Hemostatic Profile and Serum Levels of Interferon Gamma-Induced Protein 10 (IP-10) in Neonates Born to Mothers with COVID-19 During the Peripartum Period
Abstract
:1. Introduction
2. Results
2.1. General Characteristics of Study Groups
2.2. ROTEM Parameters and Interleukin Levels
3. Discussion
4. Materials and Methods
4.1. Study Exclusion Criteria
4.2. Hospital Policy for the Management of Pregnant Women and Neonates During the COVID-19 Pandemic
4.3. Records and Laboratory Testing
4.4. Determination of IL-6 and Human IP-10 (CXCL10)
4.4.1. Assay Sensitivity
4.4.2. Precision
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coperchini, F.; Chiovato, L.; Rotondi, M. Interleukin-6, CXCL10 and infiltrating macrophages in COVID-19-related cytokine storm: Not one for all but all for one! Front. Immunol. 2021, 12, 668507. [Google Scholar] [CrossRef] [PubMed]
- Gudowska-Sawczuk, M.; Mroczko, B. What is currently known about the role of CXCL10 in SARS-CoV-2 infection? Int. J. Mol. Sci. 2022, 23, 3673. [Google Scholar] [CrossRef] [PubMed]
- Elemam, N.M.; Talaat, I.M.; Maghazachi, A.A. CXCL10 chemokine: A critical player in RNA and DNA viral infections. Viruses 2022, 14, 2445. [Google Scholar] [CrossRef] [PubMed]
- Madhurantakam, S.; Lee, Z.J.; Naqvi, A.; Prasad, S. Importance of IP-10 as a biomarker of host immune response: Critical perspective as a target for biosensing. Curr. Res. Biotechnol. 2023, 5, 100130. [Google Scholar] [CrossRef]
- Jain, S.; Baer, R.J.; McCulloch, C.E.; Rogers, E.; Rand, L.; Jelliffe-Pawlowski, L.; Piao, X. Association of Maternal Immune Activation during Pregnancy and Neurologic Outcomes in Offspring. J. Pediatr. 2021, 238, 87–93.e83. [Google Scholar] [CrossRef]
- Ayed, M.; Embaireeg, A.; Kartam, M.; More, K.; Alqallaf, M.; AlNafisi, A.; Alsaffar, Z.; Bahzad, Z.; Buhamad, Y.; Alsayegh, H.; et al. Neurodevelopmental outcomes of infants born to mothers with SARS-CoV-2 infections during pregnancy: A national prospective study in Kuwait. BMC Pediatr. 2022, 22, 319. [Google Scholar] [CrossRef]
- Heeralall, C.; Ibrahim, U.H.; Lazarus, L.; Gathiram, P.; Mackraj, I. The effects of COVID-19 on placental morphology. Placenta 2023, 138, 88–96. [Google Scholar] [CrossRef]
- Gale, C.; Quigley, M.A.; Placzek, A.; Knight, M.; Ladhani, S.; Draper, E.S.; Sharkey, D.; Doherty, C.; Mactier, H.; Kurinczuk, J.J. Characteristics and outcomes of neonatal SARS-CoV-2 infection in the UK: A prospective national cohort study using active surveillance. Lancet. Child Adolesc. Health 2021, 5, 113–121. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, J.; Shi, Y.; Yi, M. Research progress in vertical transmission of SARS-CoV-2 among infants born to mothers with COVID-19. Future Virol. 2022, 17, 211–214. [Google Scholar] [CrossRef]
- Bwire, G.M.; Njiro, B.J.; Mwakawanga, D.L.; Sabas, D.; Sunguya, B.F. Possible vertical transmission and antibodies against SARS-CoV-2 among infants born to mothers with COVID-19: A living systematic review. J. Med. Virol. 2021, 93, 1361–1369. [Google Scholar] [CrossRef]
- Simbar, M.; Nazarpour, S.; Sheidaei, A. Evaluation of pregnancy outcomes in mothers with COVID-19 infection: A systematic review and meta-analysis. J. Obstet. Gynaecol. 2023, 43, 2162867. [Google Scholar] [CrossRef] [PubMed]
- Pugni, L.; Crippa, B.L.; Raimondi, F.; Vento, G.; Mangili, G.; Coscia, A.; Artieri, G.; Ronchi, A.; Ventura, M.L.; Lago, P.; et al. SARS-CoV-2 perinatal transmission and neonatal outcomes across four different waves of COVID-19 pandemic: A nationwide prospective cohort study from the Italian Society of Neonatology. Int. J. Infect. Dis. 2024, 140, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Falahi, S.; Abdoli, A.; Kenarkoohi, A. Maternal COVID-19 infection and the fetus: Immunological and neurological perspectives. New Microbes New Infect. 2023, 53, 101135. [Google Scholar] [CrossRef] [PubMed]
- Veerus, P.; Nõmm, O.; Innos, K.; Allvee, K.; Karro, H. SARS-CoV-2 infection during pregnancy and perinatal outcomes in Estonia in 2020 and 2021: A register-based study. Acta Obstet. Gynecol. Scand. 2024, 103, 250–256. [Google Scholar] [CrossRef]
- Mullins, E.; Hudak, M.L.; Banerjee, J.; Getzlaff, T.; Townson, J.; Barnette, K.; Playle, R.; Perry, A.; Bourne, T.; Lees, C.C.; et al. Pregnancy and neonatal outcomes of COVID-19: Coreporting of common outcomes from PAN-COVID and AAP-SONPM registries. Ultrasound Obstet. Gynecol. 2021, 57, 573–581. [Google Scholar] [CrossRef]
- Papapanou, M.; Papaioannou, M.; Petta, A.; Routsi, E.; Farmaki, M.; Vlahos, N.; Siristatidis, C. Maternal and Neonatal Characteristics and Outcomes of COVID-19 in Pregnancy: An Overview of Systematic Reviews. Int. J. Environ. Res. Public Health 2021, 18, 596. [Google Scholar] [CrossRef]
- Man, O.M.; Azamor, T.; Cambou, M.C.; Fuller, T.L.; Kerin, T.; Paiola, S.G.; Cranston, J.S.; Mok, T.; Rao, R.; Chen, W.; et al. Respiratory distress in SARS-CoV-2 exposed uninfected neonates followed in the COVID Outcomes in Mother-Infant Pairs (COMP) Study. Nat. Commun. 2024, 15, 399. [Google Scholar] [CrossRef]
- Murphy, C.A.; O’Reilly, D.P.; Edebiri, O.; Weiss, L.; Cullivan, S.; El-Khuffash, A.; Doyle, E.; Donnelly, J.C.; Malone, F.D.; Ferguson, W.; et al. Haematological parameters and coagulation in umbilical cord blood following COVID-19 infection in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 266, 99–105. [Google Scholar] [CrossRef]
- WHO. COVID-19 Clinical Management: Living Guidance; WHO: Geneva, Switzerland, 2021; Available online: https://iris.who.int/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf (accessed on 27 June 2021).
- Popescu, D.E.; Cerbu, S.; Rosca, I.; Lungu, N.; Trușculescu, A.A.; Belengeanu, V.; Manea, A.M.; Dima, M.A.; Gorun, F.; Popa, Z.L.; et al. Comparative Analysis of Hematological and Biochemical Changes in Neonates among Women with and without COVID-19 Infection during Pregnancy. Children 2023, 10, 1370. [Google Scholar] [CrossRef]
- Zaharie, G.; Hasmasanu, M.; Muresan, D.; Kovacs, T.; Matyas, M. Diagnostic challenges, management, and outcome of infants born to mothers with COVID 19 during the first wave of the pandemic. Exp. Ther. Med. 2022, 23, 102. [Google Scholar] [CrossRef]
- Kush, M.L.; Gortner, L.; Harman, C.R.; Baschat, A.A. Sustained hematological consequences in the first week of neonatal life secondary to placental dysfunction. Early Hum. Dev. 2006, 82, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef] [PubMed]
- Karapati, E.; Sokou, R.; Iliodromiti, Z.; Tsaousi, M.; Sulaj, A.; Tsantes, A.G.; Petropoulou, C.; Pouliakis, A.; Tsantes, A.E.; Boutsikou, T.; et al. Assessment of Hemostatic Profile in Neonates with Intrauterine Growth Restriction: A Systematic Review of Literature. Semin. Thromb. Hemost. 2024, 50, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Humberg, A.; Fortmann, I.; Siller, B.; Kopp, M.V.; Herting, E.; Göpel, W.; Härtel, C.; German Neonatal Network; German Center for Lung Research and Priming Immunity at the Beginning of Life (PRIMAL) Consortium. Preterm birth and sustained inflammation: Consequences for the neonate. Semin. Immunopathol. 2020, 42, 451–468. [Google Scholar] [CrossRef]
- Garcia-Flores, V.; Romero, R.; Xu, Y.; Theis, K.; Arenas-Hernandez, M.; Miller, D.; Peyvandipour, A.; Galaz, J.; Levenson, D.; Bhatti, G.; et al. Maternal-Fetal Immune Responses in Pregnant Women Infected with SARS-CoV-2. Nat. Commun. 2022, 13, 320. [Google Scholar] [CrossRef]
- Wang, X.; Tang, G.; Liu, Y.; Zhang, L.; Chen, B.; Han, Y.; Fu, Z.; Wang, L.; Hu, G.; Ma, Q.; et al. The role of IL-6 in coronavirus, especially in COVID-19. Front. Pharmacol. 2022, 13, 1033674. [Google Scholar] [CrossRef]
- Gee, S.; Chandiramani, M.; Seow, J.; Pollock, E.; Modestini, C.; Das, A.; Tree, T.; Doores, K.J.; Tribe, R.M.; Gibbons, D.L. The legacy of maternal SARS-CoV-2 infection on the immunology of the neonate. Nat. Immunol. 2021, 22, 1490–1502. [Google Scholar] [CrossRef]
- Taglauer, E.S.; Dhole, Y.; Boateng, J.; Snyder-Cappione, J.; Parker, S.E.; Clarke, K.; Juttukonda, L.; Devera, J.; Hunnewell, J.; Barnett, E.; et al. Evaluation of maternal-infant dyad inflammatory cytokines in pregnancies affected by maternal SARS-CoV-2 infection in early and late gestation. J. Perinatol. 2022, 42, 1319–1327. [Google Scholar] [CrossRef]
- Kosińska-Kaczyńska, K.; Rebizant, B.; Czeszko-Paprocka, H.; Bojdo, A.; Przybylski, M.; Chaberek, K.; Lewandowska, A.; Szymusik, I.; Brawura-Biskupski-Samaha, R. Maternal SARS-CoV-2 Infection at Delivery Increases IL-6 Concentration in Umbilical Cord Blood. J. Clin. Med. 2023, 12, 5672. [Google Scholar] [CrossRef]
- Moreira, A.L.E.; Silva, P.; Gomes, R.S.; Santos, M.O.; Ito, C.R.M.; Barbosa, L.C.G.; Souza, P.P.; Peixoto, F.A.O.; Wastowski, I.J.; Carneiro, L.C.; et al. Characterization of T Helper 1 and 2 Cytokine Profiles in Newborns of Mothers with COVID-19. Biomedicines 2023, 11, 910. [Google Scholar] [CrossRef]
- Foo, S.S.; Cambou, M.C.; Mok, T.; Fajardo, V.M.; Jung, K.L.; Fuller, T.; Chen, W.; Kerin, T.; Mei, J.; Bhattacharya, D.; et al. The systemic inflammatory landscape of COVID-19 in pregnancy: Extensive serum proteomic profiling of mother-infant dyads with in utero SARS-CoV-2. Cell Rep. Med. 2021, 2, 100453. [Google Scholar] [CrossRef] [PubMed]
- Procianoy, R.S.; Silveira, R.C. The role of sample collection timing on interleukin-6 levels in early-onset neonatal sepsis. J. Pediatr. 2004, 80, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Laing, A.G.; Lorenc, A.; Del Molino Del Barrio, I.; Das, A.; Fish, M.; Monin, L.; Muñoz-Ruiz, M.; McKenzie, D.R.; Hayday, T.S.; Francos-Quijorna, I. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 2020, 26, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, F.; Chai, X.; Yuan, W.; Ding, H.; Wu, X. The role of IP-10 and its receptor CXCR3 in early pregnancy. Mol. Immunol. 2021, 140, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Gotsch, F.; Romero, R.; Friel, L.; Kusanovic, J.P.; Espinoza, J.; Erez, O.; Than, N.G.; Mittal, P.; Edwin, S.; Yoon, B.H. CXCL10/IP-10: A missing link between inflammation and anti-angiogenesis in preeclampsia? J. Matern. Fetal Neonatal Med. 2007, 20, 777–792. [Google Scholar] [CrossRef]
- Kallapur, S.G.; Jobe, A.H.; Ikegami, M.; Bachurski, C.J. Increased IP-10 and MIG expression after intra-amniotic endotoxin in preterm lamb lung. Am. J. Respir. Crit. Care Med. 2003, 167, 779–786. [Google Scholar] [CrossRef]
- Pinheiro, G.S.M.A.; de Souza, R.C.; de Oliveira Azevedo, V.M.G.; Guimarães, N.S.; Pires, L.G.; Lemos, S.M.A.; Alves, C.R.L. Effects of intrauterine exposure to SARS-CoV-2 on infants’ development: A rapid review and meta-analysis. Eur. J. Pediatr. 2023, 182, 2041–2055. [Google Scholar] [CrossRef]
- Ayesa-Arriola, R.; Castro Quintas, Á.; Ortiz-García de la Foz, V.; Miguel Corredera, M.; San Martín González, N.; Murillo-García, N.; Neergaard, K.; Fañanás Saura, L.; de las Cuevas-Terán, I. Exploring the impact of COVID-19 on newborn neurodevelopment: A pilot study. Sci. Rep. 2023, 13, 2983. [Google Scholar] [CrossRef]
- Edlow, A.G.; Castro, V.M.; Shook, L.L.; Kaimal, A.J.; Perlis, R.H. Neurodevelopmental Outcomes at 1 Year in Infants of Mothers Who Tested Positive for SARS-CoV-2 During Pregnancy. JAMA Netw. Open 2022, 5, e2215787. [Google Scholar] [CrossRef]
- Mor, G.; Aldo, P.; Alvero, A.B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef]
- Hammoud, M.S.; Raghupathy, R.; Barakat, N.; Eltomi, H.; Elsori, D. Cytokine profiles at birth and the risk of developing severe respiratory distress and chronic lung disease. J. Res. Med. Sci. 2017, 22, 62. [Google Scholar] [CrossRef] [PubMed]
- Grignani, G.; Maiolo, A. Cytokines and hemostasis. Haematologica 2000, 85, 967–972. [Google Scholar] [PubMed]
- Boehme, M.W.; Deng, Y.; Raeth, U.; Bierhaus, A.; Ziegler, R.; Stremmel, W.; Nawroth, P.P. Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: In vivo and in vitro studies. Immunology 1996, 87, 134–140. [Google Scholar] [PubMed]
- Foley, J.H.; Conway, E.M. Cross Talk Pathways Between Coagulation and Inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef] [PubMed]
- Bester, J.; Pretorius, E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 2016, 6, 32188. [Google Scholar] [CrossRef]
- Esmon, C.T. Inflammation and thrombosis. J. Thromb. Haemost. 2003, 1, 1343–1348. [Google Scholar] [CrossRef]
- Mitrovic, M.; Sabljic, N.; Cvetkovic, Z.; Pantic, N.; Zivkovic Dakic, A.; Bukumiric, Z.; Libek, V.; Savic, N.; Milenkovic, B.; Virijevic, M.; et al. Rotational thromboelastometry (ROTEM) profiling of COVID-19 patients. Platelets 2021, 32, 690–696. [Google Scholar] [CrossRef]
- Abou-Ismail, M.Y.; Diamond, A.; Kapoor, S.; Arafah, Y.; Nayak, L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb. Res. 2020, 194, 101–115. [Google Scholar] [CrossRef]
- Shanes, E.D.; Mithal, L.B.; Otero, S.; Azad, H.A.; Miller, E.S.; Goldstein, J.A. Placental Pathology in COVID-19. Am. J. Clin. Pathol. 2020, 154, 23–32. [Google Scholar] [CrossRef]
- Yousefi, P.; Soltani, S.; Siri, G.; Rezayat, S.A.; Gholami, A.; Zafarani, A.; Razizadeh, M.H.; Alborzi, E.; Mokhtary-Irani, G.; Abedi, B.; et al. Coagulopathy and thromboembolic events a pathogenic mechanism of COVID-19 associated with mortality: An updated review. J. Clin. Lab. Anal. 2023, 37, e24941. [Google Scholar] [CrossRef]
- Matsuoka, A.; Koami, H.; Shinada, K.; Sakamoto, Y. Investigation of differences in coagulation characteristics between hospitalized patients with SARS-CoV-2 Alpha, Delta, and Omicron variant infection using rotational thromboelastometry (ROTEM): A single-center, retrospective, observational study. J. Clin. Lab. Anal. 2022, 36, e24796. [Google Scholar] [CrossRef] [PubMed]
- Grobbelaar, L.M.; Kruger, A.; Venter, C.; Burger, E.M.; Laubscher, G.J.; Maponga, T.G.; Kotze, M.J.; Kwaan, H.C.; Miller, J.B.; Fulkerson, D.; et al. Relative Hypercoagulopathy of the SARS-CoV-2 Beta and Delta Variants when Compared to the Less Severe Omicron Variants Is Related to TEG Parameters, the Extent of Fibrin Amyloid Microclots, and the Severity of Clinical Illness. Semin. Thromb. Hemost. 2022, 48, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Parastatidou, S.; Konstantinidi, A.; Tsantes, A.G.; Iacovidou, N.; Doxani, C.; Piovani, D.; Bonovas, S.; Stefanidis, I.; Zintzaras, E.; et al. Fresh frozen plasma transfusion in the neonatal population: A systematic review. Blood Rev. 2022, 55, 100951. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Parastatidou, S.; Konstantinidi, A.; Tsantes, A.G.; Iacovidou, N.; Piovani, D.; Bonovas, S.; Tsantes, A.E. Contemporary tools for evaluation of hemostasis in neonates. Where are we and where are we headed? Blood Rev. 2023, 64, 101157. [Google Scholar] [CrossRef] [PubMed]
- Tsantes, A.G.; Parastatidou, S.; Tsantes, E.A.; Bonova, E.; Tsante, K.A.; Mantzios, P.G.; Vaiopoulos, A.G.; Tsalas, S.; Konstantinidi, A.; Houhoula, D.; et al. Sepsis-Induced Coagulopathy: An Update on Pathophysiology, Biomarkers, and Current Guidelines. Life 2023, 13, 350. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Georgiadou, P.; Tsantes, A.G.; Parastatidou, S.; Konstantinidi, A.; Ioakeimidis, G.; Makrogianni, A.; Theodoraki, M.; Kokoris, S.; Iacovidou, N.; et al. The Utility of NATEM Assay in Predicting Bleeding Risk in Critically Ill Neonates. Semin. Thromb. Hemost. 2023, 49, 182–191. [Google Scholar] [CrossRef]
- Sokou, R.; Giallouros, G.; Konstantinidi, A.; Pantavou, K.; Nikolopoulos, G.; Bonovas, S.; Lytras, T.; Kyriakou, E.; Lambadaridis, I.; Gounaris, A.; et al. Thromboelastometry for diagnosis of neonatal sepsis-associated coagulopathy: An observational study. Eur. J. Pediatr. 2018, 177, 355–362. [Google Scholar] [CrossRef]
- Sokou, R.; Ioakeimidis, G.; Piovani, D.; Parastatidou, S.; Konstantinidi, A.; Tsantes, A.G.; Lampridou, M.; Houhoula, D.; Iacovidou, N.; Kokoris, S.; et al. Development and validation of a sepsis diagnostic scoring model for neonates with suspected sepsis. Front. Pediatr. 2022, 10, 1004727. [Google Scholar] [CrossRef]
- Sokou, R.; Piovani, D.; Konstantinidi, A.; Tsantes, A.G. Prospective Temporal Validation of the Neonatal Bleeding Risk (NeoBRis) Index. Thromb. Haemost. 2021, 121, 1263–1266. [Google Scholar] [CrossRef]
- Sokou, R.; Piovani, D.; Konstantinidi, A.; Tsantes, A.G.; Parastatidou, S.; Lampridou, M.; Ioakeimidis, G.; Gounaris, A.; Iacovidou, N.; Kriebardis, A.G.; et al. A Risk Score for Predicting the Incidence of Hemorrhage in Critically Ill Neonates: Development and Validation Study. Thromb. Haemost. 2021, 121, 131–139. [Google Scholar] [CrossRef]
- Sokou, R.; Tsantes, A.G.; Konstantinidi, A.; Ioakeimidis, G.; Lampridou, M.; Parastatidou, S.; Theodoraki, M.; Piovani, D.; Iliodromiti, Z.; Boutsikou, T.; et al. Rotational Thromboelastometry in Neonates Admitted to a Neonatal Intensive Care Unit: A Large Cross-sectional Study. Semin. Thromb. Hemost. 2021, 47, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Tsantes, A.G.; Lampridou, M.; Tsante, K.A.; Houhoula, D.; Piovani, D.; Bonovas, S.; Boutsikou, T.; Iliodromiti, Z.; Iacovidou, N.; et al. Thromboelastometry and prediction of in-hospital mortality in neonates with sepsis. Int. J. Lab. Hematol. 2023, 46, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef] [PubMed]
Newborns of SARS-CoV-2-Positive Mothers (n = 28) | Control Group (n = 54) | p-Value | |
---|---|---|---|
Gestational age (weeks) | 38.0 (38.0–39.0) | 38.0 (38.0–39.0) | 0.97 |
Gender (males) | 16 (57.1) | 33 (61.1) | 0.72 |
Birth weight (g) | 3255 (3030–3560) | 3300 (3070–3525) | 0.58 |
Delivery mode | 19 (67.8) | 34 (62.9) | 0.66 |
Preterm | 2 (7.1) | 2 (3.7) | 0.49 |
Problems and complications during pregnancy | |||
Intrauterine growth restriction | 1 (3.5) | 0 (0.0) | 0.16 |
Smoking during pregnancy | 4 (14.2) | 5 (9.2) | 0.49 |
COVID-19 compatible symptoms | |||
Asymptomatic | 0 (0.0) | 54 (100) | N/A |
Mild | 8 (28.6) | 0 (0.0) | |
Moderate | 17 (60.7) | 0 (0.0) | |
Severe | 3 (10.7) | 0 (0.0) |
Variables | Newborns of SARS-CoV-2-Positive Mothers (n = 28) | Control Group (n = 54) | p-Value |
---|---|---|---|
WBC (cells/mm3) | 11,500 (9700–13,800) | 14,600 (11,000–18,400) | 0.023 |
Lymphocytes (cells/mm3) | 3310 (2950–4020) | 3740 (2860–4755) | 0.44 |
NLR | 2.8 (1.9–3.6) | 1.8 (1.1–2.5) | 0.001 |
Lymphocytes (%) | 23.0 (19.0–29.2) | 27.6 (24.2–36.5) | 0.003 |
Hct (%) | 48.0 (45.1–50.1) | 48.8 (44.7–51.6) | 0.73 |
PLTs (count × 103/mL) | 293.5 (241.5–360.5) | 291.0 (242.0–336.0) | 0.84 |
CRP (mg/L) | 1.4 (1.0–2.3) | 1.7 (1.1–4.1) | 0.46 |
SGOT (IU/L) | 51.0 (41.0–65.0) | 60.0 (45.5–75.5) | 0.10 |
SGPT (IU/L) | 21.0 (14.0–35.0) | 24.0 (20.0–34.0) | 0.36 |
HsTI (ng/L) | 169.9 (48.9–291.0) | 29.8 (18.8–45.7) | 0.20 |
CK (IU/L) | 281.0 (188.0–480.0) | 667.0 (408.0–941.0) | 0.13 |
TBIL (mg/dL) | 6.9 (4.6–11.2) | 9.4 (6.6–11.0) | 0.15 |
DBIL (mg/dL) | 0.3 (0.2–0.3) | 0.2 (0.2–0.3) | 0.69 |
IL-6 (pg/mL) | 17.9 (10.1–25.7) | 12.6 (9.6–17.7) | 0.17 |
IP-10 (pg/mL) | 26.1 (18.3–39.7) | 10.0 (6.5–19.2) | <0.0001 |
Blood group | 0.66 | ||
O | 7 (35.0) | 12 (26.0) | |
A | 8 (40.0) | 23 (50.0) | |
B | 3 (15.0) | 9 (19.5) | |
AB | 2 (10.0) | 2 (4.3) |
Variables | Newborns of SARS-CoV-2-Positive Mothers (n = 28) | Control Group (n = 54) | p-Value |
---|---|---|---|
EXTEM CT (s) | 59.0 (53.5–76.0) | 67.5 (58.0–81.0) | 0.14 |
EXTEM CFT (s) | 93.0 (76.5–125.0) | 90.0 (72.0–113.0) | 0.60 |
EXTEM A10 (mm) | 52.0 (46.5–56.0) | 52.0 (46.0–56.0) | 0.73 |
EXTEM MCF (mm) | 58.5 (55.5–62.5) | 59.0 (55.0–61.0) | 0.81 |
EXTEM Alpha angle (°) | 71.5 (67.0–75.5) | 72.0 (69.0–75.0) | 0.96 |
EXTEM LI60 (%) | 95.0 (94.0–97.0) | 96.0 (93.0–97.0) | 0.75 |
INTEM CT (s) | 218.5 (205.0–242.0) | 216.5 (199.0–233.0) | 0.61 |
INTEM CFT (s) | 81.0 (66.0–88.0) | 83.0 (69.0–101.0) | 0.51 |
INTEM A10 (mm) | 54.5 (51.0–57.0) | 53.0 (50.0–56.0) | 0.47 |
INTEM MCF (mm) | 59.5 (57.0–63.0) | 60.0 (56.5–63.0) | 0.98 |
INTEM Alpha angle (°) | 74.0 (72.0–78.0) | 74.0 (71.0–76.5) | 0.35 |
INTEM LI60 (%) | 94.0 (92.0–96.0) | 95.0 (93.0–97.0) | 0.62 |
NATEM CT (s) | 489.5 (376.0–563.0) | 436.0 (317.0–574.0) | 0.59 |
NATEM CFT (s) | 142.0 (112.0–177.0) | 140.5 (105.5–173.5) | 0.74 |
NATEM A10 (mm) | 48.0 (41.0–54.0) | 47.0 (43.0–52.0) | 0.64 |
NATEM MCF (mm) | 58.0 (51.0–60.0) | 58.0 (54.0–61.0) | 0.72 |
NATEM Alpha angle (°) | 63.5 (57.0–68.0) | 63.0 (58.0–69.0) | 0.91 |
NATEM LI60 (%) | 94.0 (93.0–96.0) | 95.0 (94.0–97.0) | 0.23 |
Variables | SARS-CoV-2-Exposure | ||
---|---|---|---|
Coefficient | 95% CI | p-Value | |
EXTEM CT (s) | −18.0 | −50.2 to +14.1 | 0.26 |
EXTEM CFT (s) | −7.2 | −51.4 to +36.8 | 0.74 |
EXTEM A10 (mm) | +1.3 | −3.5 to +6.1 | 0.58 |
EXTEM MCF (mm) | +1.5 | −3.0 to +6.1 | 0.51 |
EXTEM alpha angle (°) | +24.5 | −62.8 to +111.9 | 0.57 |
EXTEM LI60 (%) | +1.2 | −0.8 to +3.3 | 0.24 |
INTEM CT (s) | +4.0 | −13.4 to +21.4 | 0.64 |
INTEM CFT (s) | −6.7 | −22.9 to +9.4 | 0.40 |
INTEM A10 (mm) | +2.1 | −2.4 to +6.6 | 0.35 |
INTEM MCF (mm) | +0.9 | −3.5 to +5.5 | 0.66 |
INTEM alpha angle (°) | +2.7 | −2.5 to +8.0 | 0.30 |
INTEM LI60 (%) | −0.1 | −1.6 to +1.4 | 0.87 |
NATEM CT (s) | −1.8 | −82.2 to +79.5 | 0.96 |
NATEM CFT (s) | +3.2 | −29.4 to +35.9 | 0.84 |
NATEM A10 (mm) | +1.2 | −3.1 to +5.5 | 0.57 |
NATEM MCF (mm) | +0.4 | −3.7 to +4.6 | 0.81 |
NATEM Alpha angle (°) | −0.7 | −4.8 to +3.4 | 0.72 |
NATEM LI60 (%) | −0.5 | −2.1 to +1.0 | 0.49 |
IL-6 (pg/Ml) | +4.9 | −6.0 to +15.9 | 0.36 |
IP-10 (pg/Ml) | +16.8 | +9.0 to +24.6 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokou, R.; Bikouli, E.-D.; Tsantes, A.G.; Halvatsiotis, P.; Houhoula, D.; Taliaka Kopanou, P.; Liakou, P.; Tavoulari, E.-F.; Piovani, D.; Bonovas, S.; et al. Hemostatic Profile and Serum Levels of Interferon Gamma-Induced Protein 10 (IP-10) in Neonates Born to Mothers with COVID-19 During the Peripartum Period. Int. J. Mol. Sci. 2025, 26, 1201. https://doi.org/10.3390/ijms26031201
Sokou R, Bikouli E-D, Tsantes AG, Halvatsiotis P, Houhoula D, Taliaka Kopanou P, Liakou P, Tavoulari E-F, Piovani D, Bonovas S, et al. Hemostatic Profile and Serum Levels of Interferon Gamma-Induced Protein 10 (IP-10) in Neonates Born to Mothers with COVID-19 During the Peripartum Period. International Journal of Molecular Sciences. 2025; 26(3):1201. https://doi.org/10.3390/ijms26031201
Chicago/Turabian StyleSokou, Rozeta, Efstathia-Danai Bikouli, Andreas G. Tsantes, Panagiotis Halvatsiotis, Dimitra Houhoula, Paschalia Taliaka Kopanou, Paraskevi Liakou, Evangelia-Filothei Tavoulari, Daniele Piovani, Stefanos Bonovas, and et al. 2025. "Hemostatic Profile and Serum Levels of Interferon Gamma-Induced Protein 10 (IP-10) in Neonates Born to Mothers with COVID-19 During the Peripartum Period" International Journal of Molecular Sciences 26, no. 3: 1201. https://doi.org/10.3390/ijms26031201
APA StyleSokou, R., Bikouli, E.-D., Tsantes, A. G., Halvatsiotis, P., Houhoula, D., Taliaka Kopanou, P., Liakou, P., Tavoulari, E.-F., Piovani, D., Bonovas, S., Iliodromiti, Z., Boutsikou, T., Iacovidou, N., Theodoraki, M., & Tsantes, A. E. (2025). Hemostatic Profile and Serum Levels of Interferon Gamma-Induced Protein 10 (IP-10) in Neonates Born to Mothers with COVID-19 During the Peripartum Period. International Journal of Molecular Sciences, 26(3), 1201. https://doi.org/10.3390/ijms26031201