Small Disulfide Proteins with Antifungal Impact: NMR Experimental Structures as Compared to Models of Alphafold Versions
Abstract
:1. Introduction
2. Results
2.1. Bioinformatics Analysis of the Primary Structure of AFPs
2.2. AlphaFold2 Prediction of the PAF Structural Model
2.3. AlphaFold3 Prediction of PAF–Metal Ion Complex Structure Models
2.4. MolProbity Structural Evaluation Analysis
2.5. Structural Analysis of Other AFPs
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phukhamsakda, C.; Nilsson, R.H.; Bhunjun, C.S.; de Farias, A.R.G.; Sun, Y.-R.; Wijesinghe, S.N.; Raza, M.; Bao, D.-F.; Lu, L.; Tibpromma, S.; et al. The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Divers. 2022, 114, 327–386. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Stajich, J.E.; Kahmann, R.; Boone, C.; Denning, D.W.; et al. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020, 11, 17. [Google Scholar] [CrossRef]
- Liu, Y.; Yamdeu, J.H.G.; Gong, Y.Y.; Orfila, C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr. Rev. Food. Sci. Food Saf. 2020, 19, 1521–1560. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell. 2020, 7, 143–145. [Google Scholar] [CrossRef]
- Galgóczy, L.; Yap, A.; Marx, F. Cysteine-Rich Antifungal Proteins from Filamentous Fungi are Promising Bioactive Natural Compounds in Anti-Candida Therapy. Isr. J. Chem. 2019, 59, 360–370. [Google Scholar] [CrossRef]
- Fizil, A.; Gaspári, Z.; Barna, T.; Marx, F.; Batta, G. “Invisible” Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations. Chem. Eur. J. 2015, 21, 5136–5144. [Google Scholar] [CrossRef]
- Marx, F.; Binder, U.; Leiter, E.; Pocsi, I. The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci. 2008, 65, 445–454. [Google Scholar] [CrossRef]
- Sonderegger, C.; Fizil, Á.; Burtscher, L.; Hajdu, D.; Muñoz, A.; Gáspári, Z.; Read, N.D.; Batta, G.; Marx, F. D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function. PLoS ONE 2017, 12, 21. [Google Scholar] [CrossRef]
- Batta, G.; Barna, T.; Gaspari, Z.; Sandor, S.; Kover, K.E.; Binder, U.; Sarg, B.; Kaiserer, L.; Chhillar, A.K.; Eigentler, A.; et al. Functional aspects of the solution structure and dynamics of PAF—A highly-stable antifungal protein from Penicillium chrysogenum. FEBS J. 2009, 276, 2875–2890. [Google Scholar] [CrossRef] [PubMed]
- Palicz, Z.; Gáll, T.; Leiter, É.; Kollár, S.; Kovács, I.; Miszti-Blasius, K.; Pócsi, I.; Csernoch, L.; Szentesi, P. Application of a low molecular weight antifungal protein from Penicillium chrysogenum (PAF) to treat pulmonary aspergillosis in mice. Emerg. Microbes Infect. 2016, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Palicz, Z.; Jenes, Á.; Gáll, T.; Miszti-Blasius, K.; Kollár, S.; Kovács, I.; Emri, M.; Márián, T.; Leiter, É.; Pócsi, I.; et al. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF). Toxicol. Appl. Pharmacol. 2013, 269, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Szappanos, H.; Szigeti, G.P.; Pál, B.; Rusznák, Z.; Szűcs, G.; Rajnavölgyi, É.; Balla, J.; Balla, G.; Nagy, E.; Leiter, É.; et al. The Penicillium chrysogenum-derived antifungal peptide shows no toxic effects on mammalian cells in the intended therapeutic concentration. Naunyn Schmiedebergs Arch. Pharmacol. 2005, 371, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Barna, B.; Leiter, E.; Hegedus, N.; Bíro, T.; Pócsi, I. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. J. Basic Microbiol. 2008, 48, 516–520. [Google Scholar] [CrossRef]
- Holzknecht, J.; Marx, F. Navigating the fungal battlefield: Cysteine-rich antifungal proteins and peptides from Eurotiales. Front. Fungal Biol. 2024, 5, 1451455. [Google Scholar] [CrossRef]
- Huber, A.; Hajdu, D.; Bratschun-Khan, D.; Gáspári, Z.; Varbanov, M.; Philippot, S.; Fizil, Á.; Czajlik, A.; Kele, Z.; Sonderegger, C.; et al. New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Sci Rep. 2018, 8, 1751. [Google Scholar] [CrossRef]
- Camposolivas, R.; Bruix, M.; Santoro, J.; Lacadena, J.; Delpozo, A.M.; Gavilanes, J.G.; Rico, M. NMR Solution Structure of the Antifungal Protein from Aspergillus Giganteus—Evidence for Cysteine Pairing Isomerism. Biochemistry 1995, 34, 3009–3021. [Google Scholar] [CrossRef]
- Hajdu, D.; Huber, A.; Czajlik, A.; Tóth, L.; Kele, Z.; Kocsubé, S.; Fizil, Á.; Marx, F.; Galgóczy, L.; Batta, G. Solution structure and novel insights into phylogeny and mode of action of the Neosartorya (Aspergillus) fischeri antifungal protein (NFAP). Int. J. Biol. Macromol. 2019, 129, 511–522. [Google Scholar] [CrossRef]
- Chen, Z.T.; Ao, J.Q.; Yang, W.C.; Jiao, L.P.; Zheng, T.L.; Chen, X.H. Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl. Microbiol. Biotechnol. 2013, 97, 10381–10390. [Google Scholar] [CrossRef] [PubMed]
- Tóth, L.; Kele, Z.; Borics, A.; Nagy, L.G.; Váradi, G.; Virágh, M.; Takó, M.; Vágvölgyi, C.; Galgóczy, L. NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: Isolation and characterization. AMB Express. 2016, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Virágh, M.; Marton, A.; Vizler, C.; Tóth, L.; Vágvölgyi, C.; Marx, F.; Galgóczy, L. Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein. Protein Cell. 2015, 6, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Virágh, M.; Vörös, D.; Kele, Z.; Kovács, L.; Fizil, Á.; Lakatos, G.; Maróti, G.; Batta, G.; Vágvölgyi, C.; Galgóczy, L. Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expr. Purif. 2014, 94, 79–84. [Google Scholar] [CrossRef]
- Meyer, V. A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl. Microbiol. Biotechnol. 2008, 78, 17–28. [Google Scholar] [CrossRef]
- Huber, A.; Galgóczy, L.; Váradi, G.; Holzknecht, J.; Kakar, A.; Malanovic, N.; Leber, R.; Koch, J.; Keller, M.; Batta, G.; et al. Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum: A comparative study of PAF and PAFB. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183246. [Google Scholar] [CrossRef]
- Holzknecht, J.; Kühbacher, A.; Papp, C.; Farkas, A.; Váradi, G.; Marcos, J.F.; Manzanares, P.; Tóth, G.K.; Galgóczy, L.; Marx, F. The Penicillium chrysogenum Q176 Antimicrobial Protein PAFC Effectively Inhibits the Growth of the Opportunistic Human Pathogen Candida albicans. J. Fungi 2020, 6, 141. [Google Scholar] [CrossRef]
- Hegedűs, N.; Leiter, E.; Kovács, B.; Tomori, V.; Kwon, N.-J.; Emri, T.; Marx, F.; Batta, G.; Csernoch, L.; Haas, H.; et al. The small molecular mass antifungal protein of Penicillium chrysogenum—A mechanism of action oriented review. J. Basic Microbiol. 2011, 51, 561–571. [Google Scholar] [CrossRef]
- Moreno, A.B.; del Pozo, A.M.; Segundo, B.S. Biotechnologically relevant enzymes and proteins: Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl. Microbiol. Biotechnol. 2006, 72, 883–895. [Google Scholar] [CrossRef]
- Kovács, R.; Nagy, F.; Tóth, Z.; Forgács, L.; Tóth, L.; Váradi, G.; Tóth, G.K.; Vadászi, K.; Borman, A.M.; Majoros, L.; et al. The Neosartorya fischeri Antifungal Protein 2 (NFAP2): A New Potential Weapon against Multidrug-Resistant Candida auris Biofilms. Int. J. Mol. Sci. 2021, 22, 14. [Google Scholar] [CrossRef]
- Rodríguez-Martín, A.; Acosta, R.; Liddell, S.; Núñez, F.; Benito, M.J.; Asensio, M.A. Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 2010, 31, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Czajlik, A.; Holzknecht, J.; Galgóczy, L.; Tóth, L.; Poór, P.; Ördög, A.; Váradi, G.; Kühbacher, A.; Borics, A.; Tóth, G.K.; et al. Solution Structure, Dynamics, and New Antifungal Aspects of the Cysteine-Rich Miniprotein PAFC. Int. J. Mol. Sci. 2021, 22, 1183. [Google Scholar] [CrossRef] [PubMed]
- Kovács, R.; Holzknecht, J.; Hargitai, Z.; Papp, C.; Farkas, A.; Borics, A.; Tóth, L.; Váradi, G.; Tóth, G.K.; Kovács, I.; et al. In Vivo Applicability of Neosartorya fischeri Antifungal Protein 2 (NFAP2) in Treatment of Vulvovaginal Candidiasis. Antimicrob. Agents Chemother. 2019, 63, 12. [Google Scholar] [CrossRef] [PubMed]
- Váradi, G.; Batta, G.; Galgóczy, L.; Hajdu, D.; Fizil, Á.; Czajlik, A.; Virágh, M.; Kele, Z.; Meyer, V.; Jung, S.; et al. Confirmation of the Disulfide Connectivity and Strategies for Chemical Synthesis of the Four-Disulfide-Bond-Stabilized Aspergillus giganteus Antifungal Protein, AFP. J. Nat. Prod. 2023, 86, 782–790. [Google Scholar] [CrossRef]
- Czajlik, A.; Batta, Á.; Kerner, K.; Fizil, Á.; Hajdu, D.; Raics, M.; Kövér, K.E.; Batta, G. DMSO-Induced Unfolding of the Antifungal Disulfide Protein PAF and Its Inactive Variant: A Combined NMR and DSC Study. Int. J. Mol. Sci. 2023, 24, 1208. [Google Scholar] [CrossRef]
- Tóth, L.; Váradi, G.; Borics, A.; Batta, G.; Kele, Z.; Vendrinszky, Á.; Tóth, R.; Ficze, H.; Tóth, G.K.; Vágvölgyi, C.; et al. Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2). Front. Microbiol. 2018, 9, 12. [Google Scholar] [CrossRef]
- Ashish Vaswani, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Aidan; Gomez, N.; Kaiser, Ł. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Buchan, D.W.A.; Jones, D.T. Improved protein contact predictions with the MetaPSICOV2 server in CASP12. Proteins 2018, 86, 78–83. [Google Scholar] [CrossRef]
- Ovchinnikov, S.; Park, H.; Kim, D.E.; Liu, Y.A.; Wang, R.Y.R.; Baker, D. Structure prediction using sparse simulated NOE restraints with Rosetta in CASP11. Proteins 2016, 84, 181–188. [Google Scholar] [CrossRef]
- wwPDB Consortium. Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019, 47, D520–D528. [Google Scholar] [CrossRef]
- Godzik, A. Metagenomics and the protein universe. Curr. Opin. Struct. Biol. 2011, 21, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Thornton, J.M. The impact of AlphaFold2 one year on. Nat. Methods 2022, 19, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.; Simpkin, A.J.; Hartmann, M.D.; Rigden, D.J.; Keegan, R.M.; Lupas, A.N. High-accuracy protein structure prediction in CASP14. Proteins 2021, 89, 1687–1699. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Huang, Y.J.; Zhang, N.; Bersch, B.; Fidelis, K.; Inouye, M.; Ishida, Y.; Kryshtafovych, A.; Kobayashi, N.; Kuroda, Y.; Liu, G.; et al. Assessment of prediction methods for protein structures determined by NMR in CASP14: Impact of AlphaFold2. Proteins 2021, 89, 1959–1976. [Google Scholar] [CrossRef]
- Fowler, N.J.; Williamson, M.P. The accuracy of protein structures in solution determined by AlphaFold and NMR. Structure 2022, 30, 925–933. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 24. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021, arXiv:2021.10.04.463034. [Google Scholar]
- Židek, A. AlphaFold v.2.3.0 Technical Note; GitHub. 2022. Available online: https://github.com/google-deepmind/alphafold/blob/main/docs/technical_note_v2.3.0.md (accessed on 11 December 2022).
- Karras, T.; Aittala, M.; Aila, T.; Laine, S. Elucidating the Design Space of Diffusion-Based Generative Models. Adv. Neural Inf. Process. Syst. 2022, 35, 26565–26577. [Google Scholar]
- Watson, E.R.; Novick, S.; Matyskiela, M.E.; Chamberlain, P.P.; de la Peña, A.H.; Zhu, J.; Tran, E.; Griffin, P.R.; Wertz, I.E.; Lander, G.C. Molecular glue CELMoD compounds are regulators of cereblon conformation. Science 2022, 378, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, J.; Frisvad, J.C.; Samson, R.A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2011, 2, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Váradi, G.; Kele, Z.; Czajlik, A.; Borics, A.; Bende, G.; Papp, C.; Rákhely, G.; Tóth, G.K.; Batta, G.; Galgóczy, L. Hard nut to crack: Solving the disulfide linkage pattern of the Neosartorya (Aspergillus) fischeri antifungal protein 2. Protein Sci. 2023, 32, 13. [Google Scholar] [CrossRef] [PubMed]
- Sonderegger, C.; Varadi, G.; Galgoczy, L.; Kocsube, S.; Posch, W.; Borics, A.; Dubrac, S.; Tóth, G.K.; Wilflingseder, D.; Marx, F. The Evolutionary Conserved gamma-Core Motif Influences the Anti-Candida Activity of the Penicillium chrysogenum Antifungal Protein PAF. Front. Microbiol. 2018, 9, 1655. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Alexander, L.T.; Lepore, R.; Kryshtafovych, A.; Adamopoulos, A.; Alahuhta, M.; Arvin, A.M.; Bomble, Y.J.; Böttcher, B.; Breyton, C.; Chiarini, V.; et al. Target highlights in CASP14: Analysis of models by structure providers. Proteins 2021, 89, 1647–1672. [Google Scholar] [CrossRef]
- Steinberg, R.; Koch, H.G. The largely unexplored biology of small proteins in pro- and eukaryotes. Febs J. 2021, 288, 7002–7024. [Google Scholar] [CrossRef]
- Crook, Z.R.; Nairn, N.W.; Olson, J.M. Miniproteins as a Powerful Modality in Drug Development. Trends Biochem. Sci. 2020, 45, 332–346. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A Simple Method for Displaying the Hydropathic Character of A Protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
- Fizil, Á.; Sonderegger, C.; Czajlik, A.; Fekete, A.; Komáromi, I.; Hajdu, D.; Marx, F.; Batta, G. Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations. PLoS ONE 2018, 13, e0204825. [Google Scholar] [CrossRef]
- Utesch, T.; Catalina, A.d.M.; Schattenberg, C.; Paege, N.; Schmieder, P.; Krause, E.; Miao, Y.; McCammon, J.A.; Meyer, V.; Jung, S.; et al. A Computational Modeling Approach Predicts Interaction of the Antifungal Protein AFP from Aspergillus giganteus with Fungal Membranes via Its γ-Core Motif. mSphere 2018, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Yount, N.Y.; Yeaman, M.R. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 7363–7368. [Google Scholar] [CrossRef] [PubMed]
- Yount, N.Y.; Yeaman, M.R. Emerging Themes and Therapeutic Prospects for Anti-Infective Peptides. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 337–360. [Google Scholar] [CrossRef]
- Tejero, R.; Huang, Y.J.; Ramelot, T.A.; Montelione, G.T. AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR Structures. Front. Mol. Biosci. 2022, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Li, E.H.; Spaman, L.E.; Tejero, R.; Huang, Y.J.; Ramelot, T.A.; Fraga, K.J.; Prestegard, J.H.; Kennedy, M.A.; Montelione, G.T. Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data. J. Magn. Reson. 2023, 352, 11. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Mello, E.; Taveira, G.B.; de Oliveira Carvalho, A.; Gomes, V.M. Improved smallest peptides based on positive charge increase of the gamma-core motif from PnuD(1) and their mechanism of action against Candida species. Int. J. Nanomed. 2019, 14, 407–420. [Google Scholar] [CrossRef]
PAF | NFAP | AFPg | PAFB | PAFC | NFAP2 | |
---|---|---|---|---|---|---|
Organism | Penicillium chrysogenum Q176 | Neosartorya (Aspergillus) fischeri NRRL 181 | Aspergillus giganteus | Penicillium chrysogenum Q176 | Penicillium chrysogenum Q176 | Neosartorya (Aspergillus) fischeri NRRL 181 |
Aa len/Mw | 55Aa/6.26kDa | 57Aa/6.64kDa | 51 Aa/5.82kDa | 56Aa/6.32kDa | 64Aa/6.64kDa | 52Aa/5.57kDa |
NMR | ||||||
AF2 | ||||||
AF3 | ||||||
RMSD to NMR structure | AF2(1.497); AF3(1.429) | AF2(1.429); AF3(1.395) | AF2(1.004); AF3(0.865) | AF2(1.795); AF3(1.648) | AF2(3.129); AF3(0.868) | AF2(1.244); AF3(1.257) |
Disulfide bond pattern | abcabc: 7-36, 14-43, 28-54 | abcabc: 7-35, 14-42, 27-53 | abcdabcd: 26-49, 28-51, (NMR); 7-33, 14-40, 26-49, 28-51 (AF3) | abcabc: 6-34, 13-41, 26-52 | abcabdcd: 3-30, 18-38, 28-54, 49-64 | abbcac: 9-40, 11-15, 23-49 |
Correctness of disulfide bonds | AF2(Y); AF3(Y) | AF2(N); AF3(Y) | AF2(N); AF3(Y) | AF2(N); AF3(Y) | AF2(N); AF3(Y) | AF2(Y); AF3(Y) |
Ions Num | Mg2+ | 2Mg2+ | 3Mg2+ | 4Mg2+ | ||||
---|---|---|---|---|---|---|---|---|
Score | ipTM | pTM | ipTM | pTM | ipTM | pTM | ipTM | pTM |
PAF | 0.78 | 0.85 | 0.7 | 0.85 | 0.58 | 0.84 | 0.55 | 0.84 |
PAFD19S | 0.79 | 0.85 | 0.71 | 0.85 | 0.57 | 0.84 | 0.53 | 0.84 |
Ions Num | Na+ | 2Na+ | 3Na+ | 4Na+ | ||||
Score | ipTM | pTM | ipTM | pTM | ipTM | pTM | ipTM | pTM |
PAF | 0.8 | 0.85 | 0.75 | 0.86 | 0.69 | 0.85 | 0.65 | 0.85 |
PAFD19S | 0.8 | 0.85 | 0.75 | 0.85 | 0.69 | 0.85 | 0.65 | 0.85 |
Ions Num | Ca2+ | 2Ca2+ | 3Ca2+ | 4Ca2+ | ||||
Score | ipTM | pTM | ipTM | pTM | ipTM | pTM | ipTM | pTM |
PAF | 0.74 | 0.84 | 0.65 | 0.85 | 0.61 | 0.84 | 0.57 | 0.84 |
PAFD19S | 0.77 | 0.84 | 0.69 | 0.85 | 0.66 | 0.85 | 0.55 | 0.84 |
Ions | Ca2+ and Mg2+ | Ca2+ and Na+ | Na+ and Mg2+ | |||||
Score | ipTM | pTM | ipTM | pTM | ipTM | pTM | ||
PAF | 0.78 | 0.85 | 0.78 | 0.85 | 0.81 | 0.86 | ||
PAFD19S | 0.78 | 0.85 | 0.78 | 0.85 | 0.81 | 0.86 |
Metric | NMR- PAF | NMR- NFAP | NMR- PAFB | NMR- PAFC | NMR- AFPg | AF2- PAF | AF2- NFAP | AF2- PAFB | AF2- PAFC | AF2- AFPg | AF2- NFAP2 | AF3- PAF | AF3- NFAP | AF3- PAFB | AF3- PAFC | AF3- AFPg | AF3- NFAP2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MolProbity Score | 1.98 | 3.19 | 3.52 | 2.58 | 4.44 | 1.86 | 2.62 | 2.99 | 3.49 | 2.18 | 1.75 | 0.673 | 1.70 | 1.32 | 0.99 | 1.31 | 1.31 |
Clashscore | 1.29 | 8.84 | 17.06 | 3.46 | 89.22 | 24.11 | 33.38 | 41.82 | 47.21 | 39.79 | 11.01 | 1.563 | 13.62 | 5.88 | 2.31 | 4.59 | 3.53 |
Poor rotamers (%) | 35.3 | 33.43 | 34.18 | 21.80 | 36.34 | 0 | 4.57 | 3.4 | 5.67 | 0.78 | 2.33 | 0 | 0.65 | 0 | 0 | 0.78 | 0.78 |
Favored rotamers (%) | 43.2 | 45.39 | 40.31 | 63.72 | 37.03 | 100 | 92.16 | 92.52 | 88.65 | 99.22 | 93.80 | 100 | 99.35 | 99.32 | 100 | 98.45 | 99.22 |
Ramachandran Outliers (%) | 1.796 | 6.36 | 2.78 | 1.61 | 10.87 | 0 | 0 | 5.56 | 21.50 | 1.36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ramachandran favored (%) | 97.92 | 89.18 | 86.23 | 92.83 | 68.52 | 99.73 | 96.97 | 90.12 | 71.51 | 97,96 | 98 | 99.3 | 99.39 | 100 | 100 | 100 | 98.67 |
Rama distribution Z-score | −1.88 ±1.04 | −3.36 ±0.82 | −3.57 ±0.95 | −1.70 ±0.79 | −5.86 ±1.01 | 0.72 ±0.95 | 0.34± 1.03 | −1.11 ±1.04 | −4.62 ±0.70 | −0.85 ±1.06 | −1.35 ±1.02 | 1.32 ±1.03 | 0.89 ±1.03 | 1.14 ±1.04 | 0.56 ±1.05 | 0.35 ±1.22 | −0.73 ±1.1 |
Cβ deviations >0.25Å(%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bad bonds (%) | 0 | 0 | 0 | 0 | 0 | 2.82 | 2.92 | 2.47 | 4.92 | 3.11 | 3.64 | 0 | 0.14 | 0 | 0 | 0 | 0 |
Bad angles (%) | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.91 | 1.46 | 4.28 | 0.75 | 0.88 | 0 | 0.16 | 00 | 0 | 0 | 0 |
Cis Prolines (Per Chain) | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 1/3 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 1/3 |
CaBLAM outliers (%) | 3.81 | 4.09 | 3.80 | 2.86 | 13.83 | 0 | 0 | 1.90 | 6.1 | 0.7 | 1.4 | 0 | 0 | 0 | 2.23 | 0 | 2.77 |
CA Geometry outliers (%) | 1.96 | 0 | 0.10 | 1.67 | 1.60 | 0 | 0 | 0.64 | 2.22 | 0 | 4.17 | 0 | 0 | 0 | 0 | 0 | 3.47 |
Chiral volume outliers | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Waters with clashes (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gai, J.; File, M.; Erdei, R.; Czajlik, A.; Marx, F.; Galgóczy, L.; Váradi, G.; Batta, G. Small Disulfide Proteins with Antifungal Impact: NMR Experimental Structures as Compared to Models of Alphafold Versions. Int. J. Mol. Sci. 2025, 26, 1247. https://doi.org/10.3390/ijms26031247
Gai J, File M, Erdei R, Czajlik A, Marx F, Galgóczy L, Váradi G, Batta G. Small Disulfide Proteins with Antifungal Impact: NMR Experimental Structures as Compared to Models of Alphafold Versions. International Journal of Molecular Sciences. 2025; 26(3):1247. https://doi.org/10.3390/ijms26031247
Chicago/Turabian StyleGai, Jiawei, Márk File, Réka Erdei, András Czajlik, Florentine Marx, László Galgóczy, Györgyi Váradi, and Gyula Batta. 2025. "Small Disulfide Proteins with Antifungal Impact: NMR Experimental Structures as Compared to Models of Alphafold Versions" International Journal of Molecular Sciences 26, no. 3: 1247. https://doi.org/10.3390/ijms26031247
APA StyleGai, J., File, M., Erdei, R., Czajlik, A., Marx, F., Galgóczy, L., Váradi, G., & Batta, G. (2025). Small Disulfide Proteins with Antifungal Impact: NMR Experimental Structures as Compared to Models of Alphafold Versions. International Journal of Molecular Sciences, 26(3), 1247. https://doi.org/10.3390/ijms26031247