Exogenous Melatonin Enhances Rice Blast Disease Resistance by Promoting Seedling Growth and Antioxidant Defense in Rice
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Exogenous Melatonin in Enhancing Rice Resistance to Blast Disease
2.2. Effects of Exogenous Melatonin on Rice Biomass
2.3. Effects of Exogenous Melatonin on Rice Root Morphology
2.4. Effects of Exogenous Melatonin on Antioxidant Enzyme Activity in Rice
2.5. Effects of Exogenous Melatonin on MDA Content, H₂O₂ Content, and Soluble Protein Content in Rice
2.6. Gray Relational Analysis of Exogenous Melatonin on Rice Seedling Growth under Blast Fungus Infection
2.7. Correlation Analysis of Exogenous Melatonin with Various Indices of Rice Seedlings under Blast Fungus Infection
2.8. Principal Component Analysis of the Effects of Exogenous Melatonin on Various Indicators in Rice Seedlings Infected with Rice Blast Fungus
2.9. Membership Function Analysis of Various Indicators in Rice Seedlings Infected with Rice Blast Fungus Treated with Exogenous Melatonin
3. Discussion
4. Materials and Methods
4.1. Test Material
4.2. Experimental Design
4.3. Measurement Items and Methods
4.3.1. Rice Blast Resistance Identification
4.3.2. Determination of Biomass in Rice Seedlings
4.3.3. Determination of Plant Leaf Area
4.3.4. Determination of Root Morphology
4.3.5. Determination of the Physiological and Biochemical Indicators
4.4. Determination of the Physiological and Biochemical Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvajal-Yepes, M.; Cardwell, K.; Nelson, A.; Garrett, K.A.; Giovani, B.; Saunders, D.G.O.; Kamoun, S.; Legg, J.P.; Verdier, V.; Lessel, J.; et al. A global surveillance system for crop diseases. Science 2019, 364, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Devanna, B.N.; Jain, P.; Solanke, A.U.; Das, A.; Thakur, S.; Singh, P.K.; Kumari, M.; Dubey, H.; Jaswal, R.; Pawar, D.; et al. Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J. Fungi 2022, 8, 584. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.K.; Sao, R.; Choudhary, D.K.; Thada, A.; Kumar, V.; Mondal, S.; Das, B.K.; Jankuloski, L.; Sharma, D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. Plants 2022, 11, 2386. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.R.; Rai, A.K.; Gupta, S.K.; Vijayan, J.; Devanna, B.N.; Ray, S. Rice Blast Management Through Host-Plant Resistance: Retrospect and Prospects. Agric. Res. 2012, 1, 37–52. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ser, H.-L.; Khan, T.M.; Chuah, L.-H.; Pusparajah, P.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol 2017, 8, 3. [Google Scholar] [CrossRef]
- Li, W.; Chern, M.; Yin, J.; Wang, J.; Chen, X. Recent advances in broad-spectrum resistance to the rice blast disease. Curr. Opin. Plant Biol. 2019, 50, 114–120. [Google Scholar] [CrossRef]
- Nalley, L.; Tsiboe, F.; Durand-Morat, A.; Shew, A.; Thoma, G. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States. PLoS ONE 2016, 11, e0167295. [Google Scholar] [CrossRef]
- Srivastava, D.; Shamim, M.; Kumar, M.; Mishra, A.; Pandey, P.; Kumar, D.; Yadav, P.; Siddiqui, M.H.; Singh, K.N. Current Status of Conventional and Molecular Interventions for Blast Resistance in Rice. Rice Sci. 2017, 24, 299–321. [Google Scholar] [CrossRef]
- Nasir, F.; Tian, L.; Chang, C.; Li, X.; Gao, Y.; Tran, L.-S.P.; Tian, C. Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection. Semin. Cell Dev. Biol. 2018, 83, 95–105. [Google Scholar] [CrossRef]
- Chen, W.-C.; Chiou, T.-Y.; Delgado, A.L.; Liao, C.-S. The Control of Rice Blast Disease by the Novel Biofungicide Formulations. Sustainability 2019, 11, 3449. [Google Scholar] [CrossRef]
- Ashkani, S.; Rafii, M.Y.; Shabanimofrad, M.; Miah, G.; Sahebi, M.; Azizi, P.; Tanweer, F.A.; Akhtar, M.S.; Nasehi, A. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop. Front. Plant Sci. 2015, 6, 886. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Aravindan, S.; Ngangkham, U.; Prabhukarthikeyan, S.R.; Keerthana, U.; Raghu, S.; Pramesh, D.; Banerjee, A.; Roy, S.; Sanghamitra, P.; et al. Candidate screening of blast resistance donors for rice breeding. J. Genet. 2019, 98, 73. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Kumari, S.; Nazir, F.; Khanna, R.R.; Gupta, R.; Chhillar, H. Defensive Role of Plant Hormones in Advancing Abiotic Stress-Resistant Rice Plants. Rice Sci. 2023, 30, 15–35. [Google Scholar] [CrossRef]
- Ze, Y.; Gao, H.; Li, T.; Yang, B.; Jiang, Y. Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends Food Sci. Technol. 2021, 109, 569–578. [Google Scholar] [CrossRef]
- Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.W.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef]
- Wang, Y.; Reiter, R.J.; Chan, Z. Phytomelatonin: A universal abiotic stress regulator. J. Exp. Bot. 2018, 69, 963–974. [Google Scholar] [CrossRef]
- Rajora, N.; Vats, S.; Raturi, G.; Thakral, V.; Kaur, S.; Rachappanavar, V.; Kumar, M.; Kesarwani, A.K.; Sonah, H.; Sharma, T.R.; et al. Seed priming with melatonin: A promising approach to combat abiotic stress in plants. Plant Stress 2022, 4, 100071. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Ding, F. Melatonin Mitigates Chilling-Induced Oxidative Stress and Photosynthesis Inhibition in Tomato Plants. Antioxidants 2020, 9, 218. [Google Scholar] [CrossRef]
- Liang, C.; Li, A.; Yu, H.; Li, W.; Liang, C.; Guo, S.; Zhang, R.; Chu, C. Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice. Front. Plant Sci. 2017, 8, 134. [Google Scholar] [CrossRef]
- Khan, Z.; Jan, R.; Asif, S.; Farooq, M.; Jang, Y.-H.; Kim, E.-G.; Kim, N.; Kim, K.-M. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Sci. Rep. 2024, 14, 1214. [Google Scholar] [CrossRef]
- Han, Q.-H.; Huang, B.; Ding, C.-B.; Zhang, Z.-W.; Chen, Y.-E.; Hu, C.; Zhou, L.-J.; Huang, Y.; Liao, J.-Q.; Yuan, S.; et al. Effects of Melatonin on Anti-oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings. Front. Plant Sci. 2017, 8, 785. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Zhao, X.; Liu, S.; Sun, F.; Zhang, C.; Xi, Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Biochem. 2017, 118, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wei, H.; Ding, Y.; Li, W.; Liu, Z.; Chen, L.; Tang, S.; Ding, C.; Jiang, Y.; Li, G. Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. Plant Physiol. Biochem. 2021, 165, 239–250. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, S.; Ma, L.; Kong, L.; Pan, S.; Tang, X.; Tian, H.; Duan, M.; Mo, Z. Effect of Exogenous Melatonin Application on the Grain Yield and Antioxidant Capacity in Aromatic Rice under Combined Lead–Cadmium Stress. Antioxidants 2022, 11, 776. [Google Scholar] [CrossRef]
- Munir, R.; Yasin, M.U.; Afzal, M.; Jan, M.; Muhammad, S.; Jan, N.; Nana, C.; Munir, F.; Iqbal, H.; Tawab, F.; et al. Melatonin alleviated cadmium accumulation and toxicity by modulating phytohormonal balance and antioxidant metabolism in rice. Chemosphere 2024, 346, 140590. [Google Scholar] [CrossRef]
- Gupta, R. Melatonin: A promising candidate for maintaining food security under the threat of phytopathogens. Plant Physiol. Biochem. 2023, 198, 107691. [Google Scholar] [CrossRef]
- Chen, X.; Laborda, P.; Liu, F. Exogenous Melatonin Enhances Rice Plant Resistance Against Xanthomonas oryzae pv. Oryzae. Plant Dis. 2020, 104, 1701–1708. [Google Scholar] [CrossRef]
- Chen, X.; Sun, C.; Laborda, P.; Zhao, Y.; Palmer, I.; Fu, Z.Q.; Qiu, J.; Liu, F. Melatonin Treatment Inhibits the Growth of Xanthomonas oryzae pv. Oryzae. Front. Microbiol. 2018, 9, 2280. [Google Scholar] [CrossRef]
- Lu, R.; Liu, Z.; Shao, Y.; Sun, F.; Zhang, Y.; Cui, J.; Zhou, Y.; Shen, W.; Zhou, T. Melatonin is responsible for rice resistance to rice stripe virus infection through a nitric oxide-dependent pathway. Virol. J. 2019, 16, 141. [Google Scholar] [CrossRef]
- Thangaraj, K.; Liu, S.; Li, J.; Zhao, Z.; Han, R.; Mei, H.; Jeyaraj, A.; Chen, X.; Li, X. Exogenous melatonin alleviates sooty mould on tea plants (Camellia sinensis L.). Sci. Hortic. 2022, 299, 111056. [Google Scholar] [CrossRef]
- Sofy, A.R.; Sofy, M.R.; Hmed, A.A.; Dawoud, R.A.; Refaey, E.E.; Mohamed, H.I.; El-Dougdoug, N.K. Molecular Characterization of the Alfalfa mosaic virus Infecting Solanum melongena in Egypt and the Control of Its Deleterious Effects with Melatonin and Salicylic Acid. Plants 2021, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.; Li, S.-B.; Pan, Z.-B.; Cai, J.-J.; Dong, L.-G.; Zhang, Y.-R.; Wang, C. Preliminary evaluation of alfalfa introduction based on principal component analysis and subordinate function. Southwest China J. Agric. Sci. 2015, 28, 2815–2819. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, X.; Reiter, R.J.; Feng, S.; Wang, Y.; Liu, S.; Jin, L.; Li, Z.; Datla, R.; Ren, M. Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front Plant Sci. 2017, 8, 1993. [Google Scholar] [CrossRef] [PubMed]
- Ahammed, G.J.; Mao, Q.; Yan, Y.; Wu, M.; Wang, Y.; Ren, J.; Guo, P.; Liu, A.; Chen, S. Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to fusarium wilt in cucumber. Phytopathology® 2020, 110, 999–1009. [Google Scholar] [CrossRef]
- Mandal, M.K.; Suren, H.; Ward, B.; Boroujerdi, A.; Kousik, C. Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. J. Pineal Res. 2018, 65, e12505. [Google Scholar] [CrossRef]
- Imran, M.; Khan, A.L.; Shahzad, R.; Khan, M.A.; Bilal, S.; Khan, A.; Kang, S.-M.; Lee, I.-J. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB PLANTS 2021, 13, plab026. [Google Scholar] [CrossRef]
- Tyagi, K.; Prathap, V.; Tyagi, P.; Kumari, A.; Pandey, R.; Meena, N.L.; Khan, M.I.R.; Tyagi, A.; Maheshwari, C. Seed priming with melatonin induces rhizogenesis and modulates physio-biochemical traits in high-yielding rice (Oryza sativa L.) genotypes. S. Afr. J. Bot. 2023, 163, 191–200. [Google Scholar] [CrossRef]
- Huang, Q.; Yan, H.; You, M.; Duan, J.; Chen, M.; Xing, Y.; Hu, X.; Li, X. Enhancing Drought Tolerance and Fruit Characteristics in Tomato through Exogenous Melatonin Application. Horticulturae 2023, 9, 1083. [Google Scholar] [CrossRef]
- Liang, D.; Ni, Z.; Xia, H.; Xie, Y.; Lv, X.; Wang, J.; Lin, L.; Deng, Q.; Luo, X. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci. Hortic. 2019, 246, 34–43. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.-J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009, 14, 43–50. [Google Scholar] [CrossRef]
- Yu, Y.; Deng, L.; Zhou, L.; Chen, G.; Wang, Y. Exogenous Melatonin Activates Antioxidant Systems to Increase the Ability of Rice Seeds to Germinate under High Temperature Conditions. Plants 2022, 11, 886. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yang, R.; Zheng, W.; Wu, L.; Zhang, C.; Zhang, H. Melatonin Promotes SGT1-Involved Signals to Ameliorate Drought Stress Adaption in Rice. Int. J. Mol. Sci. 2022, 23, 599. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.; Hamid, N.; Abideen, Z.; Zulfiqar, F.; Moosa, A.; Nafees, M.; El-Keblawy, A. Exogenous melatonin application stimulates growth, photosynthetic pigments and antioxidant potential of white beans under salinity stress. S. Afr. J. Bot. 2023, 160, 219–228. [Google Scholar] [CrossRef]
- Xu, H.-Y.; Fu, Y.-F.; Chen, L.-M.; Liang, C.; Han, Y.-M.; Xiang, X.-C. Effect analysis and comprehensive evaluation on the rice qualities by genetic improvement. Seed 2023, 42, 76–83. [Google Scholar] [CrossRef]
- Li, S.; Tian, S.; Li, M.; Ge, X.; Tian, J.; Cheng, J. Comprehensive evaluation of the nutrition quality of 15 varieties of potatoes by principal component analysis and subordinate function method. Food Ind. Technol. 2020, 41, 272–276. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Deng, X.; Liu, J.; Sun, P.; Liu, Y.; Huang, H.; Jiang, N.; Kang, H.; Ning, Y.; et al. Molecular Mapping of the Blast Resistance Genes Pi2-1 and Pi51(t) in the Durably Resistant Rice ‘Tianjingyeshengdao’. Phytopathology 2012, 102, 779–786. [Google Scholar] [CrossRef]
- GB/T 15790-2009; Rules of investigation and forecast of the rice blast [Pyricularia oryzae (Cavara)]. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration: Beijing, China, 2009; pp. 14–15.
- Yin, L.Z.; Xiang, Y.; Wu, X.; Chen, B.; Ao, H. Characteristics of leaf area index and yield variations of super hybrid rice at different nitrogen levels. Mol. Plant Breed. 2022, 11–12. [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Kochba, J.; Lavee, S.; Spiegel-Roy, P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti’ orange ovular callus lines. Plant Cell Physiol. 1977, 18, 463–467. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Hodges, D.M.; Delong, J.M.; Forney, C.F.; Prange, K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Scores | Description | Type |
---|---|---|
0 | No disease lesions | HR |
1 | Only small brown specks the size of pinpoints | R |
2 | Larger brown specks | R |
3 | Slightly larger round gray lesions, brown edge, lesion diameter 1–2 mm | MR |
4 | Typical spindle-shaped lesions, 1–2 mm long, usually confined between two leaf veins | MR |
5 | Fusiform lesions, with an affected area of 4–10% of the leaf area | S |
6 | Fusiform lesions, with an affected area of 11–25% of the leaf area | S |
7 | Fusiform lesions, with an affected area of 26–50% of the leaf area | S |
8 | Fusiform lesions, with an affected area of 51–75% of the leaf area | HS |
9 | Fusiform lesions, with an affected area greater than 75% of the leaf area, or complete leaf death | HS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Qian, J.; Wang, C.; Shi, W.; Chang, H.; Yin, H.; Xiao, Y.; Wang, Y.; Li, Q. Exogenous Melatonin Enhances Rice Blast Disease Resistance by Promoting Seedling Growth and Antioxidant Defense in Rice. Int. J. Mol. Sci. 2025, 26, 1171. https://doi.org/10.3390/ijms26031171
Yuan H, Qian J, Wang C, Shi W, Chang H, Yin H, Xiao Y, Wang Y, Li Q. Exogenous Melatonin Enhances Rice Blast Disease Resistance by Promoting Seedling Growth and Antioxidant Defense in Rice. International Journal of Molecular Sciences. 2025; 26(3):1171. https://doi.org/10.3390/ijms26031171
Chicago/Turabian StyleYuan, Hongliang, Jingya Qian, Chunwei Wang, Weixi Shi, Huiling Chang, Haojie Yin, Yulin Xiao, Yue Wang, and Qiang Li. 2025. "Exogenous Melatonin Enhances Rice Blast Disease Resistance by Promoting Seedling Growth and Antioxidant Defense in Rice" International Journal of Molecular Sciences 26, no. 3: 1171. https://doi.org/10.3390/ijms26031171
APA StyleYuan, H., Qian, J., Wang, C., Shi, W., Chang, H., Yin, H., Xiao, Y., Wang, Y., & Li, Q. (2025). Exogenous Melatonin Enhances Rice Blast Disease Resistance by Promoting Seedling Growth and Antioxidant Defense in Rice. International Journal of Molecular Sciences, 26(3), 1171. https://doi.org/10.3390/ijms26031171