Vitamin E Mitigates Polystyrene-Nanoplastic-Induced Visual Dysfunction in Zebrafish Larvae
Abstract
:1. Introduction
2. Results
2.1. Bioaccumulation of PSNPs in Zebrafish Eye
2.2. Effects of PSNP and VitE Addition on the Visual System
2.3. Effects of PSNP and VitE Addition on Retinal Apoptosis
2.4. Effects of PNSP and VitE Addition on ROS Production in Retina
2.5. Effects of PSNP and VitE Addition on Gene Expression
3. Discussion
4. Materials and Methods
4.1. Maintenance of Zebrafish
4.2. Exposure Experiments
4.3. Properties of PSNPs
4.4. Bioaccumulation of PSNPs in Zebrafish Eye
4.5. Eye and Body Length Measurement
4.6. Visual Behavior Assay
4.7. Apoptosis Cell Assay
4.8. ROS Production
4.9. Real-Time PCR
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aydemir, O.; Celebi, S.; Yilmaz, T.; Yekeler, H.; Kükner, A.S. Protective effects of vitamin E forms (alpha-tocopherol, gamma-tocopherol and d-alpha-tocopherol polyethylene glycol 1000 succinate) on retinal edema during ischemia-reperfusion injury in the guinea pig retina. Int. Ophthalmol. 2004, 25, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.; Olson, C.G.; Euritt, C.P.; Koulen, P. Molecular Mechanisms Underlying the Therapeutic Role of Vitamin E in Age-Related Macular Degeneration. Front. Neurosci. 2022, 16, 890021. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Itoh, N.; Yoshida, Y.; Hayakawa, M.; Ohira, A.; Niki, E. Distribution of tocopherols and tocotrienols to rat ocular tissues after topical ophthalmic administration. Lipids 2004, 39, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, J.; Luo, Z.; Li, Y.; Huang, Y. Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications. Cell Death Dis. 2024, 15, 859. [Google Scholar] [CrossRef] [PubMed]
- Demir, D.; Yılmaz, T.; İlhan, N.; Yekeler, H.; Aydemir, O.; Kükner, A.Ş. Protective role of alpha-tocopherol on retinal injury in experimental uveitis in guinea pigs. Pathophysiology 2006, 13, 75–79. [Google Scholar] [CrossRef]
- Shi, C.; Liu, Z.; Yu, B.; Zhang, Y.; Yang, H.; Han, Y.; Wang, B.; Liu, Z.; Zhang, H. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. Sci. Total Environ. 2024, 906, 167404. [Google Scholar] [CrossRef]
- Amobonye, A.; Bhagwat, P.; Raveendran, S.; Singh, S.; Pillai, S. Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Front. Microbiol. 2021, 12, 768297. [Google Scholar] [CrossRef]
- Alimba, C.G.; Faggio, C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019, 68, 61–74. [Google Scholar] [CrossRef]
- Sendra, M.; Carrasco-Braganza, M.I.; Yeste, P.M.; Vila, M.; Blasco, J. Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis. Sci. Rep. 2020, 10, 8637. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Gupta, C.; Kaushik, S.; Himanshu; Jain, S.; Dhanwani, I.; Mansi; Garg, S.; Paul, A.; Pant, P.; Gupta, N. Bioaccumulation and toxicity of polystyrene nanoplastics on marine and terrestrial organisms with possible remediation strategies: A review. Environ. Adv. 2022, 8, 100227. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Jiao, Y.; Chen, Q.; Wu, D.; Yu, P.; Li, Y.; Cai, M.; Zhao, Y. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex. Aquat. Toxicol. 2020, 220, 105420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Silic, M.R.; Schaber, A.; Wasel, O.; Freeman, J.L.; Sepúlveda, M.S. Exposure route affects the distribution and toxicity of polystyrene nanoplastics in zebrafish. Sci. Total Environ. 2020, 724, 138065. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Q.-C.; Yu, H.; Peng, M.; Song, G.-W.; Zhang, J.-Z.; Chai, S.-G.; Zhang, Y.; Yan, C.-E. Study on interaction between cationic polystyrene nanoparticles and DNA, and the detection of DNA by resonance light scattering technology. Microchim. Acta 2010, 168, 331–340. [Google Scholar] [CrossRef]
- Ruenraroengsak, P.; Tetley, T.D. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: Robust response of alveolar type 1 epithelial cells. Part. Fibre Toxicol. 2015, 12, 19. [Google Scholar] [CrossRef]
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ. 2017, 584–585, 1022–1031. [Google Scholar] [CrossRef]
- Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; Di Giulio, R.T. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat. Toxicol. 2018, 194, 185–194. [Google Scholar] [CrossRef]
- Brun, N.R.; van Hage, P.; Hunting, E.R.; Haramis, A.-P.G.; Vink, S.C.; Vijver, M.G.; Schaaf, M.J.M.; Tudorache, C. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun. Biol. 2019, 2, 382. [Google Scholar] [CrossRef]
- Böhm, E.W.; Buonfiglio, F.; Voigt, A.M.; Bachmann, P.; Safi, T.; Pfeiffer, N.; Gericke, A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol. 2023, 68, 102967. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Cassar, S.; Dunn, C.; Ramos, M.F. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol. Pathol. 2021, 49, 438–454. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.A.; Dowling, J.E. Early eye morphogenesis in the zebrafish, Brachydanio rerio. J. Comp. Neurol. 1994, 344, 532–542. [Google Scholar] [CrossRef]
- Richardson, R.; Tracey-White, D.; Webster, A.; Moosajee, M. The zebrafish eye—A paradigm for investigating human ocular genetics. Eye 2017, 31, 68–86. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Si, J.; Zhang, H.; Wang, Z.; Li, J.; Zhou, X.; Gan, L.; Liu, Y. The effects of x-ray radiation on the eye development of zebrafish. Hum. Exp. Toxicol. 2014, 33, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhang, H.; Wang, Z.; Zhou, X.; Si, J.; Gan, L.; Li, J.; Liu, Y. The developmental toxicity and apoptosis in zebrafish eyes induced by carbon-ion irradiation. Life Sci. 2015, 139, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Rosas, S.; Weber, C.; Fievet, L.; Messaddeq, N.; Karam, A.; Trottier, Y. Loss of zebrafish Ataxin-7, a SAGA subunit responsible for SCA7 retinopathy, causes ocular coloboma and malformation of photoreceptors. Hum. Mol. Genet. 2019, 28, 912–927. [Google Scholar] [CrossRef]
- Iribarne, M.; Masai, I. Neurotoxicity of cGMP in the vertebrate retina: From the initial research on rd mutant mice to zebrafish genetic approaches. J. Neurogenet. 2017, 31, 88–101. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, L.; Yan, L.; Perkins, B.D.; Li, S.; Li, B.; Xu, H.A.; Li, X.J. Mutant Ahi1 Affects Retinal Axon Projection in Zebrafish via Toxic Gain of Function. Front. Cell Neurosci. 2019, 13, 81. [Google Scholar] [CrossRef]
- Saputra, F.; Kishida, M.; Hu, S.-Y. Oxidative stress induced by hydrogen peroxide disrupts zebrafish visual development by altering apoptosis, antioxidant and estrogen related genes. Sci. Rep. 2024, 14, 14454. [Google Scholar] [CrossRef]
- Saputra, F.; Kishida, M.; Hu, S.Y. Nitrate and Nitrite Exposure Induces Visual Impairments in Adult Zebrafish. Toxics 2024, 12, 518. [Google Scholar] [CrossRef]
- Tsuruma, K.; Saito, Y.; Okuyoshi, H.; Yamaguchi, A.; Shimazawa, M.; Goldman, D.; Hara, H. Granulin 1 Promotes Retinal Regeneration in Zebrafish. Investig. Ophthalmol. Vis. Sci. 2018, 59, 6057–6066. [Google Scholar] [CrossRef] [PubMed]
- Medrano, M.P.; Pisera Fuster, A.; Sanchis, P.A.; Paez, N.; Bernabeu, R.O.; Faillace, M.P. Characterization of proliferative, glial and angiogenic responses after a CoCl(2)-induced injury of photoreceptor cells in the adult zebrafish retina. Eur. J. Neurosci. 2018, 48, 3019–3042. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, F.E.A.; Batista, F.L.A.; Lima, L.M.G.; Abrante, I.A.; Batista, F.L.A.; Abrante, I.A.; de Araújo, J.I.F.; Santos, S.; de Oliveira, B.A.; Raposo, R.D.S.; et al. Adult Zebrafish (Danio rerio) As a Model for the Study of Corneal Antinociceptive Compounds. Zebrafish 2018, 15, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, M.; Wu, W.; Qin, B.; Gu, J.; Tu, Y.; Chen, J.; Liu, D.; Shi, Y.; Liu, X.; et al. Brivanib, a multitargeted small-molecule tyrosine kinase inhibitor, suppresses laser-induced CNV in a mouse model of neovascular AMD. J. Cell Physiol. 2020, 235, 1259–1273. [Google Scholar] [CrossRef]
- Lennikov, A.; Mirabelli, P.; Mukwaya, A.; Schaupper, M.; Thangavelu, M.; Lachota, M.; Ali, Z.; Jensen, L.; Lagali, N. Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis 2018, 21, 267–285. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Lee, W.S.; Cho, H.-J.; Kim, E.; Huh, Y.H.; Kim, H.-J.; Kim, B.; Kang, T.; Lee, J.-S.; Jeong, J. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale 2019, 11, 3173–3185. [Google Scholar] [CrossRef]
- Torres-Ruiz, M.; De la Vieja, A.; de Alba Gonzalez, M.; Esteban Lopez, M.; Castaño Calvo, A.; Cañas Portilla, A.I. Toxicity of nanoplastics for zebrafish embryos, what we know and where to go next. Sci. Total Environ. 2021, 797, 149125. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, N.; Jiang, S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Sci. Total Environ. 2022, 806, 150681. [Google Scholar] [CrossRef]
- Della Torre, C.; Bergami, E.; Salvati, A.; Faleri, C.; Cirino, P.; Dawson, K.A.; Corsi, I. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environ. Sci. Technol. 2014, 48, 12302–12311. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Bebianno, M.J. Nanoplastics impact on marine biota: A review. Environ. Pollut. 2021, 273, 116426. [Google Scholar] [CrossRef] [PubMed]
- Orger, M.B.; Smear, M.C.; Anstis, S.M.; Baier, H. Perception of Fourier and non-Fourier motion by larval zebrafish. Nat. Neurosci. 2000, 3, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- Collery, R.F.; Veth, K.N.; Dubis, A.M.; Carroll, J.; Link, B.A. Rapid, Accurate, and Non-Invasive Measurement of Zebrafish Axial Length and Other Eye Dimensions Using SD-OCT Allows Longitudinal Analysis of Myopia and Emmetropization. PLoS ONE 2014, 9, e110699. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Wang, Y.X.; Zheng, Z.Y.; Yang, H.; Xu, L.; Jonas, J.B. Ocular axial length and its associations in Chinese: The Beijing Eye Study. PLoS ONE 2012, 7, e43172. [Google Scholar] [CrossRef]
- Prashar, A.; Hocking, P.M.; Erichsen, J.T.; Fan, Q.; Saw, S.M.; Guggenheim, J.A. Common determinants of body size and eye size in chickens from an advanced intercross line. Exp. Eye Res. 2009, 89, 42–48. [Google Scholar] [CrossRef]
- Ritchey, E.R.; Zelinka, C.; Tang, J.; Liu, J.; Code, K.A.; Petersen-Jones, S.; Fischer, A.J. Vision-guided ocular growth in a mutant chicken model with diminished visual acuity. Exp. Eye Res. 2012, 102, 59–69. [Google Scholar] [CrossRef]
- Gould, C.J.; Wiegand, J.L.; Connaughton, V.P. Acute developmental exposure to 4-hydroxyandrostenedione has a long-term effect on visually-guided behaviors. Neurotoxicol. Teratol. 2017, 64, 45–49. [Google Scholar] [CrossRef]
- LeFauve, M.K.; Rowe, C.J.; Crowley-Perry, M.; Wiegand, J.L.; Shapiro, A.G.; Connaughton, V.P. Using a variant of the optomotor response as a visual defect detection assay in zebrafish. J. Biol. Methods 2021, 8, e144. [Google Scholar] [CrossRef]
- Le, H.-G.T.; Dowling, J.E.; Cameron, D.J. Early retinoic acid deprivation in developing zebrafish results in microphthalmia. Vis. Neurosci. 2012, 29, 219–228. [Google Scholar] [CrossRef]
- Hettmann, T.; Barton, K.; Leiden, J.M. Microphthalmia due to p53-mediated apoptosis of anterior lens epithelial cells in mice lacking the CREB-2 transcription factor. Dev. Biol. 2000, 222, 110–123. [Google Scholar] [CrossRef]
- Xiao, P.; Li, W.; Lu, J.; Liu, Y.; Luo, Q.; Zhang, H. Effects of embryonic exposure to bixafen on zebrafish (Danio rerio) retinal development. Ecotoxicol. Environ. Saf. 2021, 228, 113007. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, J.; Yao, Y.; Xu, S. Polystyrene nanoplastics induced cardiomyocyte apoptosis and myocardial inflammation in carp by promoting ROS production. Fish Shellfish. Immunol. 2022, 125, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zeng, M.; Li, Y.; Chen, G.; Wang, J. Polystyrene nanoplastics mediate skeletal toxicity through oxidative stress and the BMP pathway in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2024, 285, 117096. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Rao, G.; Tang, L.; Wu, S.; Tang, Z.; Huang, R.; Ruan, Z.; Hu, L. Combined effect of arsenic and polystyrene-nanoplastics at environmentally relevant concentrations in mice liver: Activation of apoptosis, pyroptosis and excessive autophagy. Chemosphere 2022, 300, 134566. [Google Scholar] [CrossRef] [PubMed]
- Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef]
- Loreto, C.; La Rocca, G.; Anzalone, R.; Caltabiano, R.; Vespasiani, G.; Castorina, S.; Ralph, D.J.; Cellek, S.; Musumeci, G.; Giunta, S.; et al. The Role of Intrinsic Pathway in Apoptosis Activation and Progression in Peyronie’s Disease. BioMed Res. Int. 2014, 2014, 616149. [Google Scholar] [CrossRef]
- Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32. [Google Scholar] [CrossRef]
- Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2002, 2, 647–656. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Zhang, J.; Hu, C.; Jiang, J.; Li, Y.; Peng, Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023, 97, 1439–1451. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.; Wang, D. Induction of protective response to polystyrene nanoparticles associated with methylation regulation in Caenorhabditis elegans. Chemosphere 2021, 271, 129589. [Google Scholar] [CrossRef] [PubMed]
- Geremia, E.; Muscari Tomajoli, M.T.; Murano, C.; Petito, A.; Fasciolo, G. The Impact of Micro- and Nanoplastics on Aquatic Organisms: Mechanisms of Oxidative Stress and Implications for Human Health—A Review. Environments 2023, 10, 161. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; He, C.; Jin, Y.; Fu, Z. Polystyrene nanoparticles trigger the activation of p38 MAPK and apoptosis via inducing oxidative stress in zebrafish and macrophage cells. Environ. Pollut. 2021, 269, 116075. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: Where are we now, where is the field going and where should we go? Biochem. Biophys. Res. Commun. 2022, 633, 17–19. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef]
- Cvekl, A.; Yang, Y.; Chauhan, B.K.; Cveklova, K. Regulation of gene expression by Pax6 in ocular cells: A case of tissue-preferred expression of crystallins in lens. Int. J. Dev. Biol. 2004, 48, 829–844. [Google Scholar] [CrossRef]
- Nornes, S.; Clarkson, M.; Mikkola, I.; Pedersen, M.; Bardsley, A.; Martinez, J.P.; Krauss, S.; Johansen, T. Zebrafish contains two Pax6 genes involved in eye development1The sequence reported in this paper has been deposited in the GenBank data base (accession no. AF061252).1. Mech. Dev. 1998, 77, 185–196. [Google Scholar] [CrossRef]
- Ogawa, Y.; Shiraki, T.; Asano, Y.; Muto, A.; Kawakami, K.; Suzuki, Y.; Kojima, D.; Fukada, Y. Six6 and Six7 coordinately regulate expression of middle-wavelength opsins in zebrafish. Proc. Natl. Acad. Sci. USA 2019, 116, 4651–4660. [Google Scholar] [CrossRef]
- Sanyanusin, P.; Schimmenti, L.A.; McNoe, L.A.; Ward, T.A.; Pierpont, M.E.; Sullivan, M.J.; Dobyns, W.B.; Eccles, M.R. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat. Genet. 1995, 9, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, Y.; Ma, A.; Li, Y.; Han, X.; Liang, H. Effects of vitamin E on plasma lipid status and oxidative stress in Chinese women with metabolic syndrome. Int. J. Vitam. Nutr. Res. 2010, 80, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Ross, W.M.; Creighton, M.O.; Inch, W.R.; Trevithick, J.R. Radiation cataract formation diminished by vitamin E in rat lenses in vitro. Exp. Eye Res. 1983, 36, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Sindaco, D.; Cappelli, F.; Vagge, A.; Traverso, C.E.; Iester, M. Ophthalmologic evaluation in vitamin-E deficiency: A case report. Eur. J. Ophthalmol. 2022, 32, NP254–NP257. [Google Scholar] [CrossRef]
- Torres-Ruiz, M.; de Alba González, M.; Morales, M.; Martin-Folgar, R.; González, M.C.; Cañas-Portilla, A.I.; De la Vieja, A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Sci. Total Environ. 2023, 874, 162406. [Google Scholar] [CrossRef]
- Saraceni, P.R.; Miccoli, A.; Bada, A.; Taddei, A.R.; Mazzonna, M.; Fausto, A.M.; Scapigliati, G.; Picchietti, S. Polystyrene nanoplastics as an ecotoxicological hazard: Cellular and transcriptomic evidences on marine and freshwater in vitro teleost models. Sci. Total Environ. 2024, 934, 173159. [Google Scholar] [CrossRef]
- Materić, D.; Holzinger, R.; Niemann, H. Nanoplastics and ultrafine microplastic in the Dutch Wadden Sea—The hidden plastics debris? Sci. Total Environ. 2022, 846, 157371. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Guo, M.; Zhao, F.; Xie, Y.; Zhang, Z.; Lv, J.; Qiu, L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. Sci. Total Environ. 2024, 922, 171219. [Google Scholar] [CrossRef]
- Najafian, M.; Alerasool, N.; Moshtaghian, J. The effect of motion aftereffect on optomotor response in larva and adult zebrafish. Neurosci. Lett. 2014, 559, 179–183. [Google Scholar] [CrossRef]
- Basnet, R.M.; Zizioli, D.; Taweedet, S.; Finazzi, D.; Memo, M. Zebrafish Larvae as a Behavioral Model in Neuropharmacology. Biomedicines 2019, 7, 23. [Google Scholar] [CrossRef]
- Shcherbakov, D.; Knörzer, A.; Espenhahn, S.; Hilbig, R.; Haas, U.; Blum, M. Sensitivity differences in fish offer near-infrared vision as an adaptable evolutionary trait. PLoS ONE 2013, 8, e64429. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Liu, K.; He, Q.; Sun, C.; Han, J.; Han, L.; Tian, Q. Xiaoaiping Induces Developmental Toxicity in Zebrafish Embryos Through Activation of ER Stress, Apoptosis and the Wnt Pathway. Front. Pharmacol. 2018, 9, 1250. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Sequence (5’-3’) | Reverse Sequence (3’-5’) | |
---|---|---|---|
Visual System | six6 | CGAACTCGCGGTTTGTTGAG | CGTGATGCTGAAGCCTGTTTT |
pax2 | CCCGCGTTATTAAGTTCCCC | GATGTCCGCTGTTGCTTGAC | |
pax6a | CTCAAACAGAAGAGCGAAATGGA | GAAGCTGCTGCTGATGGGTAT | |
pax6b | CCTCCAGTCACATTCCCATCA | AGCATTGAGCCTGTCGTGAA | |
Apoptosis | tp53 | GGGCAATCAGCGAGCAAA | ACTGACCTTCCTGAGTCTCCA |
casp3 | CCGCTGCCCATCACTA | ATCCTTTCACGACCATCT | |
bax | CCGTGAGATCTTCTCTGATGG | GTCAGGAACCCTGGTTGAAA | |
bcl2a | AGGAAAATGGAGGTTGGGATG | TGTTAGGTATGAAAACGGGTGGA | |
Antioxidant | sod1 | GTCGTCTGGCTTGTGGAGTG | TGTCAGCGGGCTAGTGCTT |
gpx1a | GGCACAACAGTCAGGGATTA | CAGGACGGACGTATTTCAGA | |
cat | TACCAGTCAACTGCCCGTAC | GACTCAAGGAAGCGTGGC | |
eef1a1 | TGGTGGTGTCGGTGAGTTTG | AAACGAGCCTGGCTGTAAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saputra, F.; Pramata, A.D.; Soegianto, A.; Hu, S.-Y. Vitamin E Mitigates Polystyrene-Nanoplastic-Induced Visual Dysfunction in Zebrafish Larvae. Int. J. Mol. Sci. 2025, 26, 1216. https://doi.org/10.3390/ijms26031216
Saputra F, Pramata AD, Soegianto A, Hu S-Y. Vitamin E Mitigates Polystyrene-Nanoplastic-Induced Visual Dysfunction in Zebrafish Larvae. International Journal of Molecular Sciences. 2025; 26(3):1216. https://doi.org/10.3390/ijms26031216
Chicago/Turabian StyleSaputra, Febriyansyah, Azzah Dyah Pramata, Agoes Soegianto, and Shao-Yang Hu. 2025. "Vitamin E Mitigates Polystyrene-Nanoplastic-Induced Visual Dysfunction in Zebrafish Larvae" International Journal of Molecular Sciences 26, no. 3: 1216. https://doi.org/10.3390/ijms26031216
APA StyleSaputra, F., Pramata, A. D., Soegianto, A., & Hu, S.-Y. (2025). Vitamin E Mitigates Polystyrene-Nanoplastic-Induced Visual Dysfunction in Zebrafish Larvae. International Journal of Molecular Sciences, 26(3), 1216. https://doi.org/10.3390/ijms26031216