Evaluation of Serum Supplementation on the Development of Haemonchus contortus Larvae In Vitro and on Compound Screening Results
Abstract
:1. Introduction
2. Results
2.1. Initial Evaluation of the Supplementation of the Medium LB* with Five Individual Blood Components Showed That the Addition of 7.5% of Sheep Serum Enhanced Larval Growth/Development, Motility and Survival
2.2. Primary Screen of the ‘Global Health Priority Box’ Against H. contortus in LB* and/or LBS* and Potency Assessment In Vitro
2.3. Identification and Annotation of Differentially Expressed Proteins in H. contortus Cultured in LBS*
3. Discussion
4. Materials and Methods
4.1. Procurement of Parasite Material
4.2. Procurement of Individual Ovine Blood Components
4.3. In Vitro Culture Using Medium LB* Versus LBS*
4.4. Comparative In Vitro Screening of Compounds on H. contortus Larvae Using LB* Versus LBS*, Potency Assessment In Vitro
4.5. Microscopy
4.6. Proteomic and Bioinformatic Methods
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenwick, A. The global burden of neglected tropical diseases. Public Health 2012, 126, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Casulli, A. New global targets for NTDs in the WHO roadmap 2021–2030. PLoS Negl. Trop. Dis. 2021, 15, e0009373. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 10 October 2024).
- Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—An Australian perspective. Parasit. Vectors 2013, 6, 153. [Google Scholar] [CrossRef]
- Gasser, R.B.; von Samson-Himmelstjerna, G. Haemonchus contortus and Haemonchosis—Past, Present and Future Trends; Academic Press: London, UK, 2016. [Google Scholar]
- Veglia, F. The anatomy and life-history of the Haemonchus contortus (Rud). Rep. Dir. Vet. Res. 1915, 3–4, 265–277. [Google Scholar]
- Clark, C.H.; Kiesel, G.K.; Goby, C.H. Measurements of blood loss caused by Haemonchus contortus infection in sheep. Am. J. Vet. Res. 1962, 23, 977–980. [Google Scholar]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Adv. Parasitol. 2016, 93, 181–238. [Google Scholar]
- Nisbet, A.J.; Meeusen, E.N.; González, J.F.; Piedrafita, D.M. Immunity to Haemonchus contortus and vaccine development. Adv. Parasitol. 2016, 93, 353–396. [Google Scholar]
- Kotze, A.C. Target-based and whole-worm screening approaches to anthelmintic discovery. Vet. Parasitol. 2012, 186, 118–123. [Google Scholar] [CrossRef]
- Zheng, W.; Thorne, N.; McKew, J.C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 2013, 18, 1067–1073. [Google Scholar] [CrossRef]
- Geary, T.G.; Sakanari, J.A.; Caffrey, C.R. Anthelmintic drug discovery: Into the future. J. Parasitol. 2015, 101, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.M.P.D.; Taki, A.C.; Rostami, A.; Jabbar, A.; Keiser, J.; Geary, T.G.; Gasser, R.B. Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol. Adv. 2022, 57, 107937. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.; Jabbar, A.; Nowell, C.; Joachim, A.; Ruttkowski, B.; Baell, J.; Cardno, T.; Korhonen, P.K.; Piedrafita, D.; Ansell, B.R.E.; et al. Low cost whole-organism screening of compounds for anthelmintic activity. Int. J. Parasitol. 2015, 45, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Taki, A.C.; Byrne, J.J.; Wang, T.; Sleebs, B.E.; Nguyen, N.; Hall, R.S.; Korhonen, P.K.; Chang, B.C.H.; Jackson, P.; Jabbar, A.; et al. High-throughput phenotypic assay to screen for anthelmintic activity on Haemonchus contortus. Pharmaceuticals 2021, 14, 616. [Google Scholar] [CrossRef] [PubMed]
- Silverman, P.H. In vitro cultivation of the histotrophic stages of Haemonchus contortus and Ostertagia spp. Nature 1959, 183, 197. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, F. Effects of bovine heme on development of Haemonchus contortus in vitro. J. Parasitol. 1984, 70, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, F. Cultivation of Haemonchus contortus (Nematoda: Trichostrongylidae) from infective larvae to the adult male and the egg-laying female. J. Parasitol. 1986, 72, 339–345. [Google Scholar] [CrossRef]
- Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 1951, 62, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.; Jiao, Y.; Jabbar, A.; McGee, S.L.; Laleu, B.; Willis, P.; Wells, T.N.C.; Gasser, R.B. Screening of the ‘Pathogen Box’ identifies an approved pesticide with major anthelmintic activity against the barber’s pole worm. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 329–334. [Google Scholar] [CrossRef]
- Preston, S.; Luo, J.; Zhang, Y.; Jabbar, A.; Crawford, S.; Baell, J.; Hofmann, A.; Hu, M.; Zhou, H.-B.; Gasser, R.B. Selenophene and thiophene-core estrogen receptor ligands that inhibit motility and development of parasitic stages of Haemonchus contortus. Parasit. Vectors 2016, 9, 346. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.; Jiao, Y.; Baell, J.B.; Keiser, J.; Crawford, S.; Koehler, A.V.; Wang, T.; Simpson, M.M.; Kaplan, R.M.; Cowley, K.J.; et al. Screening of the ‘Open Scaffolds’ collection from compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber’s pole worm and other parasitic nematodes. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.M.P.D.; Preston, S.; Hofmann, A.; Davis, R.A.; Koehler, A.V.; Chang, B.C.H.; Jabbar, A.; Gasser, R.B. Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet. Parasitol. 2017, 244, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.M.P.D.; Song, H.; Preston, S.; Jabbar, A.; Wang, T.; McGee, S.L.; Hofmann, A.; Garcia-Bustos, J.; Chang, B.C.H.; Koehler, A.V.; et al. Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus contortus in vitro. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.M.P.D.; Preston, S.; Jabbar, A.; Garcia-bustos, J.; Addison, R.S.; Hayes, S.; Rali, T.; Wang, T.; Koehler, A.V.; Chang, B.C.H.; et al. Selected α-pyrones from the plants Cryptocarya novoguineensis (Lauraceae) and Piper methysticum (Piperaceae) with activity against Haemonchus contortus in vitro. Int. J. Parasitol. Drugs Drug Resist. 2019, 9, 72–79. [Google Scholar] [CrossRef]
- Herath, H.; Preston, S.; Jabbar, A.; Garcia-Bustos, J.; Taki, A.; Addison, R.; Hayes, S.; Beattie, K.; McGee, S.; Martin, S.; et al. Identification of fromiamycalin and halaminol A from Australian marine sponge extracts with anthelmintic activity against Haemonchus contortus. Mar. Drugs 2019, 17, 598. [Google Scholar] [CrossRef]
- Herath, H.M.P.; Taki, A.; Nguyen, N.; Garcia-Bustos, J.; Hofmann, A.; Wang, T.; Ma, G.; Chang, B.; Jabbar, A.; Sleebs, B.; et al. Synthetic kavalactone analogues with increased potency and selective anthelmintic activity against larvae of Haemonchus contortus in vitro. Molecules 2020, 25, 2004. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Preston, S.; Koehler, A.V.; Stroehlein, A.J.; Chang, B.C.H.; Simpson, K.J.; Cowley, K.J.; Palmer, M.J.; Laleu, B.; Wells, T.N.C.; et al. Screening of the ‘Stasis Box’ identifies two kinase inhibitors under pharmaceutical development with activity against Haemonchus contortus. Parasit. Vectors 2017, 10, 323. [Google Scholar] [CrossRef]
- Jiao, Y.; Preston, S.; Song, H.; Jabbar, A.; Liu, Y.; Baell, J.; Hofmann, A.; Hutchinson, D.; Wang, T.; Koehler, A.V.; et al. Assessing the anthelmintic activity of pyrazole-5-carboxamide derivatives against Haemonchus contortus. Parasit. Vectors 2017, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Preston, S.; Garcia-Bustos, J.F.; Baell, J.B.; Ventura, S.; Le, T.; McNamara, N.; Nguyen, N.; Botteon, A.; Skinner, C.; et al. Tetrahydroquinoxalines induce a lethal evisceration phenotype in Haemonchus contortus in vitro. Int. J. Parasitol. Drugs Drug Resist. 2019, 9, 59–71. [Google Scholar] [CrossRef]
- Taki, A.C.; Brkljača, R.; Wang, T.; Koehler, A.V.; Ma, G.; Danne, J.; Ellis, S.; Hofmann, A.; Chang, B.C.H.; Jabbar, A.; et al. Natural compounds from the marine brown alga Caulocystis cephalornithos with potent in vitro-activity against the parasitic nematode Haemonchus contortus. Pathogens 2020, 9, 550. [Google Scholar] [CrossRef] [PubMed]
- Taki, A.C.; Byrne, J.J.; Jabbar, A.; Lum, K.Y.; Hayes, S.; Addison, R.S.; Ramage, K.S.; Hofmann, A.; Ekins, M.G.; Wang, T.; et al. High throughput screening of the NatureBank ‘Marine Collection’ in a Haemonchus bioassay identifies anthelmintic activity in extracts from a range of sponges from Australian waters. Molecules 2021, 26, 5846. [Google Scholar] [CrossRef] [PubMed]
- Taki, A.C.; Jabbar, A.; Kurz, T.; Lungerich, B.; Ma, G.; Byrne, J.J.; Pflieger, M.; Asfaha, Y.; Fischer, F.; Chang, B.C.H.; et al. Three small molecule entities (MPK18, MPK334 and YAK308) with activity against Haemonchus contortus in vitro. Molecules 2021, 26, 2819. [Google Scholar] [CrossRef]
- Taki, A.C.; Wang, T.; Nguyen, N.N.; Ang, C.-S.; Leeming, M.G.; Nie, S.; Byrne, J.J.; Young, N.D.; Zheng, Y.; Ma, G.; et al. Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868. Front. Pharmacol. 2022, 13, 1014804. [Google Scholar] [CrossRef]
- Shanley, H.T.; Taki, A.C.; Byrne, J.J.; Jabbar, A.; Wells, T.N.C.; Samby, K.; Boag, P.R.; Nguyen, N.; Sleebs, B.E.; Gasser, R.B. A high-throughput phenotypic screen of the ‘Pandemic Response Box’ identifies a Quinoline derivative with significant anthelmintic activity. Pharmaceuticals 2022, 15, 257. [Google Scholar] [CrossRef] [PubMed]
- Shanley, H.T.; Taki, A.C.; Byrne, J.J.; Nguyen, N.; Wells, T.N.C.; Jabbar, A.; Sleebs, B.E.; Gasser, R.B. A phenotypic screen of the Global Health Priority Box identifies an insecticide with anthelmintic activity. Parasit. Vectors 2024, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Shanley, H.T.; Taki, A.C.; Nguyen, N.; Wang, T.; Byrne, J.J.; Ang, C.-S.; Leeming, M.G.; Nie, S.; Williamson, N.; Zheng, Y.; et al. Structure-activity relationship and target investigation of 2-aryl quinolines with nematocidal activity. Int. J. Parasitol. Drugs Drug Resist. 2024, 24, 100522. [Google Scholar] [CrossRef] [PubMed]
- Le, T.G.; Kundu, A.; Ghoshal, A.; Nguyen, N.H.; Preston, S.; Jiao, Y.; Ruan, B.; Xue, L.; Huang, F.; Keiser, J.; et al. Novel 1-methyl-1 H -pyrazole-5-carboxamide derivatives with potent anthelmintic activity. J. Med. Chem. 2019, 62, 3367–3380. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.; Garcia-Bustos, J.; Hall, L.G.; Martin, S.D.; Le, T.G.; Kundu, A.; Ghoshal, A.; Nguyen, N.H.; Jiao, Y.; Ruan, B.; et al. 1-methyl-1 H -pyrazole-5-carboxamide derivatives exhibit unexpected acute mammalian toxicity. J. Med. Chem. 2021, 64, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Shanley, H.T.; Taki, A.C.; Nguyen, N.; Wang, T.; Byrne, J.J.; Ang, C.-S.; Leeming, M.G.; Williamson, N.; Chang, B.C.H.; Jabbar, A.; et al. Comparative structure activity and target exploration of 1,2-diphenylethynes in Haemonchus contortus and Caenorhabditis elegans. Int. J. Parasitol. Drugs Drug Resist. 2024, 25, 100534. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.W.; Stoll, N.R. Development under sterile conditions of the sheep stomach worm Haemonchus contortus (Nematoda). Science 1938, 87, 259–260. [Google Scholar] [CrossRef]
- Leland, S.E. Studies on the in vitro growth of parasitic nematodes. I. Complete or partial parasitic development of some gastrointestinal nematodes of sheep and cattle. J. Parasitol. 1963, 49, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Niciura, S.C.M.; Minho, A.P.; McIntyre, J.; Benavides, M.V.; Okino, C.H.; Esteves, S.N.; Chagas, A.C.d.S.; Do Amarante, A.F.T. In vitro culture of parasitic stages of Haemonchus contortus. Rev. Bras. Parasitol. Vet. 2023, 32, e010122. [Google Scholar] [CrossRef]
- Douvres, F.W.; Malakatis, G.M. In vitro cultivation of Ostertagia ostertagi, the medium stomach worm of cattle. I. Development from infective larvae to egg-laying adults. J. Parasitol. 1977, 63, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Douvres, F.W. The in vitro cultivation of Oesophagostomum radiatum, the nodular worm of cattle. III. Effects of bovine heme on development to adults. J. Parasitol. 1983, 69, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.H.; Redwin, J.M.; Van Wyk, J.A.; Lacey, E. Detection of resistance to ivermectin in Haemonchus contortus. Int. J. Parasitol. 1991, 21, 771–776. [Google Scholar] [CrossRef]
- George, M.M.; Lopez-Soberal, L.; Storey, B.E.; Howell, S.B.; Kaplan, R.M. Motility in the L3 stage is a poor phenotype for detecting and measuring resistance to avermectin/milbemycin drugs in gastrointestinal nematodes of livestock. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Plaza, S.; Chanut-Delalande, H.; Fernandes, I.; Wassarman, P.M.; Payre, F. From A to Z: Apical structures and zona pellucida-domain proteins. Trends Cell Biol. 2010, 20, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Bermudez, J.G.; Good, M.C.; Sundaram, M.V. A C. elegans zona pellucida domain protein functions via its ZPc domain. PLoS Genet. 2020, 16, e1009188. [Google Scholar] [CrossRef]
- Cohen, J.D.; Sparacio, A.P.; Belfi, A.C.; Forman-Rubinsky, R.; Hall, D.H.; Maul-Newby, H.; Frand, A.R.; Sundaram, M.V. A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. eLife 2020, 9, e57874. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Boswell, R.; Wood, W.B. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev. Biol. 2000, 218, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ma, G.; Ang, C.S.; Korhonen, P.K.; Xu, R.; Nie, S.; Koehler, A.V.; Simpson, R.J.; Greening, D.W.; Reid, G.E.; et al. Somatic proteome of Haemonchus contortus. Int. J. Parasitol. 2019, 49, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.M.; Korhonen, P.K.; Campbell, B.E.; Young, N.D.; Jex, A.R.; Jabbar, A.; Hall, R.S.; Mondal, A.; Howe, A.C.; Pell, J.; et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013, 14, R89. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.S.; Stephenson, A.H.; Bowles, E.A.; Sridharan, M.; Adderley, S.; Sprague, R.S. Phosphodiesterase 3 is present in rabbit and human erythrocytes and its inhibition potentiates iloprost-induced increases in cAMP. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H786–H793. [Google Scholar] [CrossRef] [PubMed]
- Marchand, A.; Van Bree, J.; Taki, A.; Moyat, M.; Turcatti, G.; Chambon, M.; Smith, A.; Doolan, R.; Gasser, R.; Harris, N.; et al. Novel high-throughput fluorescence-based assay for the identification of nematocidal compounds that target the blood-feeding pathway. Pharmaceuticals 2022, 15, 669. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; Besson, D.; Bryant, R.; Rees, S.; Willis, P.A.; Burrows, J.N.; Hooft van Huisjduijnen, R.; Laleu, B.; Norton, L.; Canan, S.; et al. Global Health Priority Box-proactive pandemic preparedness. ACS Infect. Dis. 2024, 10, 4030–4039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Chung, T.D.Y.; Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Ang, C.-S.; Binos, S.; Knight, M.I.; Moate, P.J.; Cocks, B.G.; McDonagh, M.B. Global survey of the bovine salivary proteome: Integrating multidimensional prefractionation, targeted, and glycocapture strategies. J. Proteome Res. 2011, 10, 5059–5069. [Google Scholar] [CrossRef]
- Zheng, Y.; Young, N.D.; Campos, T.L.; Korhonen, P.K.; Wang, T.; Sumanam, S.B.; Taki, A.C.; Byrne, J.J.; Chang, B.C.H.; Song, J.; et al. Chromosome-contiguous genome for the Haecon-5 strain of Haemonchus contortus reveals marked genetic variability and enables the discovery of essential gene candidates. Int. J. Parasitol. 2024, 54, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hern̗andez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of proteomics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
Compound Code | xL3s Larval Motility Reduction at 90 h (%; Mean ± SEM) | L4 Development Inhibition at 168 h (%; Mean ± SEM) | Abnormal Phenotype # | ||||
---|---|---|---|---|---|---|---|
Compound Name | LB* | LBS* | LB* | LBS* | LB* | LBS* | |
MMV688934 | Tolfenpyrad | 106.3 ± 2.0 | 66.1 ± 7.1 | 100 | 95 | Str | Str |
MMV1577458 | Chlorfenapyr | 96.3 ± 5.3 | 72.0 ± 12.7 | 100 | 100 | Cur | Cur |
MMV672931 | Ivermectin | 82.3 ± 7.6 | 67.5 ± 5.7 | 95 | 95 | - | - |
MMV1578924 | Milbemectin | 77.2 ± 5.3 | 18.8 ± 8.9 | 80 | 70 | - | - |
MMV1794206 | Flufenerim | 74.2 ± 6.2 | 54.9 ± 5.9 | 100 | 100 | Cur | Cur |
MMV1577454 | Abamectin | 71.3 ± 7.0 | 62.1 ± 6.5 | 95 | 95 | - | - |
MMV1633829 | Eprinomectin | 67.7 ± 14.3 | 67.0 ± 20.6 | 95 | 70 | - | - |
MMV1633823 | Doramectin | 66.1 ± 16.5 | 49.2 ± 17.5 | 85 | 85 | - | - |
MMV1633828 | Moxidectin | 65.5 ± 17.0 | 60.5 ± 34.2 | 100 | 80 | - | - |
MMV1634081 | Fenoxacrim | 58.2 ± 28.1 | 32.5 ± 30.2 | 98 | 100 | Str | - |
MMV1577467 | Fenpyroximate | 22.2 ± 22.6 | 43.4 ± 29.4 | 100 | 100 | Str | Cur |
MMV002231 | Selamectin | 11.3 ± 12.5 | −5.3 ± 14.2 | 70 | 0 | - | - |
MMV002519 | Rotenone | 4.5 ± 9.1 | −3.1 ± 5.3 | 90 | 90 | Str | Cur |
Monepantel | 100.0 ± 0.0 | 100.0 ± 0.0 | 100 | 100 | Coi | Coi | |
Moxidectin | 60.4 ± 4.6 | 54.8 ± 3.1 | 100 | 95 | - | - | |
M-666 | 108.0 ± 1.9 | 110.0 ± 3.3 | 100 | 100 | Cur | Cur |
Compound Code | IC50 Value—Larval Motility (µM ± SEM) | Lipinski Rule of Five (1 to 5) # | |||||
---|---|---|---|---|---|---|---|
LB* | LBS* | 1 | 2 | 3 | 4 | 5 | |
UMW-868 | 2.0 ± 0.5 | 16.0 ± 3.6 * | 270.4 | 4.5 | 4 | 0 | 0 |
UMW-9729 | 2.0 ± 0.4 | 20.0 ± 6.0 * | 244.3 | 3.9 | 1 | 1 | 0 |
ABX-464 | 15.0 ± 0.9 | >50.0 * | 338.7 | 5.9 | 6 | 1 | 1 |
WEHI-1617408 | 14.0 ± 4.0 | 31.0 ± 12.0 | 312.2 | 3.7 | 7 | 0 | 0 |
M-666 | 0.4 ± 0.2 | 0.9 ± 0.4 | 373.0 | 3.4 | 7 | 1 | 0 |
Moxidectin | 14.0 ± 2.5 | 30.0 ± 1.1 * | 639.4 | 8.4 | 2 | 2 | 2 |
Monepantel | 0.4 ± 0.1 | 1.8 ± 0.2* | 473.1 | 5.9 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thilakarathne, S.S.; Taki, A.C.; Wang, T.; Nowell, C.; Chang, B.C.H.; Gasser, R.B. Evaluation of Serum Supplementation on the Development of Haemonchus contortus Larvae In Vitro and on Compound Screening Results. Int. J. Mol. Sci. 2025, 26, 1118. https://doi.org/10.3390/ijms26031118
Thilakarathne SS, Taki AC, Wang T, Nowell C, Chang BCH, Gasser RB. Evaluation of Serum Supplementation on the Development of Haemonchus contortus Larvae In Vitro and on Compound Screening Results. International Journal of Molecular Sciences. 2025; 26(3):1118. https://doi.org/10.3390/ijms26031118
Chicago/Turabian StyleThilakarathne, Sandani S., Aya C. Taki, Tao Wang, Cameron Nowell, Bill C. H. Chang, and Robin B. Gasser. 2025. "Evaluation of Serum Supplementation on the Development of Haemonchus contortus Larvae In Vitro and on Compound Screening Results" International Journal of Molecular Sciences 26, no. 3: 1118. https://doi.org/10.3390/ijms26031118
APA StyleThilakarathne, S. S., Taki, A. C., Wang, T., Nowell, C., Chang, B. C. H., & Gasser, R. B. (2025). Evaluation of Serum Supplementation on the Development of Haemonchus contortus Larvae In Vitro and on Compound Screening Results. International Journal of Molecular Sciences, 26(3), 1118. https://doi.org/10.3390/ijms26031118