Connexin 43 Affects Pulmonary Artery Reactivity via Changes in Nitric Oxide Production and Influences Proliferative and Migratory Responses in Mouse Pulmonary Artery Fibroblasts
Abstract
:1. Introduction
2. Results
2.1. Effects of Cx43 on Proliferative Responses in MPAFs
2.2. Effects of Cx43 on Migratory Responses in MPAFs
2.3. Effect of Cx43 on Contractile Responses to U46619 in IPAs of Female and Male Mice
2.4. Effect of Cx43 on Relaxation Responses to ACh in IPAs of Female and Male Mice
2.5. Effect of Cx43 on Relaxation Responses to SNAP in IPAs of Female and Male Mice
2.6. Investigating the Production of Nitric Oxide (NO) in the Whole Left Lung Lobe from Female and Male WT and Cx43+/− Mice
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Materials
4.3. Animals
4.4. Genotyping
4.5. Primary Culture of MPAFs
4.6. Proliferation Assay
4.7. Migration Assay
4.8. Tissue Preparation
4.9. Wire Myography Studies
4.10. Nitric Oxide (NO) Assay
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Investig. 2012, 122, 4306–4313. [Google Scholar] [CrossRef] [PubMed]
- Tuder, R.M. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017, 367, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Oshima, K. The Morphometric Analysis of Pulmonary Arterial Remodeling in Relation to Branching Patterns in Pulmonary Hypertension. Ph.D. Thesis, University of South Alabama, Tuscaloosa, AL, USA, 2016. [Google Scholar]
- Price, L.C.; Seckl, M.J.; Dorfmüller, P.; Wort, S.J. Tumoral pulmonary hypertension. Eur. Respir. Rev. 2019, 28, 180065. [Google Scholar] [CrossRef]
- Söhl, G.; Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 2004, 62, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bai, X.; Liu, Y.; Wang, K.; Shen, B.; Sun, X. Current concepts and perspectives on connexin43: A Mini Review. Curr. Protein Pept. Sci. 2018, 19, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Austin, E.D.; Loyd, J.E. The genetics of pulmonary arterial hypertension. Circ. Res. 2014, 115, 189–202. [Google Scholar] [CrossRef]
- Htet, M.; Nally, J.E.; Martin, P.E.; Dempsie, Y. New Insights into Pulmonary Hypertension: A Role for Connexin-Mediated Signalling. Int. J. Mol. Sci. 2021, 23, 379. [Google Scholar] [CrossRef]
- Bouvard, C.; Genet, N.; Phan, C.; Rode, B.; Thuillet, R.; Tu, L.; Robillard, P.; Campagnac, M.; Soleti, R.; De La Roque, E.D. Connexin-43 is a promising target for pulmonary hypertension due to hypoxaemic lung disease. Eur. Respir. J. 2020, 55, 1900169. [Google Scholar] [CrossRef] [PubMed]
- McNair, A.J.; Wilson, K.S.; Martin, P.E.; Welsh, D.J.; Dempsie, Y. Connexin 43 plays a role in proliferation and migration of pulmonary arterial fibroblasts in response to hypoxia. Pulm. Circ. 2020, 10, 2045894020937134. [Google Scholar] [CrossRef] [PubMed]
- Euler, U.S.v.; Liljestrand, G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 1946, 12, 301–320. [Google Scholar] [CrossRef]
- Welsh, D.J.; Scott, P.H.; Peacock, A.J. p38 MAP kinase isoform activity and cell cycle regulators in the proliferative response of pulmonary and systemic artery fibroblasts to acute hypoxia. Pulm. Pharmacol. Ther. 2006, 19, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Welsh, D.J.; Peacock, A.J. Cellular responses to hypoxia in the pulmonary circulation. High Alt. Med. Biol. 2013, 14, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Welsh, D.; Scott, P.; Plevin, R.; Wadsworth, R.; Peacock, A. Effects of hypoxia on IP3 generation and DNA synthesis in bovine pulmonary artery fibroblasts. Am. J. Respir. Crit. Care Med. 1996, 153, A576. [Google Scholar]
- Welsh, D.J.; Harnett, M.; MacLean, M.; Peacock, A.J. Proliferation and signaling in fibroblasts: Role of 5-hydroxytryptamine2A receptor and transporter. Am. J. Respir. Crit. Care Med. 2004, 170, 252–259. [Google Scholar] [CrossRef]
- Senavirathna, L.K.; Huang, C.; Yang, X.; Munteanu, M.C.; Sathiaseelan, R.; Xu, D.; Henke, C.A.; Liu, L. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling. Sci. Rep. 2018, 8, 2709. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, D.; Li, M.; Plecitá-Hlavatá, L.; D’Alessandro, A.; Tauber, J.; Riddle, S.; Kumar, S.; Flockton, A.; McKeon, B.A. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. Circulation 2017, 136, 2468–2485. [Google Scholar] [CrossRef] [PubMed]
- Carlin, C.M.; Celnik, D.F.; Pak, O.; Wadsworth, R.; Peacock, A.J.; Welsh, D.J. Low-dose fluvastatin reverses the hypoxic pulmonary adventitial fibroblast phenotype in experimental pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 2012, 47, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.S.; Buist, H.; Suveizdyte, K.; Liles, J.T.; Budas, G.R.; Hughes, C.; MacLean, M.R.; Johnson, M.; Church, A.C.; Peacock, A.J. Apoptosis signal-regulating kinase 1 inhibition in in vivo and in vitro models of pulmonary hypertension. Pulm. Circ. 2020, 10, 2045894020922810. [Google Scholar] [CrossRef] [PubMed]
- Gamen, E.; Seeger, W.; Pullamsetti, S.S. The emerging role of epigenetics in pulmonary hypertension. Eur. Respir. J. 2016, 48, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Aasen, T. Connexins: Junctional and non-junctional modulators of proliferation. Cell Tissue Res. 2015, 360, 685–699. [Google Scholar] [CrossRef]
- Aasen, T.; Leithe, E.; Graham, S.V.; Kameritsch, P.; Mayán, M.D.; Mesnil, M.; Pogoda, K.; Tabernero, A. Connexins in cancer: Bridging the gap to the clinic. Oncogene 2019, 38, 4429–4451. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.E.; Gourdie, R.G. Cx43 and the actin cytoskeleton: Novel roles and implications for cell-cell junction-based barrier function regulation. Biomolecules 2020, 10, 1656. [Google Scholar] [CrossRef]
- Yamasaki, H.; Krutovskikh, V.; Mesnil, M.; Tanaka, T.; Zaidan-Dagli, M.L.; Omori, Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. Comptes Rendus L’académie Sci. Ser. III Sci. Vie 1999, 322, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Billaud, M.; Dahan, D.; Marthan, R.; Savineau, J.-P.; Guibert, C. Role of the gap junctions in the contractile response to agonists in pulmonary artery from two rat models of pulmonary hypertension. Respir. Res. 2011, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Htet, M.; Nally, J.E.; Shaw, A.; Foote, B.E.; Martin, P.E.; Dempsie, Y. Connexin 43 plays a role in pulmonary vascular reactivity in mice. Int. J. Mol. Sci. 2018, 19, 1891. [Google Scholar] [CrossRef] [PubMed]
- Frump, A.L.; Shimoda, L.A. Sex differences in pulmonary arterial hypertension. In Physiology in Health and Disease; Springer: Cham, Swizterland, 2021; pp. 197–249. [Google Scholar]
- Cheron, C.; McBride, S.A.; Antigny, F.; Girerd, B.; Chouchana, M.; Chaumais, M.-C.; Jaïs, X.; Bertoletti, L.; Sitbon, O.; Weatherald, J.; et al. Sex and gender in pulmonary arterial hypertension. Eur. Respir. Rev. 2021, 30, 200330. [Google Scholar] [CrossRef]
- Rodriguez-Arias, J.J.; García-Álvarez, A. Sex differences in pulmonary hypertension. Front. Aging 2021, 2, 727558. [Google Scholar] [CrossRef]
- Ogawa, K.; Pitchakarn, P.; Suzuki, S.; Chewonarin, T.; Tang, M.; Takahashi, S.; Naiki-Ito, A.; Sato, S.; Takahashi, S.; Asamoto, M. Silencing of connexin 43 suppresses invasion, migration and lung metastasis of rat hepatocellular carcinoma cells. Cancer Sci. 2012, 103, 860–867. [Google Scholar] [CrossRef]
- Zhang, A.; Hitomi, M.; Bar-Shain, N.; Dalimov, Z.; Ellis, L.; Velpula, K.K.; Fraizer, G.C.; Gourdie, R.G.; Lathia, J.D. Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration. Oncotarget 2015, 6, 11640. [Google Scholar] [CrossRef]
- Sedovy, M.W.; Leng, X.; Leaf, M.R.; Iqbal, F.; Payne, L.B.; Chappell, J.C.; Johnstone, S.R. Connexin 43 across the Vasculature: Gap Junctions and beyond. J. Vasc. Res. 2022, 60, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Peracchia, C.; Sotkis, A.; Wang, X.G.; Peracchia, L.L.; Persechini, A. Calmodulin directly gates gap junction channels. J. Biol. Chem. 2000, 275, 26220–26224. [Google Scholar] [CrossRef]
- Torok, K.; Stauffer, K.; Evans, W.H. Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem. J 1997, 326, 479–483. [Google Scholar] [CrossRef]
- Lurtz, M.M.; Louis, C.F. Intracellular calcium regulation of connexin43. Am. J. Physiol. Cell Physiol. 2007, 293, C1806–C1813. [Google Scholar] [CrossRef]
- Christ, G.; Moreno, A.; Melman, A.; Spray, D.C. Gap junction-mediated intercellular diffusion of Ca2+ in cultured human corporal smooth muscle cells. Am. J. Physiol. Cell Physiol. 1992, 263, C373–C383. [Google Scholar] [CrossRef] [PubMed]
- Christ, G.J.; Spray, D.C.; El-Sabban, M.; Moore, L.K.; Brink, P.R. Gap junctions in vascular tissues: Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ. Res. 1996, 79, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Srisakuldee, W.; Makazan, Z.; Nickel, B.E.; Zhang, F.; Thliveris, J.A.; Pasumarthi, K.B.; Kardami, E. The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc. Res. 2014, 103, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Mondejar-Parreño, G.; Callejo, M.; Barreira, B.; Morales-Cano, D.; Esquivel-Ruiz, S.; Filice, M.; Moreno, L.; Cogolludo, A.; Perez-Vizcaino, F. miR-1 induces endothelial dysfunction in rat pulmonary arteries. J. Physiol. Biochem. 2019, 75, 519–529. [Google Scholar] [CrossRef]
- Sarrion, I.; Milian, L.; Juan, G.; Ramon, M.; Furest, I.; Carda, C.; Cortijo Gimeno, J.; Mata Roig, M. Role of circulating miRNAs as biomarkers in idiopathic pulmonary arterial hypertension: Possible relevance of miR-23a. Oxidative Med. Cell. Longev. 2015, 1, 792846. [Google Scholar] [CrossRef] [PubMed]
- Mondejar-Parreño, G.; Callejo, M.; Barreira, B.; Morales-Cano, D.; Esquivel-Ruiz, S.; Moreno, L.; Cogolludo, A.; Perez-Vizcaino, F. miR-1 is increased in pulmonary hypertension and downregulates Kv1. 5 channels in rat pulmonary arteries. J. Physiol. 2019, 597, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, X.F.; Duling, B.R. Gap junctions in the control of vascular function. Antioxid. Redox Signal. 2009, 11, 251–266. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, T.; Xu, X.; Wang, M.; Zhong, L.; Yang, Y.; Zhai, Z.; Xiao, F.; Wang, C. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: A case control study. BMC Pulm. Med. 2015, 15, 50. [Google Scholar] [CrossRef]
- Earley, S.; Resta, T.C.; Walker, B.R. Disruption of Smooth Muscle Gap Junctions Attenuates Myogenic Vasoconstriction of Mesenteric Resistance Arteries. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H2677–H2686. [Google Scholar] [CrossRef]
- Yi, F.-X.; Boeldt, D.S.; Gifford, S.M.; Sullivan, J.A.; Grummer, M.A.; Magness, R.R.; Bird, I.M. Pregnancy Enhances Sustained Ca2+ Bursts and Endothelial Nitric Oxide Synthase Activation in Ovine Uterine Artery Endothelial Cells through Increased Connexin 43 Function. Biol. Reprod. 2010, 82, 66–75. [Google Scholar] [CrossRef]
- Reaume, A.G.; de Sousa, P.A.; Kulkarni, S.; Langille, B.L.; Zhu, D.; Davies, T.C.; Juneja, S.C.; Kidder, G.M.; Rossant, J. Cardiac Malformation in Neonatal Mice Lacking connexin43. Science 1995, 267, 1831–1834. [Google Scholar] [CrossRef] [PubMed]
Agonist | Groups | LogEC50 (M) | Emax (%) | n | |
---|---|---|---|---|---|
U46619 | Female | WT Cx43+/− +37,43Gap27 | −8.55 ± 0.21 −7.55 ± 0.08 *** −8.92 ± 0.09 | 170.4 ± 12.91 147.7 ± 6.21 *** 135.7 ± 4.17 **** | 6 |
Male | WT Cx43+/− +37,43Gap27 | −8.58 ± 0.24 −7.35 ± 0.09 *** −8.94 ± 0.09 | 176.3 ± 14.98 145.9 ± 7.40 **** 133.6 ± 4.17 **** | 6 |
Agonist | Groups | LogEC50 (M) | Rmax (%) | n | |
---|---|---|---|---|---|
ACh | Female | WT Cx43+/− +37,43Gap27 | −7.58 ± 0.07 −7.54 ± 0.17 −7.51 ± 0.21 | 69.76 ± 1.97 39.47 ± 2.21 *** 32.70 ± 2.30 *** | 6 |
Male | WT Cx43+/− +37,43Gap27 | −8.11 ± 0.07 −7.57 ± 0.14 −7.81 ± 0.16 | 65.82 ± 1.21 40.79 ± 1.96 **** 27.24 ± 1.13 **** | 6 |
Agonist | Groups | LogEC50 (M) | Rmax (%) | n | |
---|---|---|---|---|---|
SNAP | Female | WT Cx43+/− +37,43Gap27 | −6.88 ± 0.46 −7.19 ± 0.11 −7.46 ± 0.13 | 103.6 ± 25.11 67.20 ± 3.39 **** 69.74 ± 4.21 **** | 6 |
Male | WT Cx43+/− +37,43Gap27 | −6.85 ± 0.32 −7.20 ± 0.11 −7.47 ± 0.14 | 99.90 ± 16.88 66.34 ± 3.44 **** 69.44 ± 4.24 **** | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wali, S.; Hwej, A.; Welsh, D.J.; Wilson, K.; Kennedy, S.; Dempsie, Y. Connexin 43 Affects Pulmonary Artery Reactivity via Changes in Nitric Oxide Production and Influences Proliferative and Migratory Responses in Mouse Pulmonary Artery Fibroblasts. Int. J. Mol. Sci. 2025, 26, 1280. https://doi.org/10.3390/ijms26031280
Wali S, Hwej A, Welsh DJ, Wilson K, Kennedy S, Dempsie Y. Connexin 43 Affects Pulmonary Artery Reactivity via Changes in Nitric Oxide Production and Influences Proliferative and Migratory Responses in Mouse Pulmonary Artery Fibroblasts. International Journal of Molecular Sciences. 2025; 26(3):1280. https://doi.org/10.3390/ijms26031280
Chicago/Turabian StyleWali, Saad, Abdmajid Hwej, David J. Welsh, Kathryn Wilson, Simon Kennedy, and Yvonne Dempsie. 2025. "Connexin 43 Affects Pulmonary Artery Reactivity via Changes in Nitric Oxide Production and Influences Proliferative and Migratory Responses in Mouse Pulmonary Artery Fibroblasts" International Journal of Molecular Sciences 26, no. 3: 1280. https://doi.org/10.3390/ijms26031280
APA StyleWali, S., Hwej, A., Welsh, D. J., Wilson, K., Kennedy, S., & Dempsie, Y. (2025). Connexin 43 Affects Pulmonary Artery Reactivity via Changes in Nitric Oxide Production and Influences Proliferative and Migratory Responses in Mouse Pulmonary Artery Fibroblasts. International Journal of Molecular Sciences, 26(3), 1280. https://doi.org/10.3390/ijms26031280