P2Y1 and P2Y12 Receptors Mediate Aggregation of Dog and Cat Platelets: A Comparison to Human Platelets
Abstract
:1. Introduction
2. Results
2.1. Dog, Cat, and Human Platelets Possess P2Y Receptors
2.2. ADP and 2MeSADP Induce Aggregation of Dog, Cat, and Human Platelets in a Concentration-Dependent Manner
2.3. The P2Y12 Receptor Antagonist Ticagrelor Inhibits Aggregation of Dog, Cat, and Human Platelets
2.4. The P2Y1 Receptor Antagonist MRS2179 Partly Inhibits Aggregation of Dog, Cat, and Human Platelets
2.5. Aggregation of Dog Platelets in the Absence of ADP or 2MeSADP Is Greater than That of Platelets from Cats or Humans
3. Discussion
4. Materials and Methods
4.1. Compounds and Reagents
4.2. Whole Blood Collection
4.3. Isolation of Platelets from Whole Blood
4.4. Flow Cytometry
4.5. Immunoblotting
4.6. Light Transmission Aggregometry (LTA)
4.7. Data and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scridon, A. Platelets and Their Role in Hemostasis and Thrombosis-From Physiology to Pathophysiology and Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 12772. [Google Scholar] [CrossRef] [PubMed]
- de Laforcade, A. Diseases associated with thrombosis. Top. Companion Anim. Med. 2012, 27, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Aksu, K.; Donmez, A.; Keser, G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr. Pharm. Des. 2012, 18, 1478–1493. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, K.; Bhattacharyya, M. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. Sci. World. J. 2014, 2014, 781857. [Google Scholar] [CrossRef]
- Cortese, L.; Christopherson, P.W.; Pelagalli, A. Platelet function and therapeutic applications in dogs: Current status and future prospects. Animals 2020, 10, 201. [Google Scholar] [CrossRef]
- Rustiasari, U.J.; Roelofs, J.J. The Role of Platelets in Diabetic Kidney Disease. Int. J. Mol. Sci. 2022, 23, 8270. [Google Scholar] [CrossRef]
- Morris, S.M.; Chauhan, A. The role of platelet mediated thromboinflammation in acute liver injury. Front. Immunol. 2022, 13, 1037645. [Google Scholar] [CrossRef]
- von Kugelgen, I. Structure, pharmacology and roles in physiology of the P2Y12 receptor. Adv. Exp. Med. Biol. 2017, 1051, 123–138. [Google Scholar] [CrossRef]
- Erlinge, D. Chapter 13—P2Y receptors in health and disease. In Advances in Pharmacology; Kenneth, A.J., Joel, L., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 61, pp. 417–439. [Google Scholar]
- Smith, S.A. Antithrombotic therapy. Top. Companion Anim. Med. 2012, 27, 88–94. [Google Scholar] [CrossRef]
- van Giezen, J.J.J.; Berntsson, P.; Zachrisson, H.; Björkman, J.-A. Comparison of ticagrelor and thienopyridine P2Y12 binding characteristics and antithrombotic and bleeding effects in rat and dog models of thrombosis/hemostasis. Thromb. Res. 2009, 124, 565–571. [Google Scholar] [CrossRef]
- Ravnefjord, A.; Weilitz, J.; Emanuelsson, B.M.; van Giezen, J.J. Evaluation of ticagrelor pharmacodynamic interactions with reversibly binding or non-reversibly binding P2Y12 antagonists in an ex-vivo canine model. Thromb. Res. 2012, 130, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, X.; Huang, Y.; Khalil, M.; Wiktor, D.; van Giezen, J.J.; Penn, M.S. Adjunctive treatment with ticagrelor, but not clopidogrel, added to tPA enables sustained coronary artery recanalisation with recovery of myocardium perfusion in a canine coronary thrombosis model. Thromb. Haemost. 2010, 104, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Driscoll, E.M.; Gonzales, M.L.; Park, A.M.; Lucchesi, B.R. Prevention of arterial thrombosis by intravenously administered platelet P2T receptor antagonist AR-C69931MX in a canine model. J. Pharmacol. Exp. Ther. 2000, 295, 492–499. [Google Scholar] [PubMed]
- Bjorkman, J.A.; Zachrisson, H.; Forsberg, G.B.; von Bahr, H.; Hansson, G.I.; Warner, T.D.; Nylander, S. High-dose aspirin in dogs increases vascular resistance with limited additional anti-platelet effect when combined with potent P2Y12 inhibition. Thromb. Res. 2013, 131, 313–319. [Google Scholar] [CrossRef]
- van Giezen, J.J.; Sidaway, J.; Glaves, P.; Kirk, I.; Björkman, J.A. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J. Cardiovasc. Pharmacol. Ther. 2012, 17, 164–172. [Google Scholar] [CrossRef]
- Mellett, A.M.; Nakamura, R.K.; Bianco, D. A prospective study of clopidogrel therapy in dogs with primary immune-mediated hemolytic anemia. J. Vet. Intern. Med. 2011, 25, 71–75. [Google Scholar] [CrossRef]
- Borgeat, K.; Wright, J.; Garrod, O.; Payne, J.R.; Fuentes, V.L. Arterial thromboembolism in 250 cats in general practice: 2004–2012. J. Vet. Intern. Med. 2014, 28, 102–108. [Google Scholar] [CrossRef]
- Ho, K.K.; Abrams-Ogg, A.C.; Wood, R.D.; O’Sullivan, M.L.; Kirby, G.M.; Blois, S.L. Assessment of platelet function in healthy cats in response to commonly prescribed antiplatelet drugs using three point-of-care platelet function tests. J. Feline Med. Surg. 2017, 19, 638–647. [Google Scholar] [CrossRef]
- Hogan, D.F.; Andrews, D.A.; Green, H.W.; Talbott, K.K.; Ward, M.P.; Calloway, B.M. Antiplatelet effects and pharmacodynamics of clopidogrel in cats. J. Am. Vet. Med. Assoc. 2004, 225, 1406–1411. [Google Scholar] [CrossRef]
- Gachet, C.; Hechler, B. Platelet Purinergic Receptors in Thrombosis and Inflammation. Hamostaseologie 2020, 40, 145–152. [Google Scholar] [CrossRef]
- Hechler, B.; Gachet, C. Purinergic receptors in thrombosis and inflammation. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Hechler, B.a.; Léon, C.; Vial, C.; Vigne, P.; Frelin, C.; Cazenave, J.-P.; Gachet, C. The P2Y1 receptor Is necessary for adenosine 5′-diphosphate–induced platelet aggregation. Blood 1998, 92, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Daniel, J.L.; Kunapuli, S.P. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem. 1998, 273, 2030–2034. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.L.; Dangelmaier, C.; Jin, J.; Ashby, B.; Smith, J.B.; Kunapuli, S.P. Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J. Biol. Chem. 1998, 273, 2024–2029. [Google Scholar] [CrossRef]
- Hechler, B.; Eckly, A.; Ohlmann, P.; Cazenave, J.P.; Gachet, C. The P2Y1 receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not the target of the drug clopidogrel. Br. J. Haematol. 1998, 103, 858–866. [Google Scholar] [CrossRef]
- Le Blanc, J.; Mullier, F.; Vayne, C.; Lordkipanidzé, M. Advances in Platelet Function Testing—Light Transmission Aggregometry and Beyond. J. Clin. Med. 2020, 9, 2636. [Google Scholar] [CrossRef]
- Soslau, G.; Arabe, L.; Parker, J.; Pelleg, A. Aggregation of human and canine platelets: Modulation by purine nucleotides. Thromb. Res. 1993, 72, 127–137. [Google Scholar] [CrossRef]
- Welles, E.G.; Bourne, C.; Tyler, J.W.; Boudreaux, M.K. Detection of activated feline platelets in platelet-rich plasma by use of fluorescein-labeled antibodies and flow cytometry. Vet. Pathol. 1994, 31, 553–560. [Google Scholar] [CrossRef]
- Hollopeter, G.; Jantzen, H.M.; Vincent, D.; Li, G.; England, L.; Ramakrishnan, V.; Yang, R.B.; Nurden, P.; Nurden, A.; Julius, D.; et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001, 409, 202–207. [Google Scholar] [CrossRef]
- Pontius, J.U.; Mullikin, J.C.; Smith, D.R.; Agencourt Sequencing, T.; Lindblad-Toh, K.; Gnerre, S.; Clamp, M.; Chang, J.; Stephens, R.; Neelam, B.; et al. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007, 17, 1675–1689. [Google Scholar] [CrossRef]
- Lindblad-Toh, K.; Wade, C.M.; Mikkelsen, T.S.; Karlsson, E.K.; Jaffe, D.B.; Kamal, M.; Clamp, M.; Chang, J.L.; Kulbokas, E.J.; Zody, M.C.; et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005, 438, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Boudreaux, M.K.; Martin, M. P2Y12 receptor gene mutation associated with postoperative hemorrhage in a Greater Swiss Mountain dog. Vet. Clin. Pathol. 2011, 40, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.S.; Boudreaux, M.K.; Vasquez, B.; Bristow, P.; Aronson, L.R.; Santoro-Beer, K.; Callan, M.B. Heterozygosity for P2Y12 receptor gene mutation associated with postoperative hemorrhage in a Greater Swiss Mountain dog. Vet. Clin. Pathol. 2017, 46, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Van Vertloo, L.R.; Portanova, A.Z.; Donnini, E.K.; Hale, A.S.; LeVine, D.N. Prophylactic use of a lyophilized platelet product for rhinoscopic diagnosis and treatment of sinonasal aspergillosis in a dog with a P2Y12 platelet receptor mutation. J. Vet. Emerg. Crit. Care 2023, 33, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Li, R.H.L.; Nguyen, N.; Ontiveros, E.S.; Kovacs, S.L.; Oldach, M.S.; Vernau, K.M.; Court, M.H.; Stern, J.A. A genetic polymorphism in P2RY1 impacts response to clopidogrel in cats with hypertrophic cardiomyopathy. Sci. Rep. 2021, 11, 12522. [Google Scholar] [CrossRef]
- Gant, P.; McBride, D.; Humm, K. Abnormal platelet activity in dogs and cats—Impact and measurement. J. Small Anim. Pract. 2020, 61, 3–18. [Google Scholar] [CrossRef]
- Luis Fuentes, V. Arterial thromboembolism: Risks, realities and a rational first-line approach. J. Feline Med. Surg. 2012, 14, 459–470. [Google Scholar] [CrossRef]
- van Giezen, J.J.; Humphries, R.G. Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin. Thromb. Hemost. 2005, 31, 195–204. [Google Scholar] [CrossRef]
- Malkawi, M.; Woolcock, A.D.; Lee, P.M.; Court, M.H.; Moore, G.E.; Hogan, D.F. Comparison of metabolomics and platelet aggregometry between Plavix and generic clopidogrel in cats: A pilot study. J. Feline Med. Surg. 2019, 21, 951–958. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Kim, S. Characterization of the distinct mechanism of agonist-induced canine platelet activation. J. Vet. Sci. 2019, 20, 10–15. [Google Scholar] [CrossRef]
- Qi, A.D.; Zambon, A.C.; Insel, P.A.; Nicholas, R.A. An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol. Pharmacol. 2001, 60, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Zambon, A.C.; Brunton, L.L.; Barrett, K.E.; Hughes, R.J.; Torres, B.; Insel, P.A. Cloning, expression, signaling mechanisms, and membrane targeting of P2Y11 receptors in Madin Darby canine kidney cells. Mol. Pharmacol. 2001, 60, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Wills, T.B.; Wardrop, K.J.; Meyers, K.M. Detection of activated platelets in canine blood by use of flow cytometry. Am. J. Vet. Res. 2006, 67, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Cremer, S.E.; Koch, J.; Graversen, N.; Gravgaard, A.S.; Langhorn, R.; Kristensen, A.T.; Willesen, J.L.; Nielsen, L.N. Analytical validation of platelet microparticle quantification in cats. Vet. Clin. Pathol. 2018, 47, 386–395. [Google Scholar] [CrossRef]
- Hagberg, I.A.; Lyberg, T. Blood platelet activation evaluated by flow cytometry: Optimised methods for clinical studies. Platelets 2000, 11, 137–150. [Google Scholar] [CrossRef]
- Li, R.H.L.; Stern, J.A.; Ho, V.; Tablin, F.; Harris, S.P. Platelet activation and clopidogrel effects on ADP-induced platelet activation in cats with or without the A31P mutation in MYBPC3. J. Vet. Intern. Med. 2016, 30, 1619–1629. [Google Scholar] [CrossRef]
- Lordkipanidze, M.; Lowe, G.C.; Kirkby, N.S.; Chan, M.V.; Lundberg, M.H.; Morgan, N.V.; Bem, D.; Nisar, S.P.; Leo, V.C.; Jones, M.L.; et al. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: Use of 96-well Optimul assay. Blood 2014, 123, e11–e22. [Google Scholar] [CrossRef]
- Park, H.S.; Hourani, S.M. Differential effects of adenine nucleotide analogues on shape change and aggregation induced by adnosine 5-diphosphate (ADP) in human platelets. Br. J. Pharmacol. 1999, 127, 1359–1366. [Google Scholar] [CrossRef]
- Baurand, A.; Raboisson, P.; Freund, M.; Leon, C.; Cazenave, J.P.; Bourguignon, J.J.; Gachet, C. Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur. J. Pharmacol. 2001, 412, 213–221. [Google Scholar] [CrossRef]
- Karim Zubair, A.; Vemana Hari, P.; Alshbool Fatima, Z.; Lin Olivia, A.; Alshehri Abdullah, M.; Javaherizadeh, P.; Paez Espinosa Enma, V.; Khasawneh Fadi, T. Characterization of a novel function-blocking antibody targeted against the platelet P2Y1 receptor. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 637–644. [Google Scholar] [CrossRef]
- Cabou, C.; Honorato, P.; Briceño, L.; Ghezali, L.; Duparc, T.; León, M.; Combes, G.; Frayssinhes, L.; Fournel, A.; Abot, A.; et al. Pharmacological inhibition of the F1-ATPase/P2Y1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol. 2019, 226, e13268. [Google Scholar] [CrossRef] [PubMed]
- Mundell, S.J.; Rabbolini, D.; Gabrielli, S.; Chen, Q.; Aungraheeta, R.; Hutchinson, J.L.; Kilo, T.; Mackay, J.; Ward, C.M.; Stevenson, W.; et al. Receptor homodimerization plays a critical role in a novel dominant negative P2RY12 variant identified in a family with severe bleeding. J. Thromb. Haemost. 2018, 16, 44–53. [Google Scholar] [CrossRef] [PubMed]
- von Kügelgen, I. Pharmacological characterization of P2Y receptor subtypes—An update. Purinergic Signal. 2024, 20, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Zelmanovic, D.; Hetherington, E.J. Automated analysis of feline platelets in whole blood, including platelet count, mean platelet volume, and activation state. Vet. Clin. Pathol. 1998, 27, 2–9. [Google Scholar] [CrossRef]
- Blois, S.L.; Banerjee, A.; Darren Wood, R. Evaluation of thrombelastographic platelet-mapping in healthy cats. Vet. Clin. Pathol. 2012, 41, 223–227. [Google Scholar] [CrossRef]
- Lordkipanidze, M.; Pharand, C.; Schampaert, E.; Turgeon, J.; Palisaitis, D.A.; Diodati, J.G. A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur. Heart J. 2007, 28, 1702–1708. [Google Scholar] [CrossRef]
- Sun, P.; McMillan-Ward, E.; Mian, R.; Israels, S.J. Comparison of light transmission aggregometry and multiple electrode aggregometry for the evaluation of patients with mucocutaneous bleeding. Int. J. Lab. Hematol. 2019, 41, 133–140. [Google Scholar] [CrossRef]
- Armstrong, P.C.; Dhanji, A.R.; Truss, N.J.; Zain, Z.N.; Tucker, A.T.; Mitchell, J.A.; Warner, T.D. Utility of 96-well plate aggregometry and measurement of thrombi adhesion to determine aspirin and clopidogrel effectiveness. Thromb. Haemost. 2009, 102, 772–778. [Google Scholar] [CrossRef]
- Chan, M.V.; Armstrong, P.C.J.; Papalia, F.; Kirkby, N.S.; Warner, T.D. Optical multichannel (optimul) platelet aggregometry in 96-well plates as an additional method of platelet reactivity testing. Platelets 2011, 22, 485–494. [Google Scholar] [CrossRef]
- Martins Lima, A.; Bragina, M.E.; Burri, O.; Bortoli Chapalay, J.; Costa-Fraga, F.P.; Chambon, M.; Fraga-Silva, R.A.; Stergiopulos, N. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format. Platelets 2018, 30, 563–571. [Google Scholar] [CrossRef]
- Husted, S.; Van Giezen, J.J.J. Ticagrelor: The first reversibly binding oral P2Y12 receptor antagonist. Cardiovasc. Ther. 2009, 27, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.F.; Fox, P.R.; Jacob, K.; Keene, B.; Laste, N.J.; Rosenthal, S.; Sederquist, K.; Weng, H.Y. Secondary prevention of cardiogenic arterial thromboembolism in the cat: The double-blind, randomized, positive-controlled feline arterial thromboembolism; clopidogrel vs. aspirin trial (FAT CAT). J. Vet. Cardiol. 2015, 17 (Suppl. 1), S306–S317. [Google Scholar] [CrossRef] [PubMed]
- Rosati, T.; Jandrey, K.E.; Stern, J.A.; Nguyen, N.; Li, R.H.L. Evaluation of clopidogrel response in healthy cats using a novel viscoelastic test and thromboelastography. Front. Vet. Sci. 2024, 11, 1371781. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.; Chang, Y.M.; Szladovits, B.; Davison, L.J.; Garden, O.A. Breed-specific hematological phenotypes in the dog: A natural resource for the genetic dissection of hematological parameters in a mammalian species. PLoS ONE 2013, 8, e81288. [Google Scholar] [CrossRef]
- Marschner, C.B.; Kristensen, A.T.; Spodsberg, E.H.; Wiinberg, B. Evaluation of platelet aggregometry in dogs using the Multiplate platelet analyzer: Impact of anticoagulant choice and assay duration. J. Vet. Emerg. Crit. Care 2012, 22, 107–115. [Google Scholar] [CrossRef]
- Mani, H.; Hellis, M.; Lindhoff-Last, E. Platelet function testing in hirudin and BAPA anticoagulated blood. Clin. Chem. Lab. Med. 2011, 49, 501–507. [Google Scholar] [CrossRef]
- Morales, F.; Couto, C.G.; Iazbik, M.C. Effects of 2 concentrations of sodium citrate on coagulation test results, von Willebrand factor concentration, and platelet function in dogs. J. Vet. Intern. Med. 2007, 21, 472–475. [Google Scholar] [CrossRef]
- Blois, S.L.; Lang, S.T.; Wood, R.D.; Monteith, G. Biologic variability and correlation of platelet function testing in healthy dogs. Vet. Clin. Pathol. 2015, 44, 503–510. [Google Scholar] [CrossRef]
- Post, J.M.; Alexander, S.; Wang, Y.X.; Vincelette, J.; Vergona, R.; Kent, L.; Bryant, J.; Sullivan, M.E.; Dole, W.P.; Morser, J.; et al. Novel P2Y12 adenosine diphosphate receptor antagonists for inhibition of platelet aggregation (II): Pharmacodynamic and pharmacokinetic characterization. Thromb. Res. 2008, 122, 533–540. [Google Scholar] [CrossRef]
- Bryant, J.; Post, J.M.; Alexander, S.; Wang, Y.X.; Kent, L.; Schirm, S.; Tseng, J.L.; Subramanyam, B.; Buckman, B.; Islam, I.; et al. Novel P2Y12 adenosine diphosphate receptor antagonists for inhibition of platelet aggregation (I): In vitro effects on platelets. Thromb. Res. 2008, 122, 523–532. [Google Scholar] [CrossRef]
- Niitsu, Y.; Sugidachi, A.; Ogawa, T.; Jakubowski, J.A.; Hashimoto, M.; Isobe, T.; Otsuguro, K.; Asai, F. Repeat oral dosing of prasugrel, a novel P2Y12 receptor inhibitor, results in cumulative and potent antiplatelet and antithrombotic activity in several animal species. Eur. J. Pharmacol. 2008, 579, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Kalbantner, K.; Baumgarten, A.; Mischke, R. Measurement of platelet function in dogs using a novel impedance aggregometer. Vet. J. 2010, 185, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Birkbeck, R.; Chan, D.L.; McBride, D.; Cortellini, S. Prospective evaluation of platelet function and fibrinolysis in 20 dogs with trauma. J. Vet. Emerg. Crit. Care 2024, 34, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Shropshire, S.B.; Olver, C.S.; Twedt, D.C.; Jablonski Wennogle, S.A. Multiplate platelet aggregometry in dogs undergoing laparoscopic liver biopsy for diagnosis of chronic hepatopathy. J. Small Anim. Pract. 2022, 63, 389–396. [Google Scholar] [CrossRef]
- Dickinson, M.; Abrams-Ogg, A.; Blois, S.L.; Wood, R.D.; Monteith, G. Extended sample storage for platelet function testing in healthy dogs. Vet. Clin. Pathol. 2023, 52, 402–411. [Google Scholar] [CrossRef]
- Wilkinson, A.; Panciera, D.; DeMonaco, S.; Boes, K.; Leib, M.; Clapp, K.; Ruth, J.; Cecere, T.; McClendon, D. Platelet function in dogs with chronic liver disease. J. Small Anim. Pract. 2022, 63, 120–127. [Google Scholar] [CrossRef]
- Saati, S.; Abrams-Ogg, A.C.G.; Blois, S.L.; Wood, R.D. Comparison of Multiplate, Platelet Function Analyzer-200, and Plateletworks in healthy dogs treated with aspirin and clopidogrel. J. Vet. Intern. Med. 2018, 32, 111–118. [Google Scholar] [CrossRef]
- Kornya, M.R.; Abrams-Ogg, A.C.; Blois, S.L.; Wood, R.D. Determination of clopidogrel effect in cats using point-of-care Plateletworks ADP and shipped samples for PFA-200 analysis in a clinical practice setting. J. Feline Med. Surg. 2024, 26, 1098612X241241404. [Google Scholar] [CrossRef]
- Fraser, C.; Wallace, M.L.; Moorhead, A.; Tarigo, J.; Brainard, B.M. Evaluation of coagulation and platelet activation state and function in heartworm-infected dogs. Vet. Clin. Pathol. 2024, 53, 186–195. [Google Scholar] [CrossRef]
- Kornya, M.; Abrams-Ogg, A.; St-Jean, C.; Phillips, E.; Dickinson, M.; Collier, A.; Barry, M.; Durzi, T.; Khan, O.; Blois, S. Point-of-care platelet function testing results in a dog with Bernard-Soulier syndrome. Vet. Clin. Pathol. 2023, 52, 569–575. [Google Scholar] [CrossRef]
- Paniccia, R.; Priora, R.; Alessandrello Liotta, A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M.; Hayward, C.P.M.; Moffat, K.A.; Pugliano, M.T.; Liu, Y.; Michelson, A.D. Results of a worldwide survey on the assessment of platelet function by light transmission aggregometry: A report from the platelet physiology subcommittee of the SSC of the ISTH. J. Thromb. Haemost. 2009, 7, 1029. [Google Scholar] [CrossRef] [PubMed]
- Renda, G.; Zurro, M.; Malatesta, G.; Ruggieri, B.; De Caterina, R. Inconsistency of different methods for assessing ex vivo platelet function: Relevance for the detection of aspirin resistance. Haematologica 2010, 95, 2095–2101. [Google Scholar] [CrossRef] [PubMed]
- Huskens, D.; Sang, Y.; Konings, J.; van der Vorm, L.; de Laat, B.; Kelchtermans, H.; Roest, M. Standardization and reference ranges for whole blood platelet function measurements using a flow cytometric platelet activation test. PLoS ONE 2018, 13, e0192079. [Google Scholar] [CrossRef]
- Sophocleous, R.A.; Berg, T.; Finol-Urdaneta, R.K.; Sluyter, V.; Keshiya, S.; Bell, L.; Curtis, S.J.; Curtis, B.L.; Seavers, A.; Bartlett, R.; et al. Pharmacological and genetic characterisation of the canine P2X4 receptor. Br. J. Pharmacol. 2020, 177, 2812–2829. [Google Scholar] [CrossRef]
- Cattaneo, M.; Cerletti, C.; Harrison, P.; Hayward, C.P.; Kenny, D.; Nugent, D.; Nurden, P.; Rao, A.K.; Schmaier, A.H.; Watson, S.P.; et al. Recommendations for the standardization of light transmission aggregometry: A consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J. Thromb. Haemost. 2013, 11, 1183–1189. [Google Scholar] [CrossRef]
- Hvas, A.M.; Favaloro, E.J. Platelet function analyzed by light transmission aggregometry. Methods Mol. Biol. 2017, 1646, 321–331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sophocleous, R.A.; Curtis, S.J.; Curtis, B.L.; Ooi, L.; Sluyter, R. P2Y1 and P2Y12 Receptors Mediate Aggregation of Dog and Cat Platelets: A Comparison to Human Platelets. Int. J. Mol. Sci. 2025, 26, 1206. https://doi.org/10.3390/ijms26031206
Sophocleous RA, Curtis SJ, Curtis BL, Ooi L, Sluyter R. P2Y1 and P2Y12 Receptors Mediate Aggregation of Dog and Cat Platelets: A Comparison to Human Platelets. International Journal of Molecular Sciences. 2025; 26(3):1206. https://doi.org/10.3390/ijms26031206
Chicago/Turabian StyleSophocleous, Reece A., Stephen J. Curtis, Belinda L. Curtis, Lezanne Ooi, and Ronald Sluyter. 2025. "P2Y1 and P2Y12 Receptors Mediate Aggregation of Dog and Cat Platelets: A Comparison to Human Platelets" International Journal of Molecular Sciences 26, no. 3: 1206. https://doi.org/10.3390/ijms26031206
APA StyleSophocleous, R. A., Curtis, S. J., Curtis, B. L., Ooi, L., & Sluyter, R. (2025). P2Y1 and P2Y12 Receptors Mediate Aggregation of Dog and Cat Platelets: A Comparison to Human Platelets. International Journal of Molecular Sciences, 26(3), 1206. https://doi.org/10.3390/ijms26031206