Two New Triterpenoid Saponins with Antifungal Activity from Camellia sinensis Flowers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Identification
2.2. Antifungal Activities of Compounds 1–4
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Antifungal Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakagami, T.; Kawano, T.; Yamashita, K.; Yamada, E.; Fujino, N.; Kaeriyama, M.; Fukuda, Y.; Nomura, N.; Mitsuyama, J.; Suematsu, H.; et al. Antifungal Susceptibility Trend and Analysis of Resistance Mechanism for Candida Species Isolated from Bloodstream at a Japanese University Hospital. J. Infect. Chemother. 2019, 25, 34–40. [Google Scholar] [CrossRef]
- Marak, M.B.; Dhanashree, B. Antifungal Susceptibility and Biofilm Production of Candida spp. Isolated from Clinical Samples. Int. J. Microbiol. 2018, 2018, 7495218. [Google Scholar] [CrossRef] [PubMed]
- Downward, J.R.E.; Falkowski, N.R.; Mason, K.L.; Muraglia, R.; Huffnagle, G.B. Modulation of Post-Antibiotic Bacterial Community Reassembly and Host Response by Candida albicans. Sci. Rep. 2013, 3, 2191. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Dantas, A.; Lee, K.K.; Raziunaite, I.; Schaefer, K.; Wagener, J.; Yadav, B.; Gow, N.A. Cell Biology of Candida albicans—Host Interactions. Curr. Opin. Microbiol. 2016, 34, 111–118. [Google Scholar] [CrossRef]
- Verma, A.; Gaffen, S.L.; Swidergall, M. Innate Immunity to Mucosal Candida Infections. J. Fungi 2017, 3, 60. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Xie, Y.; Wang, Y.; Tian, X.; Fang, W.; Xue, X.; Wang, L. Confronting Antifungal Resistance, Tolerance, and Persistence: Advances in Drug Target Discovery and Delivery Systems. Adv. Drug Deliver. Rev. 2023, 200, 115007. [Google Scholar] [CrossRef]
- Bayhan, G.I.; Garipardic, M.; Karaman, K.; Akbayram, S. Voriconazole-Associated Visual Disturbances and Hallucinations. Cutan. Ocul. Toxicol. 2015, 35, 80–82. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal Agents: Mechanisms of Action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs Over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Cui, C.; Zong, J.; Sun, Y.; Zhang, L.; Ho, C.T.; Wan, X.; Hou, R. Triterpenoid Saponins from the Genus Camellia: Structures, Biological Activities, and Molecular Simulation for Structure—Activity Relationship. Food Funct. 2018, 9, 3069–3091. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Mersni, D.; Lourith, N. Plant-Derived Saponins and Their Prospective for Cosmetic and Personal Care Products. Bot. Stud. 2024, 65, 32. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, C.; Tu, J.; Xiao, J.; Xiao, Z.; Ma, Y.; Liu, S. Mechanism and Application of Camellia Saponins Against Bacillus cereus Biofilm Formation on Different Food Contact Surfaces. Food Cont. 2025, 168, 110903. [Google Scholar] [CrossRef]
- Hu, X.; Tang, J.R.; Zhang, G.L.; Deng, J.; Kan, H.; Zhang, Y.J.; Zhao, P.; Liu, Y. E Optimization of Extraction Process and Antioxidant Activities of Saponins from Camellia fascicularis Leaves. J. Food Meas. Charact. 2021, 15, 1889–1898. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; Yuan, M.; Zheng, Z.; Yin, J. Anti-Candida albicans Effects and Mechanisms of Theasaponin E1 and Assamsaponin A. Int. J. Mol. Sci. 2023, 24, 9350. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; Li, Y.; Yin, J. Anti-Biofilm Activity of Assamsaponin A, Theasaponin E1, and Theasaponin E2 Against Candida albicans. Int. J. Mol. Sci. 2024, 25, 3599. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.P.; Peng, C.P.; Chen, Z.; Liu, Y.L.; Xu, Q.M.; Khan, I.A.; Yang, S.L. Cytotoxic Triterpenoid Glycosides from the Roots of Camellia oleifera. Planta Med. 2014, 80, 590–598. [Google Scholar] [CrossRef]
- Zong, J.; Wang, R.; Bao, G.; Ling, T.; Zhang, L.; Zhang, X.; Hou, R. Novel Triterpenoid Saponins from Residual Seed Cake of Camellia oleifera Abel. Show Anti-Proliferative Activity Against Tumor Cells. Fitoterapia 2015, 104, 7–13. [Google Scholar] [CrossRef]
- Zong, J.; Wang, D.; Jiao, W.; Zhang, L.; Bao, G.H.; Ho, C.T.; Hou, R.; Wan, X. Oleiferasaponin C6 from the seeds of Camellia oleifera Abel.: A Novel Compound Inhibits Proliferation Through Inducing Cell-Cycle Arrest and Apoptosis on Human Cancer Cell Lines In Vitro. RSC Adv. 2016, 6, 91386–91393. [Google Scholar] [CrossRef]
- Lee, J.; Lim, J.H.; Jung, G.Y.; Kang, J.; Jo, I.; Kang, K.; Kim, J.H.; Kim, B.S.; Yang, H. Triterpenoid Saponins from Camellia sinensis Roots with Cytotoxic and Immunomodulatory Effects. Phytochemistry 2023, 212, 113688. [Google Scholar] [CrossRef]
- Cui, C.; Yang, Y.; Zhao, T.; Zou, K.; Peng, C.; Cai, H.; Wan, X.; Hou, R. Insecticidal Activity and Insecticidal Mechanism of Total Saponins from Camellia oleifera. Molecules 2019, 24, 4518. [Google Scholar] [CrossRef]
- Cui, C.; Wu, Y.; Guo, X.; Hong, Z.; Xiao, J.; Wan, X.; Zong, J.; Hou, R. Accurate and Rapid Quantification of Tea Saponins Using a Thin-Layer Chromatography (TLC) Method Based on Hemolysis and Machine Vision. LWT Food Sci. Technol. 2024, 199, 116139. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Nakamura, S.; Kato, Y.; Matsuhira, K.; Matsuda, H. Medicinal Flowers. XIV. New Acylated Oleanane-Type Triterpene Oligoglycosides with Antiallergic Activity from Flower Buds of Chinese Tea Plant (Camellia sinensis). Chem. Pharm. Bull. 2007, 55, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Morikawa, T.; Yamamoto, K.; Kato, Y.; Nagatomo, A.; Matsuda, H. Floratheasaponins A–C, Acylated Oleanane-Type Triterpene Oligoglycosides with Anti-Hyperlipidemic Activities from Flowers of the Tea Plant (Camellia sinensis). J. Nat. Prod. 2005, 68, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
Position | 1 | 2 | ||
---|---|---|---|---|
δH, Multi (J, Hz) | δC | δH, Multi (J, Hz) | δC | |
1 | 1.42, m; 0.86, m | 39.5 | 1.41, m; 0.88, m | 39.4 |
2 | 2.18, m; 1.81, m | 27.0 | 2.20, m; 1.84, m | 27.0 |
3 | 3.28, dd (11.4, 4.8) | 90.2 | 3.29, br d (8.4) | 90.0 |
4 | 40.5 | 40.0 | ||
5 | 0.82, m | 56.1 | 0.81, overlaped | 56.0 |
6 | 1.61, m; 1.37, m | 19.3 | 1.58, br d (10.8); 1.35, m | 19.3 |
7 | 2.16, m; 2.08, m | 37.2 | 2.15, br d (13.8); 2.06, br d (13.8) | 37.1 |
8 | 41.9 | 41.9 | ||
9 | 1.71, m | 47.6 | 1.71, m | 47.6 |
10 | 37.4 | 37.4 | ||
11 | 1.91, m; 1.83, m | 24.4 | 1.89, m; 1.81, m | 24.4 |
12 | 5.54, br s | 126.0 | 5.52, br s | 125.9 |
13 | 144.1 | 144.1 | ||
14 | 48.3 | 48.2 | ||
15 | 4.22, m | 68.0 | 4.19, d (10.2) | 67.9 |
16 | 4.50, m | 73.5 | 4.39, m | 73.5 |
17 | 49.1 | 48.9 | ||
18 | 3.14, m | 41.4 | 3.11, m | 41.3 |
19 | 3.11, m; 1.47, m | 47.4 | 3.09, m; 1.45, m | 47.3 |
20 | 36.7 | 36.7 | ||
21 | 6.77, br d (10.2) | 79.3 | 6.67, br d (10.2) | 79.3 |
22 | 6.41, br d (10.2) | 74.5 | 6.29, br d (10.2) | 73.5 |
23 | 1.26, s | 28.5 | 1.28, s | 28.5 |
24 | 1.18, s | 17.3 | 1.15, s | 17.3 |
25 | 0.84, s | 16.2 | 0.84, s | 16.2 |
26 | 1.02, s | 18.0 | 1.01, s | 18.0 |
27 | 1.87, s | 21.6 | 1.85, s | 21.5 |
28 | 3.77, d (10.2); 3.52, d (10.2) | 63.5 | 3.73, m; 3.45, d (10.2) | 63.3 |
29 | 1.15, s | 29.9 | 1.13, s | 29.9 |
30 | 1.37, s | 20.6 | 1.35, s | 20.5 |
3-O-GlcA | 3-O-GlcA | |||
1′ | 4.97, d (6.6) | 105.8 | 4.94, d (7.2) | 106.0 |
2′ | 4.69, m | 79.8 | 4.67, m | 79.5 |
3′ | 4.60, m | 83.3 | 4.44, m | 84.3 |
4′ | 4.61, m | 71.8 | 4.51, m | 71.6 |
5′ | 4.35, m | 77.3 | 4.52, m | 77.5 |
6′ | 172.9 | 173.0 | ||
2′-O-Gal | 2′-O-Gal | |||
1′′ | 5.68, d (7.2) | 104.2 | 5.75, d (7.2) | 103.9 |
2′′ | 4.49, m | 73.8 | 4.49, m | 74.2 |
3′′ | 4.45, m | 73.9 | 4.32, m | 75.6 |
4′′ | 4.50, m | 70.6 | 4.56, m | 70.5 |
5′′ | 4.30, m | 75.6 | 4.27, t (6.6) | 76.8 |
6′′ | 4.52, m; 4.43, m | 62.9 | 4.46, m | 62.4 |
3′-O-Ara | 3′-O-Ara | |||
1′′′ | 6.13, d (6.0) | 101.6 | 5.80, d (7.2) | 102.1 |
2′′′ | 4.73, m | 77.4 | 4.60, m | 82.3 |
3′′′ | 4.51, m | 73.9 | 4.36, m | 73.8 |
4′′′ | 4.28, m | 69.3 | 4.33, m | 68.7 |
5′′′ | 4.44, m; 3.90, d (10.2) | 65.8 | 4.43, m; 3.74, t (9.6) | 66.3 |
2′′′-O-Rha | 2′′′-O-Xyl | |||
1′′′′ | 6.04, br s | 102.7 | 5.04, d (7.2) | 107.2 |
2′′′′ | 4.70, m | 72.9 | 4.16, m | 76.1 |
3′′′′ | 4.66, d (8.4) | 73.1 | 4.04, d (7.8) | 78.6 |
4′′′′ | 4.24, m | 74.4 | 4.23, m | 71.2 |
5′′′′ | 4.78, m | 70.4 | 4.40, m; 3.52, d (10.2) | 67.9 |
6′′′′ | 1.52, d (4.2) | 18.8 | ||
21-O-Ang | 21-O-Ang | |||
1′′′′′ | 168.5 | 168.3 | ||
2′′′′′ | 129.7 | 129.5 | ||
3′′′′′ | 5.88, dq (7.2) | 137.1 | 5.98, dq (7.2) | 137.2 |
4′′′′′ | 2.03, overlapped | 16.2 | 2.11, d (6.6) | 16.3 |
5′′′′′ | 2.03, overlapped | 21.3 | 2.03, s | 21.4 |
22-O-Cin | 22-O-Hex | |||
1′′′′′′ | 167.4 | 166.8 | ||
2′′′′′′ | 6.31, d (16.2) | 119.6 | 5.54, br s | 120.7 |
3′′′′′′ | 7.83, d (16.2) | 145.1 | 6.01, m | 150.6 |
4′′′′′′ | 135.3 | 2.72, hept (7.2); 2.64, hept (7.2) | 31.4 | |
5′′′′′′ | 7.21, overlapped | 128.7 | 1.33, m | 22.9 |
6′′′′′′ | 7.29, d (7.8) | 129.5 | 0.82, t (7.2) | 14.2 |
7′′′′′′ | 7.31, overlapped | 130.5 | ||
8′′′′′′ | 7.29, d (7.8) | 129.5 | ||
9′′′′′′ | 7.21, overlapped | 128.7 |
Compounds | MIC (µM) | ||
---|---|---|---|
C. a ATCC14053 | C. g ATCC2001 | C. t ATCC13803 | |
1 | 7.81 ± 3.38 | 13.02 ± 4.51 | 31.25 ± 0.00 |
2 | 5.06 ± 1.76 | 15.63 ± 0.00 | 26.04 ± 9.02 |
3 | 12.29 ± 0.00 | 20.47 ± 7.09 | 40.94 ± 14.18 |
4 | 12.27 ± 0.00 | 32.72 ± 14.16 | 65.41 ± 28.32 |
fluconazole | 4.25 ± 0.56 | 42.54 ± 4.51 | 12.74 ± 3.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, J.-F.; Hong, Z.-B.; Hu, Z.-H.; Hou, R.-Y. Two New Triterpenoid Saponins with Antifungal Activity from Camellia sinensis Flowers. Int. J. Mol. Sci. 2025, 26, 1147. https://doi.org/10.3390/ijms26031147
Zong J-F, Hong Z-B, Hu Z-H, Hou R-Y. Two New Triterpenoid Saponins with Antifungal Activity from Camellia sinensis Flowers. International Journal of Molecular Sciences. 2025; 26(3):1147. https://doi.org/10.3390/ijms26031147
Chicago/Turabian StyleZong, Jian-Fa, Zhi-Bo Hong, Zi-Hui Hu, and Ru-Yan Hou. 2025. "Two New Triterpenoid Saponins with Antifungal Activity from Camellia sinensis Flowers" International Journal of Molecular Sciences 26, no. 3: 1147. https://doi.org/10.3390/ijms26031147
APA StyleZong, J.-F., Hong, Z.-B., Hu, Z.-H., & Hou, R.-Y. (2025). Two New Triterpenoid Saponins with Antifungal Activity from Camellia sinensis Flowers. International Journal of Molecular Sciences, 26(3), 1147. https://doi.org/10.3390/ijms26031147