Identification and Characterization of New Hafnia Strains from Common Carp (Cyprinus carpio), Potentially Possessing Probiotic Properties and Plastic Biodegradation Capabilities
Abstract
:1. Introduction
2. Results
2.1. Identification of Autochthonous Strains Using 16S rRNA Sequencing, Isolated from C. carpio
2.2. Genome Analysis of H. paralvei UUNT_MP29 and H. alvei UUNT_MP41 Strains
2.3. Antibiotic Susceptibility of H. alvei UUNT_MP41 and H. paralvei UUNT_29
2.4. Antimicrobial Activity of H. alvei UUNT_MP41 and H. paralvei UUNT_29
2.5. Search for a Potential Candidate Gene for Plastic Degradation
2.6. Investigation of the Presence of the Heat Shock Protein Gene ClpB Involved in Conferring Probiotic Properties to Bacteria
3. Discussion
4. Materials and Methods
4.1. Isolation of Autochthonous Species from the Gastrointestinal Tract of C. carpio
4.2. Species Identification by 16S rRNA Gene Sequencing
4.3. Genomic DNA Isolation
4.4. NGS Sequencing and Bioinformatics Analysis
4.5. Pathogen Strains, Media, Culture Conditions, and Antimicrobial Activity Assay
4.6. Antibiotic Susceptibility of H. alvei UUNT_MP41 and H. paralvei UUNT_MP29 Strains
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Eljasik, P.; Panicz, R.; Sobczak, M.; Sadowski, J. Key Performance Indicators of Common Carp (Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes. Sustainability 2022, 14, 3724. [Google Scholar] [CrossRef]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Wang, J.; Dong, C.; Jiang, Y. Intestinal microbiota signatures of common carp (Cyprinus carpio) after the infection of Aeromonas hydrophila. Aquac. Rep. 2023, 30, 101585. [Google Scholar] [CrossRef]
- Talwar, C.; Singh, A.K.; Choksket, S.; Korpole, S.; Lal, R.; Negi, R.K. Salinicoccus cyprini sp. nov., isolated from the gut of mirror carp, Cyprinus carpio var. specularis. Int. J. Syst. Evol. Microbiol. 2020, 70, 4111–4118. [Google Scholar] [CrossRef]
- Małaczewska, J.; Kazuń, B.; Żylińska-Urban, J.; Kazuń, K.; Rożyński, M.; Zakęś, Z. Characterization of two potential probiotic strains of Levilactobacillus brevis isolated from carp (Cyprinus carpio L.) with strong immunostimulatory activity on pikeperch (Sander lucioperca L.) head kidney cells. Aquac. Rep. 2024, 39, 102384. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Wu, Z.-B.; Qu, S.-Y.; Wang, G.-X.; Wei, D.-D.; Li, P.-F.; Ling, F. Enterobacter asburiae E7, a Novel Potential Probiotic, Enhances Resistance to Aeromonas veronii Infection via Stimulating the Immune Response in Common Carp (Cyprinus carpio). Microbiol. Spectr. 2023, 11, e0427322. [Google Scholar] [CrossRef]
- Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M. Microplastics in aquatic environments: A review on occurrence, distribution, toxic effects, and implications for human health. Sci. Total Environ. 2021, 780, 146551. [Google Scholar] [CrossRef]
- Legrand, R.; Lucas, N.; Dominique, M.; Azhar, S.; Deroissart, C.; Le Solliec, M.A.; Rondeaux, J.; Nobis, S.; Guérin, C.; Léon, F.; et al. Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice-a new potential probiotic for appetite and body weight management. Int. J. Obes. 2020, 44, 1041–1051. [Google Scholar] [CrossRef]
- Rodríguez, L.A.; Vivas, J.; Gallardo, C.S.; Acosta, F.; Barbeyto, L.; Real, F. Identification of Hafnia alvei with the MicroScan WalkAway system. J. Clin. Microbiol. 1999, 37, 4186–4188. [Google Scholar] [CrossRef]
- Awolope, O.K.; O’Driscoll, N.H.; Di Salvo, A.; Lamb, A.J. The complete genome sequence of Hafnia alvei A23BA; a potential antibiotic-producing rhizobacterium. BMC Res. Notes 2021, 14, 8. [Google Scholar] [CrossRef]
- Litrenta, J.; Oetgen, M. Hafnia alvei: A new pathogen in open fractures. Trauma Case Reports 2017, 8, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Han, S.; Chen, M.; Li, P.; Wang, Y.; Niu, W.; Gao, C.; Wang, H.; Li, Y. Biofilm formation of Hafnia paralvei induced by c-di-GMP through facilitating bcsB gene expression promotes spoilage of Yellow River carp (Cyprinus carpio). Food Microbiol. 2024, 120, 104482. [Google Scholar] [CrossRef]
- Gao, L.; Chen, H.; Chen, W.; Chen, W.; Jian, H.; Zhong, Q.; Zhang, M. Linalool against Hafnia alvei, its antibacterial mechanism revealed by metabolomic analyses. Food Biosci. 2023, 51, 102316. [Google Scholar] [CrossRef]
- Savini, V.; Di Bartolomeo, E.; Catavitello, C.; Talia, M.; Manna, A.; Febbo, F.; Balbinot, A.; Di Bonaventura, G.; Di Bartolomeo, P.; Piccolomini, R.; et al. Graft versus host disease-related Hafnia alvei colonization and probable infection. J. Med. Microbiol. 2008, 57, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Moran, N.A. Genome Sequence of Hafnia alvei bta3_1, a Bacterium with Antimicrobial Properties Isolated from Honey Bee Gut. Genome Announc. 2016, 4, e00439-16. [Google Scholar] [CrossRef]
- Gaggia, F.; Di Gioia, D.; Baffoni, L.; Biavati, B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci. Technol. 2011, 22, S58–S66. [Google Scholar] [CrossRef]
- Aljasir, S.F.; D’Amico, D.J. Effect of pre-exposure to protective bacterial cultures in food on Listeria monocytogenes virulence. LWT 2021, 152, 112373. [Google Scholar] [CrossRef]
- Aljasir, S.F.; D’Amico, D.J. The effect of protective cultures on Staphylococcus aureus growth and enterotoxin production. Food Microbiol. 2020, 91, 103541. [Google Scholar] [CrossRef]
- Aljasir, S.F.; D’Amico, D.J. Probiotic potential of commercial dairy-associated protective cultures: In vitro and in vivo protection against Listeria monocytogenes infection. Food Res. Int. 2021, 149, 110699. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Yuan, C.; Du, Y.; Yang, P.; Qian, C.; Wei, Y.; Zhang, S.; Huang, D.; Liu, B. Comparative genomic analysis of the Hafnia genus reveals an explicit evolutionary relationship between the species alvei and paralvei and provides insights into pathogenicity. BMC Genom. 2019, 20, 768. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Hahnke, R.L.; Petersen, J.; Scheuner, C.; Michael, V.; Fiebig, A.; Rohde, C.; Rohde, M.; Fartmann, B.; Goodwin, L.A.; et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand. Genom. Sci. 2014, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Auch, A.F.; Henz, S.R.; Holland, B.R.; Göker, M. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinform. 2006, 7, 350. [Google Scholar] [CrossRef]
- Holland, B.R.; Huber, K.T.; Dress, A.; Moulton, V. Delta plots: A tool for analyzing phylogenetic distance data. Mol. Biol. Evol. 2002, 19, 2051–2059. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Bauernfeind, A.; Schneider, I.; Jungwirth, R.; Sahly, H.; Ullmann, U. A novel type of AmpC beta-lactamase, ACC-1, produced by a Klebsiella pneumoniae strain causing nosocomial pneumonia. Antimicrob. Agents Chemother. 1999, 43, 1924–1931. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A.; Bush, K. The Curious Case of TEM-116. Antimicrob. Agents Chemother. 2016, 60, 7000. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.S.; Vetting, M.W.; Roderick, S.L.; Mitchenall, L.A.; Maxwell, A.; Takiff, H.E.; Blanchard, J.S. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 2005, 308, 1480–1483. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed]
- M100 Ed34|Performance Standards for Antimicrobial Susceptibility Testing, 34th ed; CLSI: Wayne, PA, USA, 2025.
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Gan, Z.; Zhang, H. PMBD: A Comprehensive Plastics Microbial Biodegradation Database. Database 2019, 2019, baz119. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Wallace, P.W.; Haernvall, K.; Ribitsch, D.; Zitzenbacher, S.; Schittmayer, M.; Steinkellner, G.; Gruber, K.; Guebitz, G.M.; Birner-Gruenberger, R. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes. Appl. Microbiol. Biotechnol. 2017, 101, 2291–2303. [Google Scholar] [CrossRef]
- Arnoriaga-Rodríguez, M.; Mayneris-Perxachs, J.; Burokas, A.; Pérez-Brocal, V.; Moya, A.; Portero-Otin, M.; Ricart, W.; Maldonado, R.; Fernández-Real, J.M. Gut bacterial ClpB-like gene function is associated with decreased body weight and a characteristic microbiota profile. Microbiome 2020, 8, 59. [Google Scholar] [CrossRef]
- Tennoune, N.; Chan, P.; Breton, J.; Legrand, R.; Chabane, Y.N.; Akkermann, K.; Järv, A.; Ouelaa, W.; Takagi, K.; Ghozali, I.; et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 2014, 4, e458. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Maftei, N.M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Al-Fakhrany, O.M.; Elekhnawy, E. Next-generation probiotics: The upcoming biotherapeutics. Mol. Biol. Rep. 2024, 51, 505. [Google Scholar] [CrossRef] [PubMed]
- Déchelotte, P.; Breton, J.; Trotin-Picolo, C.; Grube, B.; Erlenbeck, C.; Bothe, G.; Fetissov, S.O.; Lambert, G. The Probiotic Strain H. alvei HA4597® Improves Weight Loss in Overweight Subjects under Moderate Hypocaloric Diet: A Proof-of-Concept, Multicenter Randomized, Double-Blind Placebo-Controlled Study. Nutrients 2021, 13, 1902. [Google Scholar] [CrossRef]
- Lucas, N.; Legrand, R.; Deroissart, C.; Dominique, M.; Azhar, S.; Le Solliec, M.A.; Léon, F.; Do Rego, J.C.; Déchelotte, P.; Fetissov, S.O.; et al. Hafnia alvei HA4597 Strain Reduces Food Intake and Body Weight Gain and Improves Body Composition, Glucose, and Lipid Metabolism in a Mouse Model of Hyperphagic Obesity. Microorganisms 2019, 8, 35. [Google Scholar] [CrossRef]
- Ruzauskas, M.; Armalytė, J.; Lastauskienė, E.; Šiugždinienė, R.; Klimienė, I.; Mockeliūnas, R.; Bartkienė, E. Microbial and Antimicrobial Resistance Profiles of Microbiota in Common Carps (Cyprinus carpio) from Aquacultured and Wild Fish Populations. Animals 2021, 11, 929. [Google Scholar] [CrossRef]
- Mes, W.; Lücker, S.; Jetten, M.S.M.; Siepel, H.; Gorissen, M.; van Kessel, M.A.H.J. Feeding strategy and feed protein level affect the gut microbiota of common carp (Cyprinus carpio). Environ. Microbiol. Rep. 2024, 16, e13262. [Google Scholar] [CrossRef]
- Mulyani, Y.; Aryantha, I.N.P.; Suhandono, S.; Pancoro, A. Intestinal bacteria of common carp (Cyprinus carpio L.) as a biological control agent for aeromonas. J. Pure Appl. Microbiol. 2018, 12, 601–610. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Shan, S.; Xu, C.; An, L.; Yang, G.; Wang, L.; Li, H. Variation in the gut microbiota during the early developmental stages of common carp (Cyprinus carpio L.) and its correlation with feed and pond water microflora. BMC Vet. Res. 2024, 20, 464. [Google Scholar] [CrossRef]
- Günthard, H.; Pennekamp, A. Clinical significance of extraintestinal Hafnia alvei isolates from 61 patients and review of the literature. Clin. Infect. Dis. 1996, 22, 1040–1045. [Google Scholar] [CrossRef]
- Jayol, A.; Saly, M.; Nordmann, P.; Ménard, A.; Poirel, L.; Dubois, V. Hafnia, an enterobacterial genus naturally resistant to colistin revealed by three susceptibility testing methods. J. Antimicrob. Chemother. 2017, 72, 2507–2511. [Google Scholar] [CrossRef] [PubMed]
- Al-Faragi, J.K.H.; Alsaphar, S.A.A. Isolation and identification of Bacillus subtilus as (probiotic) from intestinal microflora of common carp Cyprinus carpio L.: Jamal K.H. Al-Faragi and Sundus A.A. Alsaphar. Iraqi J. Vet. Med. 2012, 36, 355–361. [Google Scholar] [CrossRef]
- Giri, S.S.; Jun, J.W.; Yun, S.; Kim, H.J.; Kim, S.G.; Kang, J.W.; Kim, S.W.; Han, S.J.; Park, S.C.; Sukumaran, V. Characterisation of Lactic Acid Bacteria Isolated from the Gut of Cyprinus carpio That May Be Effective Against Lead Toxicity. Probiotics Antimicrob. Proteins 2019, 11, 65–73. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, r46. [Google Scholar] [CrossRef]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [PubMed]
- Farris, J.S. Estimating Phylogenetic Trees from Distance Matrices. Am. Nat. 1972, 106, 645–668. [Google Scholar] [CrossRef]
- Kreft, L.; Botzki, A.; Coppens, F.; Vandepoele, K.; Van Bel, M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017, 33, 2946–2947. [Google Scholar] [CrossRef] [PubMed]
- Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. Int. J. Biol. Macromol. 2021, 183, 423–434. [Google Scholar] [CrossRef]
- Miljkovic, M.; Jovanovic, S.; O’Connor, P.M.; Mirkovic, N.; Jovcic, B.; Filipic, B.; Dinic, M.; Studholme, D.J.; Fira, D.; Cotter, P.D.; et al. Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. PLoS ONE 2019, 14, 0216773. [Google Scholar] [CrossRef]
Identified Genus | Identified Species | No of Strains |
---|---|---|
Citrobacter | Citrobacter freundii | 13 |
Serratia | Serratia liquefaciens | 10 |
Serratia plymuthica | 1 | |
Serratia marcescens | 1 | |
Bacillus | Bacillus pumilus | 3 |
Hafnia | H. alvei | 1 |
H. paralvei | 1 | |
Enterococcus | Enterococcus pseudoavium | 1 |
Kocuria | Kocuria rhizophila | 8 |
Antibiotics | Microorganism (Bacteria) | |||
---|---|---|---|---|
H. alvei | H. paralvei | |||
Zone Diameter, mm | Classification | Zone Diameter, mm | Classification | |
PENICILINS | ||||
Ampicilin | 16 | I | 14 | I |
Amoxicilin | 0 | R | 0 | R |
Amoxicilin-clavulanic acid | 12 | R | 11 | R |
Piperacilin-Tazobactam | 19 | R | 18 | R |
CEPHALOSPORINS | ||||
Ceftazidime | 20 | I | 18 | I |
Cefotaksime | 12 | R | 7 | R |
CARBAPENEMS | ||||
Imipenem | 28 | S | 26 | S |
FLUOROQUINOLONES | ||||
Ciprofloxacin | 28 | S | 26 | S |
Enrofloxacin | 27 | S | 25 | S |
AMINOGLYCOSIDES | ||||
Gentamicin | 22 | S | 24 | S |
Neomycin | 18 | S | 20 | S |
Tobramycin | 22 | S | 24 | S |
OTHER ANTIBIOTICS | ||||
Tetracycline | 17 | I | 16 | I |
Sulfametoxazol-Trimetoprim | 23 | S | 22 | S |
Pathogen Strain | Medium | Temperature, °C |
---|---|---|
Enterococcus faecalis ATCC 29212 | M17 | 30 |
Staphylococcus aureus subsp. aureus strain ATCC 6538 | LB | 37 |
Pseudomonas aeruginosa ATCC 27853 | LB | 37 |
Streptococcus pneumoniae ATCC 6301 | LB | 37 |
Bacillus subtilis ATCC 6633 | LB | 37 |
Shigella flexneri ATCC 12022 | LB | 37 |
Klebsiella pneumoniae subsp. pneumoniae ATCC 13883 | LB | 37 |
Escherichia coli ATCC 25922 | LB | 37 |
Antibiotic | Referent Values of Disk Diffusion Test Inhibition Zones of Order Enterobacteriales (Family Enterobacteriaceae) 1 | |||
---|---|---|---|---|
Concentration, μg per disc | R | I | S | |
Ampicillin | 10 | ≤13 | 14–16 | ≥17 |
Amoxicillin | 25 | ≤13 | 14–17 | ≥18 |
Amoxicillin-clavulanic acid | 20/10 | ≤13 | 14–17 | ≥18 |
Piperacillin-Tazobactam | 30/6 | ≤20 | 21–24 | ≥25 |
Ceftazidime | 30 | ≤17 | 18–20 | ≥21 |
Cefotaxime | 5 | ≤22 | 23–25 | ≥26 |
Imipenem | 10 | ≤19 | 20–22 | ≥23 |
Ciprofloxacin | 5 | ≤21 | 22–25 | ≥26 |
Enrofloxacin | 30/6 | ≤16 | 17–21 | ≥22 |
Gentamicin | 5 | ≤14 | 15–17 | ≥18 |
Neomycin | 10 | ≤12 | 13–16 | ≥17 |
Tobramycin | 10 | ≤12 | 13–16 | ≥17 |
Tetracycline | 30 | ≤11 | 12–14 | ≥15 |
Sulfamethoxazole-Trimethoprim | 23.75/1.25 | ≤10 | 11–15 | ≥16 |
Vancomycin | 30 | ≤14 | 15–16 | ≥17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragacevic, L.; Tsibulskaya, D.; Kojic, M.; Rajic, N.; Niksic, A.; Popovic, M. Identification and Characterization of New Hafnia Strains from Common Carp (Cyprinus carpio), Potentially Possessing Probiotic Properties and Plastic Biodegradation Capabilities. Int. J. Mol. Sci. 2025, 26, 1119. https://doi.org/10.3390/ijms26031119
Dragacevic L, Tsibulskaya D, Kojic M, Rajic N, Niksic A, Popovic M. Identification and Characterization of New Hafnia Strains from Common Carp (Cyprinus carpio), Potentially Possessing Probiotic Properties and Plastic Biodegradation Capabilities. International Journal of Molecular Sciences. 2025; 26(3):1119. https://doi.org/10.3390/ijms26031119
Chicago/Turabian StyleDragacevic, Luka, Darya Tsibulskaya, Milan Kojic, Nevenka Rajic, Aleksandar Niksic, and Mina Popovic. 2025. "Identification and Characterization of New Hafnia Strains from Common Carp (Cyprinus carpio), Potentially Possessing Probiotic Properties and Plastic Biodegradation Capabilities" International Journal of Molecular Sciences 26, no. 3: 1119. https://doi.org/10.3390/ijms26031119
APA StyleDragacevic, L., Tsibulskaya, D., Kojic, M., Rajic, N., Niksic, A., & Popovic, M. (2025). Identification and Characterization of New Hafnia Strains from Common Carp (Cyprinus carpio), Potentially Possessing Probiotic Properties and Plastic Biodegradation Capabilities. International Journal of Molecular Sciences, 26(3), 1119. https://doi.org/10.3390/ijms26031119