, 35, S487–S488. [Google Scholar] [CrossRef]
- Gong, J.; Liu, F.; Jin, Z.; Zhang, M.; Zhang, S.; Zhang, Y.; Liang, X.; Li, Y.; Yang, Y.; Shen, L. 1433P A phase I/II study of FG-M108 plus capecitabine and oxaliplatin (CAPOX) as first-line (1L) treatment for patients with CLDN18.2+/HER2- advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma. Ann. Oncol. 2024, 35, S892. [Google Scholar] [CrossRef]
- Wang, F.; Shen, L.; Guo, W.; Liu, T.; Li, J.; Qin, S.; Bai, Y.; Chen, Z.; Wang, J.; Pan, Y.; et al. Fruquintinib plus paclitaxel versus placebo plus paclitaxel for gastric or gastroesophageal junction adenocarcinoma: The randomized phase 3 FRUTIGA trial. Nat. Med. 2024, 30, 2189–2198. [Google Scholar] [CrossRef]
- Shen, L.; Xu, R.H.; Wang, F.; Guo, W.; Liu, T.; Li, J.; Qin, S.; Bai, Y.; Chen, Z.; Wang, J.; et al. 1410P Efficacy of fruquintinib plus paclitaxel (F+PTX) in patients (pts) with prior immunotherapy (prior-IO): Subgroup analysis from FRUTIGA study. Ann. Oncol. 2024, 35, S881–S882. [Google Scholar] [CrossRef]
- Cheng, X.; Song, Z.; Yao, J.; Yang, J.; Wang, M.; Zhou, H.; Sun, T.; Wang, Q.; Wu, L.; Miao, J.; et al. 634P First results from phase I/II study of CTS2190, a novel small-molecule inhibitor of type I PRMTs, in patients with advanced solid tumors. Ann. Oncol. 2024, 35, S504. [Google Scholar] [CrossRef]
- Rivera Herrero, F.; Oh, D.Y.; Shitara, K.; Chen, J.S.; Jiang, J.; Liu, S.; Dong, Z.; Zhu, Q.; Zhang, X.; Umiker, B.; et al. 1422P First-line rilvegostomig (rilve) + chemotherapy (CTx) in patients (pts) with HER2-negative (HER2–) locally advanced unresectable or metastatic gastric cancers: First report of GEMINI-Gastric sub study 2. Ann. Oncol. 2024, 35, S887. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Zhang, Y.; Li, H.; Zhao, Q.; Zhu, X.; Wei, S.; Cheng, Y.; Yang, W.; Yao, J.; et al. LBA60 Phase III study of SHR-1701 versus placebo in combination with chemo as first-line (1L) therapy for HER2-negative gastric/gastroesophageal junction adenocarcinoma (G/GEJA). Ann. Oncol. 2024, 35, S1250. [Google Scholar] [CrossRef]
- Chen, B.B.; Chen, X.; Chen, G.; Wu, Y.; Zhang, G.; Zhan, Z.; Han, X.; Zhou, F.; Bai, W.; Guo, Y.; et al. 1475TiP Fruquintinib in combination with sintilimab and CAPEOX as first-line treatment for advanced G/GEJ cancer: A phase Ib/II clinical trial (FUNCTION). Ann. Oncol. 2024, 35, S911. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Van Cutsem, E.; Shitara, K.; Janjigian, Y.Y.; Oh, D.Y.; Xu, J.; Wu, S.; Bhaumik, S.; Bhagia, P.; Tabernero, J. 1471TiP MK-2870-015: A phase III study of trophoblast antigen 2 (TROP2)-directed antibody-drug conjugate (ADC) sacituzumab tirumotecan (sac-TMT) vs treatment of physician’s choice (TPC) for previously treated metastatic gastroesophageal adenocarcinoma (GEA). Ann. Oncol. 2024, 35, S909–S910. [Google Scholar] [CrossRef]
- Patel, M.R.; Hamilton, E.P.; Piha-Paul, S.A.; Henry, J.; Banerji, U.; Al Hallak, M.N.; Okada, H.; Qian, M.; Zhang, X.; Said, N.; et al. 610O Preliminary results from a phase I, first-in-human study of DS-9606a, a claudin 6 (CLDN6)-directed antibody-drug conjugate (ADC), in patients (pts) with tumor types known to express CLDN6. Ann. Oncol. 2024, 35, S488–S489. [Google Scholar] [CrossRef]
- Gordon, A.; Rajan, Z.; Fong, C.Y.K.; Peckitt, C.; Satchwell, L.; Cromarty, S.; Kidd, S.; Piadel, K.; Leamon, B.; Zhitkov, O.; et al. 1424P Maintenance capecitabine plus ramucirumab after first-line platinum-based chemotherapy in advanced oesophagogastric adenocarcinoma (OGA): Final analysis from the PLATFORM trial. Ann. Oncol. 2024, 35, S888. [Google Scholar] [CrossRef]
- Strickler, J.H.; Raimbourg, J.; Ghiringhelli, F.; Cohen, J.E.; Kitagawa, C.; Sharma, M.R.; Lee, K.H.; De Miguel, M.; Hunter, Z.N.; Burns, M.; et al. 1439P ABBV-400, a c-Met protein–targeting antibody-drug conjugate (ADC), in patients (pts) with advanced gastric/gastroesophageal junction adenocarcinoma (GEA): Results from a phase I study. Ann. Oncol. 2024, 35, S895–S896. [Google Scholar] [CrossRef]
Trials | Agents | Outcomes | Toxicity |
---|---|---|---|
Checkmate648 | Ipilimumab/Nivolumab (PD-1/PDL-1 axis) | Median OS 15.4 months: nivolumab plus chemo vs. 9.1 months chemo alone, both among patients with tumour cell PD-L1 expression of 1% or greater HR, 0.54; 99.5% [CI], 0.37 to 0.80; p < 0.001) | Manageable safety and toxicity profile (low rate of G3 or higher toxicities on all trials) |
Keynote 181 | Pembrolizumab (PD-1/PDL-1 axis) | ORR 74.4% in the pembrolizumab arm vs. 51.9% in the placebo arm | |
Keynote 590 | Pembrolizumab (PD-1/PDL-1 axis) | Median OS on the pembrolizumab arm: 12.4 months vs. 9.8 months on the chemotherapy arm | |
RATIONALE-306 | Tislelizumab (PD-1/PDL-1 axis) | Median OS 17.2 months in the tislelizumab arm, compared to 10.6 months in the SoC chemotherapy arm: HR of 0.66 (95% CI 0.54, 0.80); p < 0.0001 | |
MOONLIGHT | Ipilimumab/Nivolumab (PD-1/PDL-1 axis) | Clinically significant improvement in OS and PFS with addition of PD-1/PDL-1 inhibition compared to chemotherapy alone | |
KEYNOTE 811 | Trastuzumab/Pembrolizumab (PD-1/PDL-1 axis) | ORR for the pembrolizumab arm: 4.4% vs. 51.9% for the placebo arm (95% CI [11.2, 33.7]; p = 0.00006) | |
DESTINY-GASTRIC 01/03 | Trastuzumab Deruxtecan (HER2) | Median OS TDxD: 12.5 months vs. 8.4 months chemo alone; HR: 0.59; 95% CI, 0.39 to 0.88; p = 0.01) | |
HERIZON-GEA-01 | Zanidatamab/tislelizumab (anti-HER2) | Clinically significant improvement in OS and PFS with addition of PD-1/PDL-1 inhibition compared to chemotherapy alone | |
FIGHT | Bemarituzumab (anti-FGFR2b) | Median OS of 19.2 months (95%CI: 13.6, not reached) for Bemarituzumab plus mFOLFOX6, compared to 13.5 months for mFOLFOX6 alone (95%CI: 9.3, 15.9). | |
FAST | Zolbetuximab (anti-CLDN18.2) | Zolbetuximab plus EOX provided longer PFS and OS versus EOX alone, in both the overall population (PFS: [hazard ratio (HR) = 0.44; 95% confidence interval (CI), 0.29–0.67; p < 0.0005], (OS: (HR = 0.55; 95% CI, 0.39–0.77; p < 0.0005)) and the subgroup of patients with moderate-to-strong CLDN18.2 expression (PFS: (HR = 0.38; 95% CI, 0.23–0.62; p < 0.0005). | |
OTHERS: RATIONALE-305 FIH HERTHENA-PanTumor01 MAHOGANY RC118 TWINPEAK | Tislelizumab/Bevacizumab anti-HER2 ADC GQ1005 ZV0203 Pertuzumab ADC Margetuximab/Retifanlimab or Margetuximab/ Tebotelimab CLDN18.2 ADC/Torpalimab Pembrolizumab/ PT886 IgG1 bispecific antibody targeting CLDN18.2 | Preliminary data confirm clinically meaningful improvement in OS and PFS with trial agent vs. SOC |
Other New Promising Studies | Agents | Preliminary Data/Outcomes |
---|---|---|
FRUTIGA | Fruquintinib (VEGFR inhibitor) | Median PFS 5.6 months in the fruquintinib arm vs. 2.7 months in the placebo arm (HR 0.57; 95%, CI 0.48–0.68; p < 0.0001). |
ABBV-400 | Telisotuzumab (conjugated to a novel topoisomerase 1 inhibitor payload) | Tolerable safety profile (low percentage of G3 or higher adverse events). Preliminary efficacy results show promising anti-tumour activity, further outcomes awaited. |
GEMINI | Rilvegostomig | |
SHR-1701 | Bifunctional agent composed of an IgG4 mAb, targeting PD-L1 | |
FUNCTION | Fruquintinib-Sintilimab | |
PLATFORM | Ramucirumab | |
CTS2190 | PRMT inhibitor | |
TROP2 ADC | Sacituzumab tirumotecan (sac-TMT) | |
DS-9606a | DS-9606a (antiCLDN6 Ab) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalofonou, F.; Kalofonou, M.; Dimitrakopoulos, F.-I.; Kalofonos, H. Monoclonal Antibodies in Metastatic Gastro-Esophageal Cancers: An Overview of the Latest Therapeutic Advances. Int. J. Mol. Sci. 2025, 26, 1090. https://doi.org/10.3390/ijms26031090
Kalofonou F, Kalofonou M, Dimitrakopoulos F-I, Kalofonos H. Monoclonal Antibodies in Metastatic Gastro-Esophageal Cancers: An Overview of the Latest Therapeutic Advances. International Journal of Molecular Sciences. 2025; 26(3):1090. https://doi.org/10.3390/ijms26031090
Chicago/Turabian StyleKalofonou, Foteini, Melpomeni Kalofonou, Foteinos-Ioannis Dimitrakopoulos, and Haralabos Kalofonos. 2025. "Monoclonal Antibodies in Metastatic Gastro-Esophageal Cancers: An Overview of the Latest Therapeutic Advances" International Journal of Molecular Sciences 26, no. 3: 1090. https://doi.org/10.3390/ijms26031090
APA StyleKalofonou, F., Kalofonou, M., Dimitrakopoulos, F.-I., & Kalofonos, H. (2025). Monoclonal Antibodies in Metastatic Gastro-Esophageal Cancers: An Overview of the Latest Therapeutic Advances. International Journal of Molecular Sciences, 26(3), 1090. https://doi.org/10.3390/ijms26031090