Characterization of Main Responsive Genes Reveals Their Regulatory Network Attended by Multi-Biological Metabolic Pathways in Paclobutrazol (PAC)-Modulated Grape Seed Development (GSD) at the Stone-Hardening Stage
Abstract
:1. Introduction
2. Result
2.1. Screen the Main Responsive Genes Involved in Various Pathways in PAC-Mediated GSD
2.2. Identification of the Main Responsive Genes Involved in Multi-Hormone Pathways in PAC-Mediated GSD
2.3. Characterization of the Main Responsive Genes Involved in the Multi-Hormone in PAC-Mediated GSD
2.4. Identification of Starch and Sucrose Metabolism, Cell Wall Genes, Epigenetic Modifications, and Transcription Factors Regulated by Hormone-Responsive Genes in GSD
2.5. Search for Main Pathways Through Gene Ontology (GO) and KEGG
2.6. Examination of Cis-Regulatory Elements Within the Promoter Regions of Multi-Hormones Genes Across Main Pathways
2.7. Investigating Promoter Regions of Key DEGs of Starch and Sucrose Metabolism, Cell Walls, and Epigenetic Regulation
2.8. Multi-Hormonal Regulation of Key Pathways in PAC-Mediated GSD
2.8.1. Gibberellin (GA) Metabolism
2.8.2. GA Signal Transduction Pathway
2.8.3. Auxin Pathway
2.8.4. BR Pathway
2.8.5. ABA Pathway
2.8.6. CK Pathway
2.8.7. JA Pathway
2.8.8. SA Pathway
2.9. Starch and Sucrose Metabolism
2.10. Unveiling the Dynamics of DNA Methylation and Demethylation at Their Expression Levels
2.11. Expression Profile and Pattern Analysis of Acetylation and Deacetylation Enzymes
2.12. Genes Encoding Differentially Expressed Cell Wall Remodeling Enzymes
2.13. Identification of Transcription Factor (TF) Families Involved in PAC-Mediated GSD
2.14. Validation of Main Pathway Gene Expressions Using RT-qPCR Analysis
3. Discussion
3.1. Role of PAC as a Gibberellin Inhibitor in Shaping Hormonal Interplay in GSD
3.2. PAC-Induced Changes in Starch and Sucrose Metabolism: Implications for GSD
3.3. Regulation of Cell Wall Enzymes Genes by PAC
3.4. Regulatory Roles of Transcription Factors in PAC-Affected GSD
4. Materials and Methods
4.1. Plant Materials
4.2. Analysis of Differentially Expressed Genes
4.3. Chromosomal Localization, Phylogenetic Analysis, and Gene Structure Analysis
4.4. Conserved Domain Analysis and Cis-Acting Elements Analysis
4.5. Functional Annotation and Differentially Expressed Genes
4.6. RNA Extraction and Quantitative PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, D.J.; Li, Z.T.; Dhekney, S.A. Precision Breeding of Grapevine (Vitis vinifera L.) for Improved Traits. Plant Sci. 2014, 228, 3–10. [Google Scholar] [CrossRef]
- Hunter, D.M.; Proctor, J.T.A. Paclobutrazol Affects Growth and Fruit Composition of Potted Grapevines. HortScience 1992, 27, 319–321. [Google Scholar] [CrossRef]
- Serrano, A.; Espinoza, C.; Armijo, G.; Inostroza-Blancheteau, C.; Poblete, E.; Meyer-Regueiro, C.; Arce, A.; Parada, F.; Santibáñez, C.; Arce-Johnson, P. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses. Front. Plant Sci. 2017, 8, 1486. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, X.; Jiao, C.; Li, Z.; Fei, Z.; Yan, X.; Liu, C.; Wang, Y.; Wang, X. Transcriptome Analyses of Seed Development in Grape Hybrids Reveals a Possible Mechanism Influencing Seed Size. BMC Genom. 2016, 17, 898. [Google Scholar] [CrossRef]
- Rademacher, W. Chemical Regulators of Gibberellin Status and Their Application in Plant Production. In Annual Plant Reviews: The Gibberellins; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2016; Volume 49, pp. 359–404. ISBN 978-1-11921-043-6. [Google Scholar]
- Lu, L.; Liang, J.; Chang, X.; Yang, H.; Li, T.; Hu, J. Enhanced Vacuolar Invertase Activity and Capability for Carbohydrate Import in GA-Treated Inflorescence Correlate with Increased Fruit Set in Grapevine. Tree Genet. Genomes 2017, 13, 21. [Google Scholar] [CrossRef]
- Dong, Y.; Huang, L.; Zhang, W.; Liu, J.; Nong, H.; Wang, X.; Zheng, H.; Tao, J. Transcriptomic and Functional Analysis Reveals That VvSAUR43 May Be Involved the Elongation of Grape Berries. Sci. Hortic. 2023, 318, 112119. [Google Scholar] [CrossRef]
- Bisht, T.S.; Rawat, L.; Chakraborty, B.; Yadav, V. A Recent Advances in Use of Plant Growth Regulators (PGRs) in Fruit Crops—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1307–1336. [Google Scholar] [CrossRef]
- Guan, H.; Yang, X.; Lin, Y.; Xie, B.; Zhang, X.; Ma, C.; Xia, R.; Chen, R.; Hao, Y. The Hormone Regulatory Mechanism Underlying Parthenocarpic Fruit Formation in Tomato. Front. Plant Sci. 2024, 15, 1404980. [Google Scholar] [CrossRef]
- Serrani, J.C.; Sanjuán, R.; Ruiz-Rivero, O.; Fos, M.; García-Martínez, J.L. Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiol. 2007, 145, 246–257. [Google Scholar] [CrossRef]
- Wu, M.; Liu, K.; Li, H.; Li, Y.; Zhu, Y.; Su, D.; Zhang, Y.; Deng, H.; Wang, Y.; Liu, M. Gibberellins Involved in Fruit Ripening and Softening by Mediating Multiple Hormonal Signals in Tomato. Hortic. Res. 2024, 11, uhad275. [Google Scholar] [CrossRef] [PubMed]
- Christov, C.; Tsvetkov, I.; Kovachev, V. Use of paclobutrazol to control vegetative growth and improve fruiting efficiency of grapevines (Vitis vinifera L.). Bulg. J. Plant Physiol. 1995, 21, 64–71. [Google Scholar]
- Matilla, A.J. Auxin: Hormonal Signal Required for Seed Development and Dormancy. Plants 2020, 9, 705. [Google Scholar] [CrossRef]
- Mazzoni-Putman, S.M.; Brumos, J.; Zhao, C.; Alonso, J.M.; Stepanova, A.N. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb. Perspect. Biol. 2021, 13, a039990. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, M.J.; Bentsink, L.; Soppe, W.J.J. Molecular Networks Regulating Arabidopsis Seed Maturation, after-Ripening, Dormancy and Germination. New Phytol. 2008, 179, 33–54. [Google Scholar] [CrossRef]
- Davies, P.J. Plant Hormones: Biosynthesis, Signal Transduction, Action! Springer: Dordrecht, The Netherlands, 2010; ISBN 978-1-40202-686-7. [Google Scholar]
- Guo, H.; Wang, Y.; Liu, H.; Hu, P.; Jia, Y.; Zhang, C.; Wang, Y.; Gu, S.; Yang, C.; Wang, C. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula Platyphylla. Int. J. Mol. Sci. 2015, 16, 22960–22975. [Google Scholar] [CrossRef] [PubMed]
- Kou, E.; Huang, X.; Zhu, Y.; Su, W.; Liu, H.; Sun, G.; Chen, R.; Hao, Y.; Song, S. Crosstalk Between Auxin and Gibberellin During Stalk Elongation in Flowering Chinese Cabbage. Sci. Rep. 2021, 11, 3976. [Google Scholar] [CrossRef] [PubMed]
- Desta, B.; Amare, G. Paclobutrazol as a Plant Growth Regulator. Chem. Biol. Technol. Agric. 2021, 8, 1–15. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Zheng, X.; Tan, B.; Ye, X.; Wang, W.; Zhang, L.; Li, J.; Li, Z.; Cheng, J.; et al. The Distribution of Bioactive Gibberellins along Peach Annual Shoots Is Closely Associated with PpGA20ox and PpGA2ox Expression Profiles. BMC Genom. 2022, 23, 730. [Google Scholar] [CrossRef]
- Castro-Camba, R.; Sánchez, C.; Vidal, N.; Vielba, J.M. Plant Development and Crop Yield: The Role of Gibberellins. Plants 2022, 11, 2650. [Google Scholar] [CrossRef]
- Coles, J.P.; Phillips, A.L.; Croker, S.J.; García-Lepe, R.; Lewis, M.J.; Hedden, P. Modification of Gibberellin Production and Plant Development in Arabidopsis by Sense and Antisense Expression of Gibberellin 20-Oxidase Genes. Plant J. 1999, 17, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Schwechheimer, C. Gibberellin Signaling in Plants—The Extended Version. Front. Plant Sci. 2012, 2, 107. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Miura, K.; Itoh, H.; Tatsumi, T.; Ueguchi-Tanaka, M.; Ishiyama, K.; Kobayashi, M.; Agrawal, G.K.; Takeda, S.; Abe, K.; et al. An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice. Plant Physiol. 2004, 134, 1642–1653. [Google Scholar] [CrossRef] [PubMed]
- Serrani, J.C.; Carrera, E.; Ruiz-Rivero, O.; Gallego-Giraldo, L.; Peres, L.E.P.; García-Martínez, J.L. Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins. Plant Physiol. 2010, 153, 851–862. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Xu, Y.; An, Y.; Hu, Z.; Xiong, A.; Wang, G. Effects of Jasmonic Acid on Stress Response and Quality Formation in Vegetable Crops and Their Underlying Molecular Mechanisms. Plants 2024, 13, 1557. [Google Scholar] [CrossRef]
- Bagautdinova, Z.Z.; Omelyanchuk, N.; Tyapkin, A.V.; Kovrizhnykh, V.V.; Lavrekha, V.V.; Zemlyanskaya, E.V. Salicylic Acid in Root Growth and Development. Int. J. Mol. Sci. 2022, 23, 2228. [Google Scholar] [CrossRef]
- Golenberg, E.M.; West, N.W. Hormonal Interactions and Gene Regulation Can Link Monoecy and Environmental Plasticity to the Evolution of Dioecy in Plants. Am. J. Bot. 2013, 100, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhou, J.J.; Zhang, J.Z. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. Int. J. Mol. Sci. 2018, 19, 259. [Google Scholar] [CrossRef]
- Luo, P.; Li, T.T.; Shi, W.M.; Ma, Q.; Di, D.W. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. Plants 2023, 12, 4111. [Google Scholar] [CrossRef]
- Böttcher, C.; Keyzers, R.A.; Boss, P.K.; Davies, C. Sequestration of Auxin by the Indole-3-Acetic Acid-Amido Synthetase GH3-1 in Grape Berry (Vitis vinifera L.) and the Proposed Role of Auxin Conjugation during Ripening. J. Exp. Bot. 2010, 61, 3615–3625. [Google Scholar] [CrossRef]
- Böttcher, C.; Boss, P.K.; Davies, C. Acyl Substrate Preferences of an IAA-Amido Synthetase Account for Variations in Grape (Vitis vinifera L.) Berry Ripening Caused by Different Auxinic Compounds Indicating the Importance of Auxin Conjugation in Plant Development. J. Exp. Bot. 2011, 62, 4267–4280. [Google Scholar] [CrossRef] [PubMed]
- Bernales, M.; Monsalve, L.; Ayala-Raso, A.; Valdenegro, M.; Martínez, J.P.; Travisany, D.; Defilippi, B.; González-Agüero, M.; Cherian, S.; Fuentes, L. Expression of Two Indole-3-Acetic Acid (IAA)-Amido Synthetase (GH3) Genes during Fruit Development of Raspberry (Rubus idaeus Heritage). Sci. Hortic. 2019, 246, 168–175. [Google Scholar] [CrossRef]
- Peres, A.L.G.L.; Soares, J.S.; Tavares, R.G.; Righetto, G.; Zullo, M.A.T.; Mandava, N.B.; Menossi, M. Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View from the Discovery to Hormonal Interactions in Plant Development and Stress Adaptation. Int. J. Mol. Sci. 2019, 20, 331. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Hussain, A.; Ali, Q.; Liu, F. Brassinosteroids (BRs) Role in Plant Development and Coping with Different Stresses. Int. J. Mol. Sci. 2022, 23, 1012. [Google Scholar] [CrossRef] [PubMed]
- Nemhauser, J.L.; Mockler, T.C.; Chory, J. Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biol. 2004, 2, e258. [Google Scholar] [CrossRef]
- Danso, B.; Ackah, M.; Jin, X.; Ayittey, D.M.; Amoako, F.K.; Zhao, W. Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase (XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant (Morus alba L.) Leaves. Plants 2024, 13, 902. [Google Scholar] [CrossRef] [PubMed]
- Qiao, T.; Zhang, L.; Yu, Y.; Pang, Y.; Tang, X.; Wang, X.; Li, L.; Li, B.; Sun, Q. Identification and Expression Analysis of Xyloglucan Endotransglucosylase/ Hydrolase (XTH) Family in Grapevine (Vitis Vinifera L.). PeerJ 2022, 10, e13546. [Google Scholar] [CrossRef] [PubMed]
- Best, N.B.; Johal, G.; Dilkes, B.P. Phytohormone Inhibitor Treatments Phenocopy Brassinosteroid and Gibberellin Dwarf Mutant Interactions in Maize. Plant Direct 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Saini, L. Protein-Phosphatases-and-Stress-Management-in-Plants-2020. In Protein Phosphatases and Stress Management in Plants; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Miao, J.; Li, X.; Li, X.; Tan, W.; You, A.; Wu, S.; Tao, Y.; Chen, C.; Wang, J.; Zhang, D.; et al. OsPP2C09, a Negative Regulatory Factor in Abscisic Acid Signalling, Plays an Essential Role in Balancing Plant Growth and Drought Tolerance in Rice. New Phytol. 2020, 227, 1417–1433. [Google Scholar] [CrossRef]
- Bhakta, S.; Negi, S.; Tak, H.; Singh, S.; Ganapathi, T.R. MusaATAF2-like Protein Regulates Shoot Development and Multiplication by Inducing Cytokinin Hypersensitivity and Flavonoid Accumulation in Banana Plants. Plant Cell Rep. 2022, 41, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Horák, J.; Grefen, C.; Berendzen, K.W.; Hahn, A.; Stierhof, Y.D.; Stadelhofer, B.; Stahl, M.; Koncz, C.; Harter, K. The Arabidopsis Thaliana Response Regulator ARR22 Is a Putative AHP Phospho-Histidine Phosphatase Expressed in the Chalaza of Developing Seeds. BMC Plant Biol. 2008, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Deng, Z.N.; Wu, K.C.; Malviya, M.K.; Solanki, M.K.; Verma, K.K.; Pang, T.; Li, Y.J.; Liu, X.Y.; Kashyap, B.K.; et al. Transcriptome Analysis Reveals a Gene Expression Pattern That Contributes to Sugarcane Bud Propagation Induced by Indole-3-Butyric Acid. Front. Plant Sci. 2022, 13, 852886. [Google Scholar] [CrossRef] [PubMed]
- Blanco, F.; Salinas, P.; Cecchini, N.M.; Jordana, X.; Van Hummelen, P.; Alvarez, M.E.; Holuigue, L. Early Genomic Responses to Salicylic Acid in Arabidopsis. Plant Mol. Biol. 2009, 70, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Janda, T.; Szalai, G.; Pál, M. Salicylic Acid Signalling in Plants. Int. J. Mol. Sci. 2020, 21, 2655. [Google Scholar] [CrossRef] [PubMed]
- Thurow, C.; Schiermeyer, A.; Krawczyk, S.; Butterbrodt, T.; Nickolov, K.; Gatz, C. Tobacco BZIP Transcription Factor TGA2.2 and Related Factor TGA2.1 Have Distinct Roles in Plant Defense Responses and Plant Development. Plant J. 2005, 44, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.U.; Khan, I.A.; Aslam, A.; Liu, R.; Sun, L.; Wu, Y.; Aslam, M.M.; Khan, A.U.; Li, P.; Jiang, J.; et al. Transcriptome Analysis Reveals Pathogenesis-Related Gene 1 Pathway against Salicylic Acid Treatment in Grapevine (Vitis vinifera L.). Front. Genet 2022, 13, 1033288. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zheng, L.; Jin, L.G.; Liu, Y.X.; Kong, Y.N.; Wang, Y.X.; Yu, T.F.; Chen, J.; Zhou, Y.B.; Chen, M.; et al. Genome-Wide Analysis of the Soybean TIFY Family and Identification of GmTIFY10e and GmTIFY10g Response to Salt Stress. Front. Plant Sci. 2022, 13, 845314. [Google Scholar] [CrossRef]
- Wang, X.; Li, N.; Zan, T.; Xu, K.; Gao, S.; Yin, Y.; Yao, M.; Wang, F. Genome-Wide Analysis of the TIFY Family and Function of CaTIFY7 and CaTIFY10b under Cold Stress in Pepper (Capsicum annuum L.). Front. Plant Sci. 2023, 14, 1308721. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Cai, X.; Han, Z.; Si, J.; Chen, D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int. J. Mol. Sci. 2022, 23, 3945. [Google Scholar] [CrossRef]
- Skryhan, K.; Gurrieri, L.; Sparla, F.; Trost, P.; Blennow, A. Redox Regulation of Starch Metabolism. Front. Plant Sci. 2018, 9, 1344. [Google Scholar] [CrossRef]
- Aluko, O.O.; Li, C.; Wang, Q.; Liu, H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int. J. Mol. Sci. 2021, 22, 4704. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zang, Y.; Zhang, X.; Shang, S.; Xue, S.; Chen, J.; Tang, X. Insights into the Regulation of Energy Metabolism During the Seed-to-Seedling Transition in Marine Angiosperm Zostera marina L.: Integrated Metabolomic and Transcriptomic Analysis. Front. Plant Sci. 2023, 14, 1130292. [Google Scholar] [CrossRef]
- Xu, J.; Li, Q.; Li, Y.; Yang, L.; Zhang, Y.; Cai, Y. Effect of Exogenous Gibberellin, Paclobutrazol, Abscisic Acid, and Ethrel Application on Bulblet Development in Lycoris Radiata. Front. Plant Sci. 2021, 11, 615547. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, L.; Cheng, W.; Liu, B.; Li, W.; Wang, F.; Xu, C.; Zhao, X.; Ding, Z.; Zhang, K.; et al. SH1-Dependent Maize Seed Development and Starch Synthesis via Modulating Carbohydrate Flow and Osmotic Potential Balance. BMC Plant Biol. 2020, 20, 264. [Google Scholar] [CrossRef]
- Niu, F.; Bu, Y.; Tang, S.; Yang, X.; Zhang, L.; Song, X. Comprehensive Analysis of Glycoside Hydrolase Family 1 β-Glucosidase Genes in Wheat Reveals TaBGLU81 Functions in Pollen Development and Fertility Conversion. Plant Growth Regul. 2024, 104, 215–231. [Google Scholar] [CrossRef]
- Upreti, K.K.; Shivu Prasad, S.R.; Reddy, Y.T.N.; Rajeshwara, A.N. Paclobutrazol Induced Changes in Carbohydrates and Some Associated Enzymes during Floral Initiation in Mango (Mangifera indica L.) Cv. Totapuri. Indian J. Plant Physiol. 2014, 19, 317–323. [Google Scholar] [CrossRef]
- Parrilla, J.; Medici, A.; Gaillard, C.; Verbeke, J.; Gibon, Y.; Rolin, D.; Laloi, M.; Finkelstein, R.R.; Atanassova, R. Grape ASR Regulates Glucose Transport, Metabolism and Signaling. Int. J. Mol. Sci. 2022, 23, 6194. [Google Scholar] [CrossRef]
- Chen, F.; Nonogaki, H.; Bradford, K.J. A Gibberellin-Regulated Xyloglucan Endotransglycosylase Gene Is Expressed in the Endosperm Cap during Tomato Seed Germination. J. Exp. Bot. 2002, 53, 215–223. [Google Scholar] [CrossRef]
- Lee, B.D.; Yim, Y.; Cañibano, E.; Kim, S.H.; García-León, M.; Rubio, V.; Fonseca, S.; Paek, N.C. CONSTITUTIVE PHOTOMORPHOGENIC 1 Promotes Seed Germination by Destabilizing RGA-LIKE 2 in Arabidopsis. Plant Physiol. 2022, 189, 1662–1676. [Google Scholar] [CrossRef] [PubMed]
- Gazara, R.K.; de Oliveira, E.A.G.; Rodrigues, B.C.; Nunes da Fonseca, R.; Oliveira, A.E.A.; Venancio, T.M. Transcriptional Landscape of Soybean (Glycine Max) Embryonic Axes during Germination in the Presence of Paclobutrazol, a Gibberellin Biosynthesis Inhibitor. Sci. Rep. 2019, 9, 9601. [Google Scholar] [CrossRef] [PubMed]
- Serpe, M.D.; Nothnagel, E.A. Effects of Yariv Phenylglycosides on Rosa Cell Suspensions: Evidence for the Involvement of Arabinogalactan-Proteins in Cell Proliferation. Planta 1994, 193, 542–550. [Google Scholar] [CrossRef]
- Langan, K.J.; Nothnagel, E.A. Cell Surface Arabinogalactan-Proteins and Their Relation to Cell Proliferation and Viability Yariv Phenylglycoside; ([3-D-Glc)3 ([3-D-Glucosyl)3 Yariv Phenyl-Glycoside; ([3-D-Man)3 ([3-D-Mannosyl)3 Yariv Phenylglycoside. Protoplasma 1997, 196, 87–98. [Google Scholar] [CrossRef]
- Ringli, C.; Keller, B.; Ryser, U. Glycine-Rich Proteins as Structural Components of Plant Cell Walls. Cell. Mol. Life Sci. CMLS 2001, 58, 1430–1441. [Google Scholar] [CrossRef]
- Wu, W.; Fu, P.; Lu, J. Grapevine WRKY Transcription Factors. Fruit Res. 2022, 2, 10. [Google Scholar] [CrossRef]
- Licausi, F.; Ohme-Takagi, M.; Perata, P. APETALA2/Ethylene Responsive Factor (AP2/ERF) Transcription Factors: Mediators of Stress Responses and Developmental Programs. New Phytol. 2013, 199, 639–649. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Kibet, N.K.; Song, C.; Zhang, C.; Li, X.; Han, J.; Fang, J. Deep Sequencing of Grapevine Flower and Berry Short RNA Library for Discovery of Novel MicroRNAs and Validation of Precise Sequences of Grapevine MicroRNAs Deposited in MiRBase. Physiol. Plant 2011, 143, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, R.B.; Wei, J.; Wu, Q.; Song, S.; Yang, H.; Chen, X.; Wang, Y.; Chao, R.; Baz, N.M.; Chen, H.; et al. Characterization of Main Responsive Genes Reveals Their Regulatory Network Attended by Multi-Biological Metabolic Pathways in Paclobutrazol (PAC)-Modulated Grape Seed Development (GSD) at the Stone-Hardening Stage. Int. J. Mol. Sci. 2025, 26, 1102. https://doi.org/10.3390/ijms26031102
Aziz RB, Wei J, Wu Q, Song S, Yang H, Chen X, Wang Y, Chao R, Baz NM, Chen H, et al. Characterization of Main Responsive Genes Reveals Their Regulatory Network Attended by Multi-Biological Metabolic Pathways in Paclobutrazol (PAC)-Modulated Grape Seed Development (GSD) at the Stone-Hardening Stage. International Journal of Molecular Sciences. 2025; 26(3):1102. https://doi.org/10.3390/ijms26031102
Chicago/Turabian StyleAziz, Rana Badar, Ji Wei, Qiqi Wu, Siyan Song, Hui Yang, Xinpeng Chen, Ying Wang, Ruiqiang Chao, Naila Mir Baz, Haitao Chen, and et al. 2025. "Characterization of Main Responsive Genes Reveals Their Regulatory Network Attended by Multi-Biological Metabolic Pathways in Paclobutrazol (PAC)-Modulated Grape Seed Development (GSD) at the Stone-Hardening Stage" International Journal of Molecular Sciences 26, no. 3: 1102. https://doi.org/10.3390/ijms26031102
APA StyleAziz, R. B., Wei, J., Wu, Q., Song, S., Yang, H., Chen, X., Wang, Y., Chao, R., Baz, N. M., Chen, H., Song, Y., Fang, J., & Wang, C. (2025). Characterization of Main Responsive Genes Reveals Their Regulatory Network Attended by Multi-Biological Metabolic Pathways in Paclobutrazol (PAC)-Modulated Grape Seed Development (GSD) at the Stone-Hardening Stage. International Journal of Molecular Sciences, 26(3), 1102. https://doi.org/10.3390/ijms26031102