Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Genetic Test
3. Discussion
4. Materials and Methods
4.1. Clinical Investigation
4.2. Genes of Interest
4.3. Whole-Exome Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allegue, C.; Coll, M.; Mates, J.; Campuzano, O.; Iglesias, A.; Sobrino, B.; Brion, M.; Amigo, J.; Carracedo, A.; Brugada, P.; et al. Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. PLoS ONE 2015, 10, e0133037. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [PubMed]
- Miyazaki, T.; Mitamura, H.; Miyoshi, S.; Soejima, K.; Aizawa, Y.; Ogawa, S. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J. Am. Coll. Cardiol. 1996, 27, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- de Luna, A.B.; Brugada, J.; Baranchuk, A.; Borggrefe, M.; Breithardt, G.; Goldwasser, D.; Lambiase, P.; Riera, A.P.; Garcia-Niebla, J.; Pastore, C.; et al. Current electrocardiographic criteria for diagnosis of Brugada pattern: A consensus report. J. Electrocardiol. 2012, 45, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Priori, S.G.; Wilde, A.A.; Horie, M.; Cho, Y.; Behr, E.R.; Berul, C.; Blom, N.; Brugada, J.; Chiang, C.E.; Huikuri, H.; et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: Document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm Off. J. Heart Rhythm Soc. 2013, 10, 1932–1963. [Google Scholar] [CrossRef] [PubMed]
- Crotti, L.; Brugada, P.; Calkins, H.; Chevalier, P.; Conte, G.; Finocchiaro, G.; Postema, P.G.; Probst, V.; Schwartz, P.J.; Behr, E.R. From gene-discovery to gene-tailored clinical management: 25 years of research in channelopathies and cardiomyopathies. Europace 2023, 25, euad180. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Ackerman, M.J.; Antzelevitch, C.; Bezzina, C.R.; Borggrefe, M.; Cuneo, B.F.; Wilde, A.A.M. Inherited cardiac arrhythmias. Nat. Rev. Dis. Prim. 2020, 6, 58. [Google Scholar] [CrossRef]
- Vimalanathan, A.K.; Ehler, E.; Gehmlich, K. Genetics of and pathogenic mechanisms in arrhythmogenic right ventricular cardiomyopathy. Biophys. Rev. 2018, 10, 973–982. [Google Scholar] [CrossRef]
- Corrado, D.; Zorzi, A.; Cipriani, A.; Bauce, B.; Bariani, R.; Beffagna, G.; De Lazzari, M.; Migliore, F.; Pilichou, K.; Rampazzo, A.; et al. Evolving diagnostic criteria for arrhythmogenic cardiomyopathy. J. Am. Heart Assoc. 2021, 10, e021987. [Google Scholar] [CrossRef]
- Reza, N.; Alford, R.L.; Belmont, J.W.; Marston, N. The Expansion of Genetic Testing in Cardiovascular Medicine: Preparing the Cardiology Community for the Changing Landscape. Curr. Cardiol. Rep. 2024, 26, 135–146. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Y.; Peng, L.; Gao, R.; Liu, N.; Jiang, P.; Liu, C.; Tang, S.; Quan, L.; Makielski, J.C.; et al. Identification of rare variants of DSP gene in sudden unexplained nocturnal death syndrome in the southern Chinese Han population. Int. J. Leg. Med. 2016, 130, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Forkmann, M.; Tomala, J.; Huo, Y.; Mayer, J.; Christoph, M.; Wunderlich, C.; Salmas, J.; Gaspar, T.; Piorkowski, C. Epicardial ventricular tachycardia ablation in a patient with Brugada ECG pattern and mutation of PKP2 and DSP genes. Circ. Arrhythm. Electrophysiol. 2015, 8, 505–507. [Google Scholar] [CrossRef]
- Zheng, J.; Zheng, D.; Su, T.; Cheng, J. Sudden unexplained nocturnal death syndrome: The hundred years’ enigma. J. Am. Heart Assoc. 2018, 7, e007837. [Google Scholar] [CrossRef] [PubMed]
- Priori, S.G.; Napolitano, C.; Gasparini, M.; Pappone, C.; Della Bella, P.; Giordano, U.; Bloise, R.; Giustetto, C.; De Nardis, R.; Grillo, M.; et al. Natural history of Brugada syndrome: Insights for risk stratification and management. Circulation 2002, 105, 1342–1347. [Google Scholar] [CrossRef]
- Darbar, D.; Kannankeril, P.J.; Donahue, B.S.; Kucera, G.; Stubblefield, T.; Haines, J.L.; George, A.L., Jr.; Roden, D.M. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 2008, 117, 1927–1935. [Google Scholar] [CrossRef]
- Mohler, P.J.; Rivolta, I.; Napolitano, C.; LeMaillet, G.; Lambert, S.; Priori, S.G.; Bennett, V. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc. Natl. Acad. Sci. USA 2004, 101, 17533–17538. [Google Scholar] [CrossRef]
- Makiyama, T.; Akao, M.; Tsuji, K.; Doi, T.; Ohno, S.; Takenaka, K.; Kobori, A.; Ninomiya, T.; Yoshida, H.; Takano, M.; et al. High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J. Am. Coll. Cardiol. 2005, 46, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Gardner, L.; Miller, D.M.; Daly, C.; Gupta, P.K.; House, C.; Roiz de Sa, D.; Shaw, M.A.; Hopkins, P.M. Investigating the genetic susceptibility to exertional heat illness. J. Med. Genet. 2020, 57, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Glazer, A.M.; Wada, Y.; Li, B.; Muhammad, A.; Kalash, O.R.; O’Neill, M.J.; Shields, T.; Hall, L.; Short, L.; Blair, M.A.; et al. High-Throughput Reclassification of SCN5A Variants. Am. J. Hum. Genet. 2020, 107, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Burashnikov, E.; Pfeiffer, R.; Barajas-Martinez, H.; Delpón, E.; Hu, D.; Desai, M.; Borggrefe, M.; Häissaguerre, M.; Kanter, R.; Pollevick, G.D.; et al. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm 2010, 7, 1872–1882. [Google Scholar] [CrossRef]
- d’Apolito, M.; Santoro, F.; Ranaldi, A.; Ragnatela, I.; Colia, A.L.; Cannito, S.; Margaglione, A.; D’Arienzo, G.; D’Andrea, G.; Pellegrino, P.; et al. Investigation of a Large Kindred Reveals Cardiac Calsequestrin (CASQ2) as a Cause of Brugada Syndrome. Genes 2024, 15, 822. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, J.T.; Crotti, L.; Djupsjöbacka, A.; Castelletti, S.; Junna, N.; Ghidoni, A.; Tuiskula, A.M.; Spazzolini, C.; Dagradi, F.; Viitasalo, M.; et al. The genetics underlying idiopathic ventricular fibrillation: A special role for catecholaminergic polymorphic ventricular tachycardia? Int. J. Cardiol. 2018, 250, 139–145. [Google Scholar] [CrossRef]
- d’Apolito, M.; Santoro, F.; Santacroce, R.; Cordisco, G.; Ragnatela, I.; D’Arienzo, G.; Pellegrino, P.L.; Brunetti, N.D.; Margaglione, M. A Novel DLG1 Variant in a Family with Brugada Syndrome: Clinical Characteristics and In Silico Analysis. Genes 2023, 14, 427. [Google Scholar] [CrossRef] [PubMed]
- Nishio, Y.; Makiyama, T.; Itoh, H.; Sakaguchi, T.; Ohno, S.; Gong, Y.Z.; Yamamoto, S.; Ozawa, T.; Ding, W.G.; Toyoda, F.; et al. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J. Am. Coll. Cardiol. 2009, 54, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Tester, D.J.; Wong, L.C.; Chanana, P.; Jaye, A.; Evans, J.M.; FitzPatrick, D.R.; Evans, M.J.; Fleming, P.; Jeffrey, I.; Cohen, M.C.; et al. Cardiac Genetic Predisposition in Sudden Infant Death Syndrome. J. Am. Coll. Cardiol. 2018, 71, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Vanoye, C.G.; Desai, R.R.; Fabre, K.L.; Gallagher, S.L.; Potet, F.; DeKeyser, J.M.; Macaya, D.; Meiler, J.; Sanders, C.R.; George, A.L., Jr. High-Throughput Functional Evaluation of KCNQ1 Decrypts Variants of Unknown Significance. Circ. Genom. Precis. Med. 2018, 11, e002345. [Google Scholar] [CrossRef]
- Di Resta, C.; Pietrelli, A.; Sala, S.; Della Bella, P.; De Bellis, G.; Ferrari, M.; Bordoni, R.; Benedetti, S. High-throughput genetic characterization of a cohort of Brugada syndrome patients. Hum. Mol. Genet. 2015, 24, 5828–5835. [Google Scholar] [CrossRef] [PubMed]
- Peña-Peña, M.L.; Ochoa, J.P.; Barriales-Villa, R.; Cicerchia, M.; Palomino-Doza, J.; Salazar-Mendiguchia, J.; Lamounier, A.; Trujillo, J.P.; Garcia-Giustiniani, D.; Fernandez, X.; et al. Clinical utility of genetic testing in patients with dilated cardiomyopathy. Med. Clin. 2021, 156, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Helms, A.S.; Thompson, A.D.; Glazier, A.A.; Hafeez, N.; Kabani, S.; Rodriguez, J.; Yob, J.M.; Woolcock, H.; Mazzarotto, F.; Lakdawala, N.K.; et al. Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients with Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med. 2020, 13, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Lu, T.P.; Lin, L.Y.; Liu, Y.B.; Ho, L.T.; Huang, H.C.; Lai, L.P.; Hwang, J.J.; Yeh, S.S.; Wu, C.K.; et al. Impact of Ancestral Differences and Reassessment of the Classification of Previously Reported Pathogenic Variants in Patients with Brugada Syndrome in the Genomic Era: A SADS-TW BrS Registry. Front. Genet. 2019, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Crotti, L.; Lundquist, A.L.; Insolia, R.; Pedrazzini, M.; Ferrandi, C.; De Ferrari, G.M.; Vicentini, A.; Yang, P.; Roden, D.M.; George, A.L., Jr.; et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 2005, 112, 1251–1258. [Google Scholar] [CrossRef]
- Crotti, L.; Hu, D.; Barajas-Martinez, H.; De Ferrari, G.M.; Oliva, A.; Insolia, R.; Pollevick, G.D.; Dagradi, F.; Guerchicoff, A.; Greco, F.; et al. Torsades de pointes following acute myocardial infarction: Evidence for a deadly link with a common genetic variant. Heart Rhythm 2012, 9, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Eldstrom, J.; Xu, H.; Werry, D.; Kang, C.; Loewen, M.E.; Degenhardt, A.; Sanatani, S.; Tibbits, G.F.; Sanders, C.; Fedida, D. Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of IKs. J. Gen. Physiol. 2010, 135, 433–448. [Google Scholar] [CrossRef]
- Goudal, A.; Karakachoff, M.; Lindenbaum, P.; Baron, E.; Bonnaud, S.; Kyndt, F.; Arnaud, M.; Minois, D.; Bourcereau, E.; Thollet, A.; et al. Burden of rare variants in arrhythmogenic cardiomyopathy with right dominant form-associated genes provides new insights for molecular diagnosis and clinical management. Hum. Mutat. 2022, 43, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Lahtinen, A.M.; Lehtonen, E.; Marjamaa, A.; Kaartinen, M.; Heliö, T.; Porthan, K.; Oikarinen, L.; Toivonen, L.; Swan, H.; Jula, A.; et al. Population-prevalent desmosomal mutations predisposing to arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 2011, 8, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska Dahlgren, B.; Allen, M.; Lindström, A.C.; Bjerke, M.; Blomström-Lundqvist, C. A novel variant in plakophilin-2 gene detected in a family with arrhythmogenic right ventricular cardiomyopathy. J. Interv. Card. Electrophysiol. 2012, 34, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Salfati, E.L.; Spencer, E.G.; Topol, S.E.; Muse, E.D.; Rueda, M.; Lucas, J.R.; Wagner, G.N.; Campman, S.; Topol, E.J.; Torkamani, A. Re-analysis of whole-exome sequencing data uncovers novel diagnostic variants and improves molecular diagnostic yields for sudden death and idiopathic diseases. Genome Med. 2019, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.B.; Probst, V.; Belhassen, B. Ethnic differences in patients with Brugada syndrome and arrhythmic events: New insights from Survey on Arrhythmic Events in Brugada Syndrome. Heart Rhythm 2019, 16, 1468–1474. [Google Scholar]
- Carrier, L.; Mearini, G.; Stathopoulou, K.; Cuello, F. Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 2015, 573, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Durst, R.; Sauls, K.; Peal, D.S.; Devlaming, A.; Toomer, K.; Leyne, M.; Salani, M.; Talkowski, M.E.; Brand, H.; Perrocheau, M.; et al. Mutations in DCHS1 cause mitral valve prolapse. Nature 2015, 525, 109–113. [Google Scholar] [CrossRef]
- Muthukumar, L.; Jahangir, A.; Jan, M.F.; Perez, M.A.; Khandheria, B.K.; Tajik, A.J. Association between malignant mitral valve prolapse and sudden cardiac death: Review. JAMA Cardiol. 2020, 5, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Ha, F.J.; Teh, A.W.; Calafiore, P.; Jones, E.F.; Johns, J.; Koshy, A.N.; O’Donnell, D.; Hare, D.L.; Farouque, O.; et al. Mitral valve prolapse and sudden cardiac death: A systematic review. J. Am. Heart Assoc. 2018, 7, e010584. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, F.; Kakargias, F.; Panday, P.; Arcia Franchini, A.P.; Iskander, B.; Anwer, F.; Hamid, P. Arrhythmic mitral valve prolapse: Diagnostic parameters for high-risk patients: A systematic review and meta-analysis. Pacing Clin. Electrophysiol. 2021, 44, 1746–1755. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Mendiguchía, J.; Ochoa, J.P.; Palomino-Doza, J.; Domínguez, F.; Díez-López, C.; Akhtar, M.; Ramiro-León, S.; Clemente, M.M.; Pérez-Cejas, A.; Robledo, M.; et al. Mutations in TRIM63 cause an autosomal-recessive form of hypertrophic cardiomyopathy. Heart 2020, 106, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Zemljic-Harpf, A.E.; Miller, J.C.; Henderson, S.A.; Wright, A.T.; Manso, A.M.; Elsherif, L.; Dalton, N.D.; Thor, A.K.; Perkins, G.A.; McCulloch, A.D.; et al. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol. Cell. Biol. 2007, 27, 7522–7537. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.J.; Priori, S.G.; Willems, S.; Berul, C.; Brugada, R.; Calkins, H.; Camm, A.J.; Ellinor, P.T.; Gollob, M.; Hamilton, R. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 2011, 8, 1308–1339. [Google Scholar] [CrossRef]
- d’Apolito, M.; Ceccarini, C.; Savino, R.; Adipietro, I.; di Bari, I.; Santacroce, R.; Curcetti, M.; D’Andrea, G.; Croce, A.I.; Cesarano, C.; et al. A Novel KCNN2 Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis. Genes 2023, 14, 1380. [Google Scholar] [CrossRef] [PubMed]
- d’Apolito, M.; Ranaldi, A.; Santoro, F.; Cannito, S.; Gravina, M.; Santacroce, R.; Ragnatela, I.; Margaglione, A.; D’Andrea, G.; Casavecchia, G.; et al. De Novo p.Asp3368Gly Variant of Dystrophin Gene Associated with X-Linked Dilated Cardiomyopathy and Skeletal Myopathy: Clinical Features and In Silico Analysis. Int. J. Mol. Sci. 2024, 25, 2787. [Google Scholar] [CrossRef]
Overall | Brs (%) * | BrS Wild Type | BrS SCN5A Carriers, (%) § | Brs Minor Genes Carriers, (%) § | |
---|---|---|---|---|---|
Probands n | 62 | 48 (77%) | 27 (56%) | 6 (13%) | 15 (31%) |
Age at diagnosis (years), mean ± SD | 45 ± 15 | 40 ± 14 | 49 ± 6 | 47 ± 15 | |
Male | 41 (66%) | 33 (69%) | 17 (63%) | 3 (50%) | 13 (87%) |
Female | 21 (34%) | 15 (31%) | 10 (37%) | 3 (50%) | 2 (13%) |
Family history, n (%) | 52 (84%) | 35 (73%) | 18 (67%) | 6 (100%) | 11 (73%) |
Syncope | 21 (34%) | 13 (27%) | 4 (15%) | 6 (100%) | 3 (20%) |
ICD | 23 (29%) | 14 (29%) | 7 (26%) | 3 (50%) | 4 (27%) |
Type 1 BrS pattern at peripheral leads, n (%) | 30(50%) | 30 (64%) | 19 (70%) | 5 (83%) | 6 (40%) |
LQT Variations Carriers | SQT Variations Carriers | ARVD Variations Carriers | AR-DCM Variations Carriers | |
---|---|---|---|---|
Probands n | 7 (11%) | 1 (1.6%) | 2 (3%) | 4 (6.5%) |
Age at diagnosis (years ± SD) | 50 ± 17 | 22 | 36–60 | 57 ± 14 |
Male | 2 (28%) | 1(100%) | 1(50%) | 1(25%) |
Female | 5 (71%) | - | 1(50%) | 3 (75%) |
Family history, n (%) | 5 (71%) | 1 (100%) | 2 (100%) | 4 (100%) |
Syncope | 4 (57%) | - | 2 (100%) | 3 (75%) |
ICD | 4 (57%) | - | 2 (100%) | 3 (75%) |
ID | Gene | Variant Type | Nucleotide | Protein | dbSNP | phyloP100 | Frequencies | ACMG | Evidence | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
BrS1 | SCN5A | missense | c.3157G>A | p.(Glu1053Lys) | rs137854617 | 7.905 | exomes: ƒ = 0.000154 genomes: ƒ = 0.000138 | LP | PM2, PP3, PP5 | [11,12,13] |
BrS2 | SCN5A | missense | c.1066G>A | p.(Asp356Asn) | rs199473565 | 7.905 | exomes: ƒ = 0.00000342 genomes:ƒ = 0.00000657 | P | PM2, PP3, PP5, PS4, PS3, PM5 | [14] |
BrS3 | SCN5A | missense | c.1654G>C | p.(Gly552Arg) | rs3918389 | 6.169 | exomes: not found genomes: not found | VUS | PM2, PP3 | [15] |
BrS4 | SCN5A | missense | c.4720G>A | p.(Glu1574Lys) | rs199473620 | 7.86 | exomes: ƒ = 0.000000684 genomes: not found | P | PS4, PS3, PP3, PM2, PP5 | [16] |
BrS5 | SCN5A | missense | c.583A>G | p.(His130Arg) | N/A | 8.011 | exomes: ƒ = 0.00000137 genomes: not found | VUS | PM, PP3 | N |
BrS6 | SCN5A | Splice acceptor | c.935-1G>A | --- | N/A | 7.312 | exomes: not found genomes: not found | P | PM2, PP5, PVS1 | N |
BrS7 | CACNA1S | missense | c.1493G>A | p.(Arg498His) | rs150590855 | 7.876 | exomes: ƒ = 0.000291 genomes: ƒ = 0.000171 | VUS | PM2, PP3 | [17] |
BrS8 | CACNB2 | missense | c.1873C>T | p.(Arg625Cys) | rs1060499847 | 3.13 | exomes: ƒ = 0.0000157 genomes: ƒ = 0.00000659 | VUS | PM2 | [18] |
BrS9 | CASQ2 | missense | c.532T>C | p.(Tyr178His) | rs1648031031 | 1.919 | exomes: ƒ = 0.0000014 genomes: not found | VUS | PM2, PP1, BP4 | [19] |
BrS10 | CASQ2 | missense | c.1052A>G | p.(Asp351Gly) | rs200899037 | 5.729 | exomes: ƒ = 0.0000198 genomes: ƒ = 0.0000197 | VUS | PM2 | [20] |
BrS11 | DLG1 | missense | c.1556G>A | p.(Arg519His) | rs141544348 | 7.905 | exomes: ƒ = 0.000512 genomes: ƒ = 0.000362 | VUS | PM2,PP1 | [21] |
BrS12 | JUP | missense | c.412G>A | p.(Glu138Lys) | rs150245906 | 7.896 | exomes: ƒ = 0.0000486 genomes: ƒ = 0.000046 | VUS | PM2, BP6 | N |
BrS/ SCD13 | KCNE1 | missense | c.253G>A | p.(Asp85Asn) | rs1805128 | 2.975 | exomes: ƒ = 0.009438 | Risk factor | BP6 | [22] |
BrS14 | KCNH2 | missense | c.2654G>A | p.(Arg885His) | rs1479572342 | 3.073 | exomes: ƒ = 0.000000685 genomes: not found | VUS | PM2, PP3 | [23] |
BrS15 | KCNJ5 | missense | c.209C>A | p.(Thr70Asn) | N/A | 6.036 | exomes: ƒ = 0.000000684 genomes: not found | VUS | PM2 | N |
BrS16 | KCNJ5 | missense | c.1045A>G | p.(Asn349Asp) | rs774486875 | 3.613 | exomes: ƒ = 0.00000205 genomes: not found | VUS | PM2 | N |
BrS17 | KCNQ1 | missense | c.584G>A | p.(Arg195Gln) | rs138362632 | 7.636 | exomes: ƒ = 0.00011 genomes: ƒ = 0.0000657 | LP | PM2, PP3 | [24] |
BrS18 | PKP2 | missense | c.2083C>T | p.(Arg695Cys) | rs199583774 | 1.439 | exomes: ƒ = 0.000139 genomes: ƒ = 0.000151 | VUS | PM2 | [25] |
BrS19 | SCN10A | missense | c.3353G>C | p.(Gly1118Ala) | rs868030985 | 0.551 | exomes: ƒ = 0.000000685 genomes: not found | VUS | PM2 | N |
BrS20 | DSP | missense | c.2622C>T | p.(Ile874Met) | rs751067479 | 0.093 | exomes: ƒ = 0.0000493 genomes: ƒ = 0.0000394 | VUS | PM2, BP7, BP6 | [26] |
BRs20 | MYBPC3 | missense | c.3370T>C | p.(Cys1124Arg) | rs1360819456 | 7.071 | exomes: ƒ = 0.0000048 genomes: ƒ = 0.0000131 | LP | PM2, PP3 | [27] |
BrS21 | LAMA2 | missense | c.307A>G | p.(Ile103Val) | rs369978622 | 8.853 | exomes: ƒ = 0.0000165 genomes: ƒ = 0.0000131 | VUS | PM2 | N |
LQT1 | CACNA1C | missense | c.6167G>A | p.(Arg2056Gln) | rs112414325 | 2.576 | exomes: ƒ = 0.00234 genomes: ƒ = 0.00195 | B | PP2, BA1, BS2, BP6 | N |
LQT2 | SCN5A | missense | c.3806A>G | p.(Asn1269Ser) | rs761274563 | 5.109 | exomes: ƒ = 0.00000684 genomes: not found | VUS | PM2 | [28] |
LQT3 | TRPM4 | missense | c.3178G>A | p.(Ala1060Thr) | N/A | 1.37 | exomes: not found genomes: not found | VUS | PM2, BP4 | N |
LQT4 | KCNH2 | nonsense | c.2230C>T | p.(Arg744*) | rs189014161 | 1.2 | exomes: ƒ = 0.000000684 genomes: not found | P | PP1, PVS1, PS2, PM2 | [29] |
LQT/ VT5 | TNNI3K | splice acceptor | c.1028-1G>T | --- | N/A | 9.008 | exomes: not found genomes: not found | VUS | PM2 PVS1 | N |
LQT/ VT5 | SCN9A | missense | c.3736G>A | p.(Ala1246Thr) | N/A | 7.905 | exomes: not found genomes: not found | VUS | PM2, PP3 | N |
LQT/ MVP6 | DCHS1 | missense | c.9115G>C | p.(Ala3039Pro) | rs912004965 | 7.704 | exomes: ƒ = 0.0000098 genomes: ƒ = 0.0000131 | VUS | PM2 | N |
SQT1 | KCNH2 | missense | c.3347C>T | p.(Ala1116Val) | rs199473032 | 0.489 | exomes: ƒ = 0.0000171 genomes: ƒ = 0.0000396 | VUS | PM2, PP2 | [30] |
SQT1 | KCNH2 | missense | c.2690A>C | p.(Lys897Thr) | rs1805123 | 2.77 | exomes: ƒ = 0.325 genomes: ƒ = 0.21 | B | BA1/BS2, BP6, PP2 | [31] |
LQT7 | KCNQ1 | missense | c.604G>A | p.(Asp202Asn) | rs199472702 | 9.196 | exomes: ƒ = 0.00000754 genomes: ƒ = 0.00000657 | P | PM3, PS3, PM1, PP2, PM2 | [32] |
ARVD1 | DSP | missense | c.242G>A | p.(Cys81Tyr) | rs140965835 | 3.523 | exomes: ƒ = 0.000146 genomes: ƒ = 0.000138 | VUS | PM2, BP6 | [33] |
ARVD2 | PKP2 | missense | c.184C>A | p.(Gln62Lys) | rs199601548 | 1.915 | exomes: ƒ = 0.00027 genomes: ƒ = 0.000387 | VUS | PM2, PP1 | [34] |
AR-DCM1 | VCL | missense | c.2435G>C | p.(Gly812Ala) | N/A | 3.105 | exomes: not found genomes: not found | VUS | PM2, PP3 | N |
AR-DCM2 | TRIM63 | nonsense | c.739C>T | p.(Gln247*) | rs148395034 | 0.851 | exomes: ƒ = 0.000502 genomes: ƒ = 0.000551 | P | PM3, PS3, PVS1, PM2 | [35] |
AR-DCM3 | PKP2 | missense | c.1576A>G | p.(Thr526Ala) | rs397516999 | 1.613 | exomes: ƒ = 0.000146 genomes: ƒ = 0.0000526 | VUS | PM2, PP3, BP6 | [36] |
AR-DCM4 | PSEN1 | missense | c.1279A>G | p.(Ile427Val) | rs1398951357 | 9.23 | exomes: ƒ = 0.00000684 genomes: ƒ = 0.00000657 | VUS | PM1, PP2, PM2 | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Apolito, M.; Santoro, F.; Ranaldi, A.; Cannito, S.; Santacroce, R.; Ragnatela, I.; Margaglione, A.; D’Andrea, G.; Brunetti, N.D.; Margaglione, M. Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study. Int. J. Mol. Sci. 2025, 26, 1200. https://doi.org/10.3390/ijms26031200
d’Apolito M, Santoro F, Ranaldi A, Cannito S, Santacroce R, Ragnatela I, Margaglione A, D’Andrea G, Brunetti ND, Margaglione M. Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study. International Journal of Molecular Sciences. 2025; 26(3):1200. https://doi.org/10.3390/ijms26031200
Chicago/Turabian Styled’Apolito, Maria, Francesco Santoro, Alessandra Ranaldi, Sara Cannito, Rosa Santacroce, Ilaria Ragnatela, Alessandra Margaglione, Giovanna D’Andrea, Natale Daniele Brunetti, and Maurizio Margaglione. 2025. "Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study" International Journal of Molecular Sciences 26, no. 3: 1200. https://doi.org/10.3390/ijms26031200
APA Styled’Apolito, M., Santoro, F., Ranaldi, A., Cannito, S., Santacroce, R., Ragnatela, I., Margaglione, A., D’Andrea, G., Brunetti, N. D., & Margaglione, M. (2025). Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study. International Journal of Molecular Sciences, 26(3), 1200. https://doi.org/10.3390/ijms26031200