Potential Molecular Interactions and In Vitro Hyperthermia, Thermal, and Magnetic Studies of Bioactive Nickel-Doped Hydroxyapatite Thin Films
Abstract
:1. Introduction
2. Results
2.1. Heat Generation and Thermogravimetric Analysis
2.1.1. Heat Generation Assessment
2.1.2. Thermogravimetric Analysis
- (i)
- Surface water evaporation: The first thermal transition, occurring around 77 °C, corresponds to the evaporation of water molecules adsorbed onto the material’s surface. This process involves the removal of loosely bound water.
- (ii)
- Loss of structural water: The second transition, observed at approximately 252 °C, corresponds to the loss of structural water that is chemically bound within the nanopowder. This represents a deeper alteration of the material compared to surface water removal.
- (iii)
- Chemical reaction and formation of calcium pyrophosphate: The third event, occurring at 365 °C, involves a chemical reaction between two molecules of calcium monohydrogen phosphate, resulting in the formation of calcium pyrophosphate and water. This process reflects a structural transformation within the material.
2.2. X-Ray Diffraction (XRD) Measurements
2.3. Fourier Transform InfraRed Spectroscopy (FTIR) Analysis
2.4. UV-Vis Outcomes
2.5. Morphology and Energy-Dispersive X-Ray Spectroscopy Investigations
2.6. Atomic Force Microscopy (AFM) and Magnetic Study of Nickel/Hydroxyapatite Thin Films
2.6.1. AFM Investigations
2.6.2. Magnetic Studies
2.7. Bioactivity
2.8. Protein–Ligand Interactions
3. Discussion
4. Materials and Methods
4.1. Preparation of Ni:HAp Powders
4.2. PLD Experiments
4.3. Characterization Techniques
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Ding, J.; Qi, B.; Tao, W.; Wang, J.; Zhao, C.; Peng, H.; Shi, J. Multifunctional Fibers to Shape Future Biomedical Devices. Adv. Funct. Mater. 2019, 29, 1902834. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Michalska-Pożoga, I.; Thakur, V.K. Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning. Nanomaterials 2019, 9, 404. [Google Scholar] [CrossRef]
- Jhonsi, M.A. Carbon Quantum Dots for Bioimaging. In State of the Art in Nano-Bioimaging; InTechOpen: London, UK, 2018; pp. 35–53. [Google Scholar]
- Kalyane, S. Basic of Nano Technology; Ignited Minds Edutech Pvt. Ltd.: New York, NY, USA, 2017; ISBN 9789386369284. [Google Scholar]
- Nanda, S.S.; Hembram, K.P.S.S.; Lee, J.-K.; Kim, K.; Selvan, S.T.; Yi, D.K. Experimental and Theoretical Structural Characterization of Cu–Au Tripods for Photothermal Anticancer Therapy. ACS Appl. Nano Mater. 2019, 2, 3735–3742. [Google Scholar] [CrossRef]
- Lotey, G.S.; Verma, N.K. Structural, Magnetic, and Electrical Properties of Gd-Doped BiFeO3 Nanoparticles with Reduced Particle Size. J. Nanoparticle Res. 2012, 14, 742. [Google Scholar] [CrossRef]
- Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4, 542–563. [Google Scholar] [CrossRef]
- Singh, G.; Singh, R.P.; Jolly, S.S. Customized Hydroxyapatites for Bone-Tissue Engineering and Drug Delivery Applications: A Review. J. Sol-Gel Sci. Technol. 2020, 94, 505–530. [Google Scholar] [CrossRef]
- Renaudin, G.; Gomes, S.; Nedelec, J.-M. First-Row Transition Metal Doping in Calcium Phosphate Bioceramics: A Detailed Crystallographic Study. Materials 2017, 10, 92. [Google Scholar] [CrossRef]
- Inam, H.; Sprio, S.; Tavoni, M.; Abbas, Z.; Pupilli, F.; Tampieri, A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int. J. Mol. Sci. 2024, 25, 2809. [Google Scholar] [CrossRef] [PubMed]
- Sedighi, O.; Alaghmandfard, A.; Montazerian, M.; Baino, F. A Critical Review of Bioceramics for Magnetic Hyperthermia. J. Am. Ceram. Soc. 2022, 105, 1723–1747. [Google Scholar] [CrossRef]
- Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and Targeted Systems for Cancer Therapy. Adv. Drug Deliv. Rev. 2004, 56, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers 2021, 13, 2053. [Google Scholar] [CrossRef] [PubMed]
- Mantyh, P. Bone Cancer Pain: Causes, Consequences, and Therapeutic Opportunities. Pain 2013, 154, S54–S62. [Google Scholar] [CrossRef]
- Slaoui, A.; Albisinni, S.; Aoun, F.; Assenmacher, G.; Al Hajj Obeid, W.; Diamand, R.; Regragui, S.; Touzani, A.; Bakar, A.; Mesfioui, A.; et al. A Systematic Review of Contemporary Management of Oligometastatic Prostate Cancer: Fighting a Challenge or Tilting at Windmills? World J. Urol. 2019, 37, 2343–2353. [Google Scholar] [CrossRef] [PubMed]
- Cifrić, S.; Spahić Bećirović, L.; Osmanović, D.; Imamović, E.; Deumić, A. Fighting Cancer Using Nanoparticles—Diagnosis, Treatment and Monitoring. In Proceedings of the International Conference on Medical and Biological Engineering, Mostar, Bosnia and Herzegovina, 21–24 April 2021; Badnjevic, A., Gurbeta Pokvić, L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 657–669. [Google Scholar]
- Logothetis, C.; Morris, M.J.; Den, R.; Coleman, R.E. Current Perspectives on Bone Metastases in Castrate-Resistant Prostate Cancer. Cancer Metastasis Rev. 2018, 37, 189–196. [Google Scholar] [CrossRef]
- Lin, S.-C.; Yu-Lee, L.-Y.; Lin, S.-H. Osteoblastic Factors in Prostate Cancer Bone Metastasis. Curr. Osteoporos. Rep. 2018, 16, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. Hyperthermia in Combined Treatment of Cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef] [PubMed]
- Bromma, K.; Chithrani, D.B. Advances in Gold Nanoparticle-Based Combined Cancer Therapy. Nanomaterials 2020, 10, 1671. [Google Scholar] [CrossRef]
- Mondal, S.; Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Nguyen, V.T.; Kim, H.H.; Nam, S.Y.; Lee, K.D.; Oh, J. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment. Nanomaterials 2017, 7, 426. [Google Scholar] [CrossRef]
- Ramos-Guivar, J.A.; Morales, M.A.; Litterst, F.J. γ-Fe2O3 Nanoparticles Embedded in Nanohydroxyapatite Matrix for Magnetic Hyperthermia and in Vitro Osteoblast Cell Studies. Ceram. Int. 2020, 46, 10658–10666. [Google Scholar] [CrossRef]
- Jiang, Y.; Ou, J.; Zhang, Z.; Qin, Q.-H. Preparation of Magnetic and Bioactive Calcium Zinc Iron Silicon Oxide Composite for Hyperthermia Treatment of Bone Cancer and Repair of Bone Defects. J. Mater. Sci. Mater. Med. 2011, 22, 721–729. [Google Scholar] [CrossRef]
- Laurent, S.; Dutz, S.; Häfeli, U.O.; Mahmoudi, M. Magnetic Fluid Hyperthermia: Focus on Superparamagnetic Iron Oxide Nanoparticles. Adv. Colloid Interface Sci. 2011, 166, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, C.S.; Nica, I.C.; Dinischiotu, A.; Iconaru, S.L.; Chapon, P.; Bita, B.; Trusca, R.; Groza, A.; Predoi, D. Novel Dextran Coated Cerium Doped Hydroxyapatite Thin Films. Polymers 2022, 14, 1826. [Google Scholar] [CrossRef]
- Duta, L.; Stan, G.E.; Popescu-Pelin, G.; Zgura, I.; Anastasescu, M.; Oktar, F.N. Influence of Post-Deposition Thermal Treatments on the Morpho-Structural, and Bonding Strength Characteristics of Lithium-Doped Biological-Derived Hydroxyapatite Coatings. Coatings 2022, 12, 1883. [Google Scholar] [CrossRef]
- Duta, L. In Vivo Assessment of Synthetic and Biological-Derived Calcium Phosphate-Based Coatings Fabricated by Pulsed Laser Deposition: A Review. Coatings 2021, 11, 99. [Google Scholar] [CrossRef]
- Kylychbekov, S.; Allamyradov, Y.; Khuzhakulov, Z.; Majidov, I.; Banga, S.; ben Yosef, J.; Duta, L.; Er, A.O. Bioactivity and Mechanical Properties of Hydroxyapatite on Ti6Al4V and Si(100) Surfaces by Pulsed Laser Deposition. Coatings 2023, 13, 1681. [Google Scholar] [CrossRef]
- El-Kader, M.F.H.A.; Ahmed, M.K.; Elabbasy, M.T.; Afifi, M.; Menazea, A.A. Morphological, Ultrasonic Mechanical and Biological Properties of Hydroxyapatite Layers Deposited by Pulsed Laser Deposition on Alumina Substrates. Surf. Coat. Technol. 2021, 409, 126861. [Google Scholar] [CrossRef]
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024, 12, 201. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, X.; Cui, W.; Xu, M.; Dong, J.; Ekundayo, B.E.; Ni, D.; Rao, Z.; Guo, L.; Stahlberg, H. Computational Drug Development for Membrane Protein Targets. Nat. Biotechnol. 2024, 42, 229–242. [Google Scholar] [CrossRef]
- Niu, X.; Yuan, M.; Zhao, R.; Wang, L.; Liu, Y.; Zhao, H.; Li, H.; Yang, X.; Wang, K. Fabrication Strategies for Chiral Self-Assembly Surface. Microchim. Acta 2024, 191, 202. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, L.O.; Omer, R.A. Hydroxyapatite Biomaterials: A Comprehensive Review of Their Properties, Structures, Clinical Applications, and Producing Techniques. Rev. Inorg. Chem. 2024. [Google Scholar] [CrossRef]
- Kurinjinathan, P.; Thanigai Arul, K.; Ramana Ramya, J.; Manikandan, E.; Hegazy, H.H.; Umar, A.; Algarni, H.; Ahmad, N. Effect of Nickel Doping on the Properties of Hydroxyapatite Nanoparticles. J. Nanosci. Nanotechnol. 2020, 20, 2482–2487. [Google Scholar] [CrossRef]
- Tithito, T.; Sillapaprayoon, S.; Chantho, V.; Pimtong, W.; Thongbunchoo, J.; Charoenphandhu, N.; Krishnamra, N.; Yong, N.; Lert-Itthiporn, A.; Maneeprakorn, W. Evaluation of Magnetic Hyperthermia, Drug Delivery and Biocompatibility (Bone Cell Adhesion and Zebrafish Assays) of Trace Element Co-Doped Hydroxyapatite Combined with Mn–Zn Ferrite for Bone Tissue Applications. RSC Adv. 2024, 14, 29242–29253. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Ohtoshi, N.; Kawashita, M. Spherical Porous Hydroxyapatite Granules Containing Composites of Magnetic and Hydroxyapatite Nanoparticles for the Hyperthermia Treatment of Bone Tumor. J. Mater. Sci. Mater. Med. 2016, 27, 93. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yuan, X.; Li, B.; Wang, X. Impact of Pore Structure on Hydroxyapatite Supported Nickel Catalysts (Ni/HAP) for Dry Reforming of Methane. Fuel Process. Technol. 2020, 202, 106359. [Google Scholar] [CrossRef]
- Gibson, I.R.; Best, S.M.; Bonfield, W. Chemical Characterization of Silicon-Substituted Hydroxyapatite. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 1999, 44, 422–428. [Google Scholar] [CrossRef]
- Alshemary, A.Z.; Akram, M.; Goh, Y.-F.; Tariq, U.; Butt, F.K.; Abdolahi, A.; Hussain, R. Synthesis, Characterization, In Vitro Bioactivity and Antimicrobial Activity of Magnesium and Nickel Doped Silicate Hydroxyapatite. Ceram. Int. 2015, 41, 11886–11898. [Google Scholar] [CrossRef]
- Ider, M.; Abderrafi, K.; Eddahbi, A.; Ouaskit, S.; Kassiba, A. Silver Metallic Nanoparticles with Surface Plasmon Resonance: Synthesis and Characterizations. J. Clust. Sci. 2017, 28, 1051–1069. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions Able to Reproducein Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef]
- Kim, D.; Lee, N.; Park, M.; Kim, B.H.; An, K.; Hyeon, T. Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455. [Google Scholar] [CrossRef] [PubMed]
- Khandhar, A.P.; Ferguson, R.M.; Krishnan, K.M. Monodispersed Magnetite Nanoparticles Optimized for Magnetic Fluid Hyperthermia: Implications in Biological Systems. J. Appl. Phys. 2011, 109, 07B310. [Google Scholar] [CrossRef] [PubMed]
- Baba, D.; Seiko, Y.; Nakanishi, T.; Zhang, H.; Arakaki, A.; Matsunaga, T.; Osaka, T. Effect of Magnetite Nanoparticles on Living Rate of MCF-7 Human Breast Cancer Cells. Colloids Surf. B Biointerfaces 2012, 95, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Mody, V.V.; Singh, A.; Wesley, B. Basics of Magnetic Nanoparticles for Their Application in the Field of Magnetic Fluid Hyperthermia. Eur. J. Nanomed. 2013, 5, 11–21. [Google Scholar] [CrossRef]
- Tampieri, A.; D’Alessandro, T.; Sandri, M.; Sprio, S.; Landi, E.; Bertinetti, L.; Panseri, S.; Pepponi, G.; Goettlicher, J.; Bañobre-López, M.; et al. Intrinsic Magnetism and Hyperthermia in Bioactive Fe-Doped Hydroxyapatite. Acta Biomater. 2012, 8, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.-H.; Hou, S.-M.; Hsueh, Y.-S.; Lin, J.; Wu, H.-C.; Lin, F.-H. The in Vivo Performance of Biomagnetic Hydroxyapatite Nanoparticles in Cancer Hyperthermia Therapy. Biomaterials 2009, 30, 3956–3960. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Hosono, T.; Jeyadevan, B.; Kamitakahara, M.; Ioku, K. Hydrothermal Synthesis of Magnetite/Hydroxyapatite Composite Material for Hyperthermia Therapy for Bone Cancer. J. Ceram. Soc. Jpn. 2008, 116, 950–954. [Google Scholar] [CrossRef]
- Farzin, A.; Fathi, M.; Emadi, R. Multifunctional Magnetic Nanostructured Hardystonite Scaffold for Hyperthermia, Drug Delivery and Tissue Engineering Applications. Mater. Sci. Eng. C 2017, 70, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Veverka, P.; Pollert, E.; Závěta, K.; Vasseur, S.; Duguet, E. Sr-Hexaferrite/Maghemite Composite Nanoparticles—Possible New Mediators for Magnetic Hyperthermia. Nanotechnology 2008, 19, 215705. [Google Scholar] [CrossRef]
- Markaki, A.E.; Clyne, T.W. Magneto-Mechanical Stimulation of Bone Growth in a Bonded Array of Ferromagnetic Fibres. Biomaterials 2004, 25, 4805–4815. [Google Scholar] [CrossRef]
- Takegami, K.; Sano, T.; Wakabayashi, H.; Sonoda, J.; Yamazaki, T.; Morita, S.; Shibuya, T.; Uchida, A. New Ferromagnetic Bone Cement for Local Hyperthermia. J. Biomed. Mater. Res. 1998, 43, 210–214. [Google Scholar] [CrossRef]
- Baibekov, I.M.; Khanapiyaev, U.K. Healing of Bone Fractures of Rat Shin and Some Immunological Indices during Magnetic Laser Therapy and Osteosynthesis by the Ilizarov Method. Bull. Exp. Biol. Med. 2001, 131, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Keshri, S.; Kumar, V.; Wiśniewski, P.; Kamzin, A.S. Synthesis and Characterization of LSMO Manganite-Based Biocomposite. Phase Transit. 2014, 87, 468–476. [Google Scholar] [CrossRef]
- Asghar, M.S.; Li, J.; Ahmed, I.; Ghazanfar, U.; Irshad, M.S.; Idrees, M.; Haq, Z.; Rizwan, M.; Sheikh, F.; Yasmeen, F. Antioxidant, and Enhanced Flexible Nano Porous Scaffolds for Bone Tissue Engineering Applications. Nano Sel. 2021, 2, 1356–1367. [Google Scholar] [CrossRef]
- Asghar, M.S.; Ghazanfar, U.; Idrees, M.; Irshad, M.S.; Haq, Z.; Javed, M.Q.; Hassan, S.Z.; Rizwan, M. In Vitro Controlled Drug Delivery of Cationic Substituted Hydroxyapatite Nanoparticles; Enhanced Anti-Chelating and Antibacterial Response. Kuwait J. Sci. 2023, 50, 97–104. [Google Scholar] [CrossRef]
- Li, Z.; Kawashita, M.; Araki, N.; Mitsumori, M.; Hiraoka, M.; Doi, M. Preparation of Magnetic Iron Oxide Nanoparticles for Hyperthermia of Cancer in a FeCl2-NaNO3-NaOH Aqueous System. J. Biomater. Appl. 2011, 25, 643–661. [Google Scholar] [CrossRef]
- Li, Z.; Kawashita, M.; Araki, N.; Mitsumori, M.; Hiraoka, M.; Doi, M. Magnetite Nanoparticles with High Heating Efficiencies for Application in the Hyperthermia of Cancer. Mater. Sci. Eng. C 2010, 30, 990–996. [Google Scholar] [CrossRef]
- Kawashita, M.; Domi, S.; Saito, Y.; Aoki, M.; Ebisawa, Y.; Kokubo, T.; Saito, T.; Takano, M.; Araki, N.; Hiraoka, M. In Vitro Heat Generation by Ferrimagnetic Maghemite Microspheres for Hyperthermic Treatment of Cancer under an Alternating Magnetic Field. J. Mater. Sci. Mater. Med. 2008, 19, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Krebs, H.-U.; Weisheit, M.; Faupel, J.; Süske, E.; Scharf, T.; Fuhse, C.; Störmer, M.; Sturm, K.; Seibt, M.; Kijewski, H.; et al. Pulsed Laser Deposition (PLD)—A Versatile Thin Film Technique BT—Advances in Solid State Physics. In Advances in Solid State Physics; Kramer, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 505–518. ISBN 978-3-540-44838-9. [Google Scholar]
- Gampe, R.; Shewchuk, L. BMP1 Complexed with a Reverse Hydroxymate—Compound 1. 2024. Available online: https://www.wwpdb.org/pdb?id=pdb_00006btn (accessed on 16 December 2024). [CrossRef]
- Ardanova, L.I.; Get’man, E.I.; Loboda, S.N.; Prisedsky, V.V.; Tkachenko, T.V.; Marchenko, V.I.; Antonovich, V.P.; Chivireva, N.A.; Chebishev, K.A.; Lyashenko, A.S. Isomorphous Substitutions of Rare Earth Elements for Calcium in Synthetic Hydroxyapatites. Inorg. Chem. 2010, 49, 10687–10693. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Seeliger, D.; de Groot, B.L. Ligand Docking and Binding Site Analysis with PyMOL and Autodock/Vina. J. Comput. Aided. Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef]
- Yan, Y.; Tao, H.; He, J.; Huang, S.-Y. The HDOCK Server for Integrated Protein–Protein Docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
No. of Applied Laser Pulses | Ms (emu) | Mr (emu) | Hc (Oe) | Mr/Ms |
---|---|---|---|---|
35,000 | 2.57 × 10−4 | 2.14 × 10−4 | 367 | 0.83 |
40,000 | 2.59 × 10−4 | 1.96 × 10−4 | 300 | 0.76 |
45,000 | 3.65 × 10−4 | 2.59 × 10−4 | 385 | 0.71 |
50,000 | 3.076 × 10−4 | 2.35 × 10−4 | 371 | 0.77 |
55,000 | 3.10 × 10−4 | 2.63 × 10−4 | 365 | 0.85 |
60,000 | 4.88 × 10−4 | 4.19 × 10−4 | 394 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, M.S.; Ghazanfar, U.; Rizwan, M.; Manan, M.Q.; Baig, A.; Qaiser, M.A.; Haq, Z.; Wang, L.; Duta, L. Potential Molecular Interactions and In Vitro Hyperthermia, Thermal, and Magnetic Studies of Bioactive Nickel-Doped Hydroxyapatite Thin Films. Int. J. Mol. Sci. 2025, 26, 1095. https://doi.org/10.3390/ijms26031095
Asghar MS, Ghazanfar U, Rizwan M, Manan MQ, Baig A, Qaiser MA, Haq Z, Wang L, Duta L. Potential Molecular Interactions and In Vitro Hyperthermia, Thermal, and Magnetic Studies of Bioactive Nickel-Doped Hydroxyapatite Thin Films. International Journal of Molecular Sciences. 2025; 26(3):1095. https://doi.org/10.3390/ijms26031095
Chicago/Turabian StyleAsghar, Muhammad Sohail, Uzma Ghazanfar, Muhammad Rizwan, Muhammad Qasim Manan, Athar Baig, Muhammad Adnan Qaiser, Zeenat Haq, Lei Wang, and Liviu Duta. 2025. "Potential Molecular Interactions and In Vitro Hyperthermia, Thermal, and Magnetic Studies of Bioactive Nickel-Doped Hydroxyapatite Thin Films" International Journal of Molecular Sciences 26, no. 3: 1095. https://doi.org/10.3390/ijms26031095
APA StyleAsghar, M. S., Ghazanfar, U., Rizwan, M., Manan, M. Q., Baig, A., Qaiser, M. A., Haq, Z., Wang, L., & Duta, L. (2025). Potential Molecular Interactions and In Vitro Hyperthermia, Thermal, and Magnetic Studies of Bioactive Nickel-Doped Hydroxyapatite Thin Films. International Journal of Molecular Sciences, 26(3), 1095. https://doi.org/10.3390/ijms26031095