Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance
Abstract
:1. Introduction
2. Effects of HTS on Maize Vegetative and Reproductive Growth Within the Source–Sink Framework
3. Quantitative Trait Loci Mapping (QTLs), Genome-Wide Association Studies (GWAS), and Molecular Markers for Enhancing Thermotolerance in Maize
4. Thermotolerance Mechanisms of Maize Seed-Set in Response to HTS
4.1. Regulation of ABA Signaling Pathway Under HTS
4.2. Calcium Signaling in Maize Response to HTS
4.3. Role of Chloroplasts in Maize Thermotolerance
4.4. DNA Damage Repair Mechanisms Under HTS
4.5. The Structure of Maize Cell Wall and Thermotolerance
Number | Gene ID | Functions | References |
---|---|---|---|
ABA signaling | |||
1 | GRMZM2G013391 (ZmWRKY106) | Acted as a positive factor under drought and high-temperature stress | [99] |
2 | Zm00001d018178 (ZmbZIP4) | Involved in root development, and its overexpression increases ABA synthesis, enhancing maize resistance to HTS | [101] |
3 | Zm00001d045512 (ZmRPP13-LK3) | Catalyzes ATP to produce cAMP, contributing to ABA-mediated thermotolerance in maize | [102] |
4 | Zm00001d027874 (ZmNF-YA1) | A positive regulator of drought stress response is involved in maize root development | [100] |
5 | Zm00001d034433 (ZmHSF11) | Heat stress response | [103] |
Calcium signaling | |||
6 | Zm00001d033334 (ZmACA2) | Involved in maintaining calcium homeostasis and pollen transfer efficiency in Arabidopsis | [83,114,115] |
7 | Zm00001d006621 (ZmCDPK7) | Induced by ABA to participate in heat resistance of maize by mediating phosphorylation of sHSP17.4 | [64] |
8 | GRMZM2G409658 (ZmCIPK/SnRK) | The CIPK/SnRK family play a key role in pollen tube growth, fruiting, and abiotic stress by sensing and mediating Ca2+ signaling | [27,116,117] |
9 | Zm00001d028273 (ZmMKK9) | Phosphorylated ZmMPK20 and enhanced the inhibitory effect of ZmMPK20 on ZmRIN2 degradation | [118] |
10 | Zm00001d039141 (ZmMPK20) | Prevented ZmRIN2 degradation by inhibiting ZmRIN2 self-ubiquitination | [118] |
11 | Zm00001d006373 (ZmRIN2) | Balance water loss and leaf temperature, thus enhancing plant thermotolerance | [118] |
12 | GRMZM2G062914 (ZmMPK14) | Its Arabidopsis homolog AtMPK1 is induced by ABA and abiotic stresses | [27,121] |
Chloroplast | |||
13 | Zm00001d046718 (ZmbZIP60) | Links the unfolded protein response to the heat stress response in maize | [124,125] |
14 | Zm00001d045336 (ZmHUG1) | Relieve endoplasmic reticulum stress at high temperature | [126] |
15 | Zm00001d039455 (ZmPRA1.C1) | MAIZE PRENYLATED RAB ACCEPTOR 1. C1 was identified as a client of ZmHUG1 | [126] |
16 | Zm00001d028408 (ZmsHSP26) | Heat stress response | [129] |
17 | Zm00001d024635 (ZmDnaJ96) | Induced by drought, high temperature, and salt stress and regulated by abscisic acid | [130] |
18 | Zm00001d002734 (ZmNAGK) | Modulate the expression of antioxidant-enzyme encoding genes | [131] |
DDR | |||
19 | Zm00001d038806 (ZmHSP101) | Heat stress response HSP101 mediates thermotolerance during microsporogenesis | [139] |
20 | Zm00001d033333 (ZmCAP-G2) | Play a role in DNA damage repair or in protecting the genome from certain genotoxic stressors | [53,140] |
21 | Zm00001d033327 (Zm2OGFe (II)-dependent oxygenase) | Response to cellular stresses including hypoxia and DNA damage | [53,147] |
22 | Zm00001d044278 (ZmRAD51C) | Involved in both meiotic DSB repair and homologous recombination in maize | [141] |
23 | GRMZM2G060349 (ZmMutS2) | Involved in the DNA mismatch repair process | [27] |
24 | GRMZM2G341723 (ZmHD phosphohydrolase) | HD domain-containing metal-dependent phosphohydrolase | [27] |
25 | GRMZM2G023081 (ZmCa2+ efflux transporter) | Ca2+ efflux transporter | [27] |
26 | GRMZM2G136494 (ZmC2H2-like protein) | C2H2-like zinc finger protein | [27] |
27 | Zm00001d003124 ZmDNA glycosylase | DNA glycosylase | [148] |
28 | Zm00001d002495 (ZmAHL21) | AT-hook motif nuclear-localized protein 21 (AHL21) | [151,152] |
29 | Zm00001d003081 (ZmGRX1) | Glutaredoxin homolog1 (GRX1) protein | [153,154] |
30 | Zm00001d003083 (ZmIDH) | Isocitrate dehydrogenase (IDH) | [155] |
Structure Cell Wall | |||
31 | Zm00001d037636 (ZmCesA2) | Related to heat resistance of maize seedlings | [158] |
32 | Zm00001d018941 (ZmHSF4) | Heat stress response | [158] |
33 | Zm00001d026094 (ZmHSF20) | Heat stress response | [158] |
5. Genetic Improvement of Thermotolerance in Maize
6. Conclusions and Future Outlook
7. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.S.; Uzair, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.H.; Ramzan, K.M. Uncovering the research gaps to alleviate the negative impacts of climate change on food security: A review. Front. Plant Sci. 2022, 13, 927535. [Google Scholar] [CrossRef] [PubMed]
- El-Sappah, A.H.; Rather, S.A.; Wani, S.H.; Elrys, A.S.; Bilal, M.; Huang, Q.; Dar, Z.A.; Elashtokhy, M.M.A.; Soaud, N.; Koul, M.; et al. Heat stress-mediated constraints in maize (Zea mays L.) production: Challenges and solutions. Front. Plant Sci. 2022, 13, 879366. [Google Scholar]
- Prasad, P.V.V.; Bheemanahalli, R.; Jagadish, S.V.K. Field crops and the fear of heat stress—Opportunities, challenges and future directions. Field Crop Res. 2017, 200, 114–121. [Google Scholar] [CrossRef]
- Ma, Z.; Lv, J.; Wu, W.; Fu, D.; Lü, S.; Ke, Y.; Yang, P. Regulatory network of rice in response to heat stress and its potential application in breeding strategy. Mol. Breed. 2023, 43, 68. [Google Scholar] [CrossRef] [PubMed]
- Shenoda, J.E.; Sanad, M.N.M.E.; Rizkalla, A.A.; El-Assal, S.; Ali, R.T.; Hussein, M.H. Effect of long-term heat stress on grain yield, pollen grain viability and germinability in bread wheat (Triticum aestivum L.) under field conditions. Heliyon 2021, 7, e07096. [Google Scholar]
- Janni, M.; Gullì, M.; Maestri, E.; Marmiroli, M.; Valliyodan, B.; Nguyen, H.T.; Marmiroli, N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J. Exp. Bot. 2020, 71, 3780–3802. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Liang, H.; Wei, Z.; Zhang, Y.; Lu, X.; Li, F.; Wei, N.; Zhang, S.; Yuan, H.; Liu, S.; et al. Assessing Climate Change Impacts on Crop Yields and Exploring Adaptation Strategies in Northeast China. Earth Future 2024, 12, e2023EF004063. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Wing, I.S.; De Cian, E.; Mistry, M.N. Global Vulnerability of Crop Yields to Climate Change. J. Environ. Econ. Manag. 2021, 109, 102462. [Google Scholar] [CrossRef]
- Ullah, N.; Nawaz, M.A.; Alsafran, M. Physiological mechanisms regulating source-sink interactions and grain yield formation in heat-stressed wheat. Plant Stress 2024, 14, 100654. [Google Scholar] [CrossRef]
- Waqas, M.A.; Wang, X.; Zafar, S.A.; Noor, M.A.; Hussain, H.A.; Azher Nawaz, M.; Farooq, M. Thermal Stresses in Maize: Effects and Management Strategies. Plants 2021, 4, 293. [Google Scholar] [CrossRef] [PubMed]
- Crafts-Brandner, S.J.; Salvucci, M.E. Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiol. 2002, 129, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Boehlein, S.K.; Shaw, J.R.; Stewart, J.D.; Hannah, L.C. Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined. Plant Physiol. 2008, 146, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, Y.; Huang, S.; Xu, C.; Wang, X.; Gao, J.; Meng, Q.; Wang, P. The impact of drought and heat stress at flowering on maize kernel filling: Insights from the field and laboratory. Agric. For. Meteorol. 2022, 312, 108733. [Google Scholar] [CrossRef]
- Niu, S.; Du, X.; Wei, D.; Liu, S.; Tang, Q.; Bian, D.; Zhang, Y.; Cui, Y.; Gao, Z. Heat Stress After Pollination Reduces Kernel Number in Maize by Insufficient Assimilates. Front. Genet. 2021, 12, 728166. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef]
- Wang, H.; Liu, P.; Zhang, J.; Zhao, B.; Ren, B. Endogenous Hormones Inhibit Differentiation of Young Ears in Maize (Zea mays L.) Under Heat Stress. Front Plant Sci. 2020, 11, 533046. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, M.; Ding, Y.; Zhu, C. Gene Networks Involved in Plant Heat Stress Response and Tolerance. Int. J. Mol. Sci. 2022, 23, 11970. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Galli, M.; Gallavotti, A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol. 2022, 65, 102134. [Google Scholar] [CrossRef] [PubMed]
- Guihur, A.; Rebeaud, M.E.; Goloubinoff, P. How do plants feel the heat and survive? Trends Biochem. Sci. 2022, 47, 824–838. [Google Scholar] [CrossRef]
- Ruan, M.; Zhao, H.; Wen, Y.; Chen, H.; He, F.; Hou, X.; Song, X.; Jiang, H.; Ruan, Y.; Wu, L. The complex transcriptional regulation of heat stress response in maize. Stress Biol. 2024, 4, 24. [Google Scholar] [CrossRef]
- Djalovic, I.; Kundu, S.; Bahuguna, R.N.; Pareek, A.; Raza, A.; Singla-Pareek, S.L.; Prasad, P.V.V.; Varshney, R.K. Maize and heat stress: Physiological, genetic, and molecular insights. Plant Genome 2024, 17, e20378. [Google Scholar] [CrossRef]
- Li, H.-Y.; Thomas, L. Molecular mechanisms controlling seed set in cereal crop species under stress and non-stress conditions. J. Integr. Agric. 2018, 17, 965–974. [Google Scholar] [CrossRef]
- Gao, J.; Wang, S.; Zhou, Z.; Wang, S.; Dong, C.; Mu, C.; Song, Y.; Ma, P.; Li, C.; Wang, Z.; et al. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. J. Exp. Bot. 2019, 70, 4849–4864. [Google Scholar] [CrossRef]
- Singh, I.; Debnath, S.; Gautam, A.; Yadava, P. Characterization of contrasting genotypes reveals general physiological and molecular mechanisms of heat-stress adaptation in maize (Zea mays L.). Physiol. Mol. Biol. Plants 2020, 5, 921–929. [Google Scholar] [CrossRef]
- Tao, Z.; Yan, P.; Zhang, X.; Wang, D.; Wang, Y.; Ma, X.; Yang, Y.; Liu, X.; Chang, X.; Sui, P.; et al. Physiological Mechanism of Abscisic Acid-Induced Heat-Tolerance Responses to Cultivation Techniques in Wheat and Maize—Review. Agronomy 2022, 12, 1579. [Google Scholar] [CrossRef]
- Cárcova, J.; Otegui, M.E. Ear temperature and pollination timing effects on maize kernel set. Crop Sci. 2001, 41, 1809–1815. [Google Scholar] [CrossRef]
- Cheikh, N.; Jones, R.J. Disruption of Maize Kernel Growth and Development by Heat Stress (Role of Cytokinin/Abscisic Acid Balance). Plant Physiol. 1994, 106, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, X.; Liu, Q.; Liu, J.; Chen, Y.; Sui, P. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. J. Integr. Agric. 2022, 21, 2465–2476. [Google Scholar] [CrossRef]
- Yu, S.M.; Lo, S.F.; Ho, T.D. Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef]
- Karim, M.A.; Fracheboud, Y.; Stamp, P. Photosynthetic activ-ity of developing leaves of Zea mays is less affected by heat stressthan that of developed leaves. Physiol. Plant. 1999, 105, 685–693. [Google Scholar] [CrossRef]
- Karim, M.A.; Fracheboud, Y.; Stamp, P. Effect of high tem-perature on seedling growth and photosynthesis of tropical maizegenotypes. J. Agron. Crop Sci. 2000, 184, 217–223. [Google Scholar] [CrossRef]
- Qu, L.; Gu, X.; Li, J.; Guo, J.; Lu, D. Leaf photosynthetic characteristics of waxy maize in response to different degrees of heat stress during grain filling. BMC Plant Biol. 2023, 23, 469. [Google Scholar] [CrossRef] [PubMed]
- Sinsawat, V.; Leipner, J.; Stamp, P.; Fracheboud, Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot. 2004, 52, 123–129. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Gu, L.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agric. Water Manag. 2023, 289, 108525. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Ramamoorthy, P.; Poudel, S.; Samiappan, S.; Wijewardane, N.; Reddy, K.R. Effects of drought and heat stresses during reproductive stage on pollen germination, yield, and leaf reflectance properties in maize (Zea mays L.). Plant 2022, 6, e434. [Google Scholar] [CrossRef]
- Vescio, R.; Abenavoli, M.R.; Sorgonà, A. Single and combined abiotic stress in maize root morphology. Plants 2020, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xia, Z.; Wang, Q.; Fu, Y.; Zhang, G.; Lu, H. Soil cooling can improve maize root-shoot growth and grain yield in warm climate. Plant Physiol. Biochem. 2023, 200, 107762. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, G.; Zhang, S.; Wang, Q.; Fu, Y.; Lu, H. Efficacy of root zone temperature increase in root and shoot development and hormone changes in different maize genotypes. Agriculture 2021, 11, 477. [Google Scholar] [CrossRef]
- Rishmawi, L.; Bauget, F.; Protto, V.; Bauland, C.; Nacry, P.; Maurel, C. Natural variation of maize root hydraulic architecture underlies highly diverse water uptake capacities. Plant Physiol. 2023, 192, 2404–2418. [Google Scholar] [CrossRef]
- De Lima, C.F.F.; Kleine-Vehn, J.; De Smet, I.; Feraru, E. Getting to the root of belowground high temperature responses in plants. J. Exp. Bot. 2021, 72, 7404–7413. [Google Scholar]
- Mackay, A.D.; Barber, S.A. Soil Moisture Effects on Root Growth and Phosphorus Uptake by Corn. Agron. J. 1985, 77, 519–523. [Google Scholar] [CrossRef]
- Suwa, R.; Hakata, H.; Hara, H.; El-Shemy, H.A.; Adu-Gyamfi, J.J.; Nguyen, N.T.; Kanai, S.; Lightfoot, D.A.; Mohapatra, P.K.; Fujita, K. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol. Biochem. 2010, 48, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.J.; Fyoer, C.H. Sink regulation of photosynthesis. J. Exp. Bot. 2001, 52, 1383–1400. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Yao, Q.; Mao, F.; Liu, M.; Wang, Y.; Wang, X.; Gao, Y.; Wang, Y.; Liao, S.; Wang, P.; et al. Heat stress and sexual reproduction in maize: Unveiling the most pivotal factors and the biggest opportunities. J. Exp. Bot. 2024, 75, 4219–4243. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Mueller, N.; Zhang, Y.; Feng, P.; Huang, S.; Liu, D.; Yu, Y.; Wang, X.; Wang, P.; Meng, Q. Short-term extreme heat at flowering amplifies the impacts of climate change on maize production. Environ. Res. Lett. 2023, 18, 084021. [Google Scholar] [CrossRef]
- Tas, T. Physiological and biochemical responses of hybrid maize (Zea mays L.) varieties grown under heat stress conditions. PeerJ 2022, 10, e14141. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gu, X.; Ding, M.; Lu, W.; Lu, D. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci. Rep. 2018, 8, 15665. [Google Scholar] [CrossRef]
- Li, X.; Bruckmann, A.; Dresselhaus, T.; Begcy, K. Heat stress at the bicellular stage inhibits sperm cell development and transport into pollen tubes. Plant Physiol. 2024, 195, 2111–2128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, X.; Sheng, D.; Hou, X.; Mandal, S.; Liu, X.; Zhang, P.; Shen, S.; Wang, P.; Krishna Jagadish, S.V.; et al. Heat-dependent postpollination limitations on maize pollen tube growth and kernel sterility. Plant Cell Environ. 2023, 46, 3822–3838. [Google Scholar] [CrossRef]
- Liu, P.; Yin, B.; Gu, L.; Zhang, S.; Ren, J.; Wang, Y.; Duan, W.; Zhen, W. Heat stress affects tassel development and reduces the kernel number of summer maize. Front. Plant Sci. 2023, 14, 1186921. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, H.; Ren, H.; Zhao, B.; Zhang, J.; Ren, B.; Liu, P. Maize (Zea mays L.) responses to heat stress: Mechanisms that disrupt the development and hormone balance of tassels and pollen. J. Agron. Crop Sci. 2023, 209, 502–516. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, D.; Zhang, P.; Dong, X.; Yan, Y.; Hou, X.; Wang, P.; Huang, S. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environ. Exp. Bot. 2021, 183, 104343. [Google Scholar] [CrossRef]
- Gong, W.; Oubounyt, M.; Baumbach, J.; Dresselhaus, T. Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility. iScience 2024, 27, 110081. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, B.M. Effects of Climate Change and Drought Tolerance on Maize Growth. Plants 2023, 12, 3548. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, H.; Zhang, P.; Hou, X.; Sheng, D.; Tian, B.; Wang, P.; Huang, S. Reduction in seed-set upon exposure to high night temperature during flowering in maize. Physiol Plant. 2020, 169, 73–82. [Google Scholar] [CrossRef]
- Kettler, B.A.; Carrera, C.S.; Nalli Sonzogni, F.D.; Trachsel, S.; Andrade, F.H.; Neiff, N. High night temperature during maize post-flowering increases night respiration and reduces photosynthesis, growth and kernel number. J. Agron. Crop Sci. 2022, 208, 335–347. [Google Scholar] [CrossRef]
- Joshi, J.; Hasnain, G.; Logue, T.; Lynch, M.; Wu, S.; Guan, J.; Alseekh, S.; Fernie, A.R.; Hanson, A.D.; McCarty, D.R. A core metabolome response of maize leaves subjected to long-duration abiotic stresses. Metabolites 2021, 11, 797. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Ren, Q.; Zhang, J.; Chen, L. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Gene 2019, 692, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, G.; Fu, C.; Duan, S.; Hu, D.; Guo, X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci. Rep. 2020, 10, 8073. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Sun, L.; Zhang, S.; Jiao, B.; Wang, J.; Ma, C. The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize. J. Integr. Plant Biol. 2021, 63, 510–527. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, D.; Hao, H.; Luo, Y.; Zhu, Z.; Kuai, B. Transcriptomic Analysis of Three Differentially Senescing Maize (Zea mays L.) Inbred Lines upon Heat Stress. Int. J. Mol. Sci. 2023, 24, 9782. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Han, X.; Zhang, L.; Chen, S. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize (Zea mays L.). Genes 2024, 15, 289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Sun, L.; Zhang, S.; Jiao, B.; Wang, J.; Ma, C. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage. Genes 2024, 15, 189. [Google Scholar] [CrossRef] [PubMed]
- Frova, C.; Sari-Gorla, M. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol. Gen. Genet. 1994, 245, 424–430. [Google Scholar] [CrossRef]
- Frova, C.; Caffulli, A.; Pallavera, E. Mapping quantitative trait loci for tolerance to abiotic stresses in maize. J. Exp. Zool. Part A Ecol. Genet. Physiol. 1998, 282, 164–170. [Google Scholar] [CrossRef]
- Breseghello, F.; Sorrells, M.E. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci. 2006, 46, 1323–1330. [Google Scholar] [CrossRef]
- Yan, J.; Warburton, M.; Crouch, J. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci. 2011, 51, 433–449. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.; Qin, Y.; Li, Y.; Yang, Z.; Xiong, X.; Wan, J.; Qiu, M.; Hou, Q.; Zhang, Z.; et al. Identification of anther thermotolerance genes by the integration of linkage and association analysis in maize. Plant J. 2024, 119, 1953–1966. [Google Scholar] [CrossRef] [PubMed]
- Schoper, J.B.; Lambert, R.J.; Vasilas, B.L. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci. 1987, 27, 27–31. [Google Scholar] [CrossRef]
- Hussain, T.; Khan, I.A.; Malik, M.A. Breeding potential for high temperature tolerance in corn (Zea mays L.). Pak. J. Bot. 2006, 38, 1185. [Google Scholar]
- Frey, F.P.; Presterl, T.; Lecoq, P.; Orlik, A.; Stich, B. First steps to understand heat tolerance of temperate maize at adult stage: Identification of QTL across multiple environments with connected segregating populations. Theor. Appl. Genet. 2016, 129, 945–961. [Google Scholar] [CrossRef]
- Li, Z.; Srivastava, R.; Tang, J.; Zheng, Z.; Howell, S.H. Cis-effects condition the induction of a major unfolded protein response factor, ZmbZIP60, in response to heat stress in maize. Front. Plant Sci. 2018, 9, 361898. [Google Scholar] [CrossRef] [PubMed]
- Timofejeva, L.; Skibbe, D.S.; Lee, S.; Golubovskaya, I.; Wang, R.; Harper, L.; Walbot, V.; Cande, W.Z. Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. Genes Genomes Genet. 2013, 3, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Begcy, K.; Nosenko, T.; Zhou, L.; Fragner, L.; Weckwerth, W.; Dresselhaus, T. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiol. 2019, 181, 683–700. [Google Scholar] [CrossRef]
- Wan, X.; Wu, S.; Li, Z.; An, X.; Tian, Y. Lipid metabolism: Critical roles in male fertility and other aspects of reproductive development in plants. Mol. Plant 2020, 13, 955–983. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Q. Genetic and molecular characterization of photoperiod and thermosensitive male sterility in rice. Plant Reprod. 2018, 31, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Zhang, H.; Hammond, R.; Huang, K.; Meyers, B.C.; Walbot, V. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 2020, 11, 2912. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, X.; Zhu, J.; Zhang, S.; Rhaman, M.S.; Zeng, W. A SLAF-based high-density genetic map construction and genetic architecture of thermotolerant traits in maize (Zea mays L.). Front. Plant Sci. 2024, 15, 1338086. [Google Scholar] [CrossRef] [PubMed]
- Longmei, N.; Gill, G.K.; Zaidi, P.H.; Kumar, R.; Nair, S.K.; Hindu, V.; Vinayan, M.T.; Vikal, Y. Genome wide association mapping for heat tolerance in sub-tropical maize. BMC Genom. 2021, 22, 154. [Google Scholar] [CrossRef] [PubMed]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Li, R.; Xu, X.; Jin, W.; Xu, M.; Zhao, H.; Xiang, Z.; Song, W.; Ying, K.; Zhang, M.; et al. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat. Genet. 2010, 42, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Remington, D.L.; Thornsberry, J.M.; Matsuoka, Y.; Wilson, L.M.; Whitt, S.R.; Doebley, J.; Kresovich, S.; Goodman, M.M.; Buckler, E.S., IV. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA 2001, 98, 11479–11484. [Google Scholar] [CrossRef]
- Hudson, A.I.; Odell, S.G.; Dubreuil, P.; Tixier, M.H.; Praud, S.; Runcie, D.E.; Ross-Ibarra, J. Analysis of genotype-by-environment interactions in a maize mapping population. Genes Genomes Genet. 2022, 12, jkac013. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, Y.; Shi, Y.; Qin, F.; Jiang, C.; Yang, S. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Mol. Plant 2023, 16, 1496–1517. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Beyene, Y.; Kassa, S.; Pérez, P.; Hickey, J.M.; Chen, C.; de los Campos, G.; Burgueño, J.; Windhausen, V.S.; Buckler, E.; et al. Genomic prediction in maize breeding populations with genotyping-by-sequencing. Genes Genomes Genet. 2013, 3, 1903–1926. [Google Scholar] [CrossRef]
- Romay, M.C.; Millard, M.J.; Glaubitz, J.C.; Peiffer, J.A.; Swarts, K.L.; Casstevens, T.M.; Elshire, R.J.; Acharya, C.B.; Mitchell, S.E.; Flint-Garcia, S.A.; et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013, 14, R55. [Google Scholar] [CrossRef] [PubMed]
- Seetharam, K.; Kuchanur, P.H.; Koirala, K.B.; Tripathi, M.P.; Patil, A.; Sudarsanam, V.; Das, R.R.; Chaurasia, R.; Pandey, K.; Vemuri, H.; et al. Genomic regions associated with heat stress tolerance in tropical maize (Zea mays L.). Sci. Rep. 2021, 11, 13730. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, J. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 2002, 215, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Takeda, S.; Kobayashi, M.J.; Kimura, S.; Iizuka, A.; Imai, A.; Hishinuma, H.; Kawarazaki, T.; Mori, K.; Yamamoto, Y.; et al. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. Plant J. 2019, 98, 291–300. [Google Scholar] [CrossRef]
- Tas, T.; Mutlu, A. Morpho-physiological effects of environmental stress on yield and quality of sweet corn varieties (Zea mays L.). PeerJ 2021, 9, e12613. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, R.; Li, Z. The Essential Role of H2S-ABA Crosstalk in Maize Thermotolerance through the ROS-Scavenging System. Int. J. Mol. Sci. 2023, 24, 12264. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Abdel-Haleem, M.; Khedr, E.H. Harnessing GABA Pathways to Improve Plant Resilience Against Salt Stress. Horticulturae 2024, 10, 1296. [Google Scholar] [CrossRef]
- Wang, C.; Ru, J.; Liu, Y.; Li, M.; Zhao, D.; Yang, J.; Fu, J.; Xu, Z. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. Int. J. Mol. Sci. 2018, 19, 3046. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Z.; Zhang, J. ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response. Int. J. Mol. Sci. 2024, 25, 6275. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, C.; Li, Z.; Ran, Q.; Xie, G.; Wang, B.; Fang, S.; Chu, J.; Zhang, J. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol. 2018, 178, 753–770. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhao, Y.; Chen, N.; Liu, Y.; Yang, S.; Du, H.; Wang, W.; Wu, J.; Tai, F.; Chen, F.; et al. A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. J. Exp. Bot. 2021, 72, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Zhao, Y.; Zhang, J.; Chen, L.; Si, W.; Jiang, H. A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants. BMC Plant Biol. 2022, 22, 406. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, C.; Yang, C.; Jinn, T. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Plant Physiol. 2016, 172, 1182–1199. [Google Scholar] [CrossRef]
- Bohn, L.; Huang, J.; Weidig, S.; Yang, Z.; Heidersberger, C.; Genty, B.; Falter-Braun, P.; Christmann, A.; Grill, E. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis. Nature 2024, 629, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhao, L.; Liu, X. Calcium Signaling and the Response to Heat Shock in Crop Plants. Int. J. Mol. Sci. 2023, 25, 324. [Google Scholar] [CrossRef]
- Kerbler, S.M.; Wigge, P.A. Temperature sensing in plants. Annu. Rev. Plant Biol. 2023, 74, 341–366. [Google Scholar] [CrossRef]
- Sajid, M.; Rashid, B.; Ali, Q.; Husnain, T. Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biol. Plant. 2018, 62, 409–420. [Google Scholar] [CrossRef]
- Cui, Y.; Lu, S.; Li, Z.; Cheng, J.; Hu, P.; Zhu, T.; Wang, X.; Jin, M.; Wang, X.; Li, L.; et al. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol. 2020, 183, 1794–1808. [Google Scholar] [CrossRef]
- Li, Z.; Ye, X.; Qiu, X. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling. Protoplasma 2019, 256, 1165–1169. [Google Scholar] [CrossRef]
- Moeder, W.; Phan, V.; Yoshioka, K. Ca2+ to the rescue–Ca2+ channels and signaling in plant immunity. Plant Sci. 2019, 279, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Qiao, X. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ 2018, 6, e5816. [Google Scholar] [CrossRef] [PubMed]
- Saidi, Y.; Finka, A.; Goloubinoff, P. Heat perception and signalling in plants: A tortuous path to thermotolerance. New Phytol. 2011, 190, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Galva, C.; Virgin, G.K.; Helms, J.B.; Gatto, C. ATP protects against FITC labeling of Solanum lastoglobul and Arabidopsis thaliana Ca2+-ATPase ATP binding domains. Plant Physiol. Biochem. 2013, 71, 261–2267. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, I.M. Genetic Analyses of Calcium Circuits in Arabidopsis Vegetative and Reproductive Development. Ph.D. Thesis, University of Nevada, Reno, NV, USA, 2015. [Google Scholar]
- Yang, W.; Kong, Z.; Omo-Ikerodah, E.; Xu, W.; Li, Q.; Xue, Y. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J. Genet. Genom. 2008, 35, 531–543, S1–S2. [Google Scholar] [CrossRef]
- Zhou, L.; Lan, W.; Chen, B.; Fang, W.; Luan, S. A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity. Plant Physiol. 2015, 167, 1351–1360. [Google Scholar] [CrossRef]
- Cheng, C.; Wu, Q.; Wang, M.; Chen, D.; Li, J.; Shen, J.; Hou, S.; Zhang, P.; Qin, L.; Acharya, B.R.; et al. Maize MITOGEN-ACTIVATED PROTEIN KINASE 20 mediates high-temperature–regulated stomatal movement. Plant Physiol. 2023, 193, 2788–2805. [Google Scholar] [CrossRef]
- Hwa, C.M.; Yang, X. The AtMKK3 pathway mediates ABA and salt signaling in Arabidopsis. Acta Physiol. Plant. 2008, 30, 277–286. [Google Scholar] [CrossRef]
- Umezawa, T.; Sugiyama, N.; Takahashi, F.; Anderson, J.C.; Ishihama, Y.; Peck, S.C.; Shinozaki, K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 2013, 6, rs8. [Google Scholar] [CrossRef]
- Sun, W.; Chen, H.; Wang, J.; Sun, H.; Yang, S.; Sang, Y.; Lu, X.; Xu, X. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction. Funct. Integr. Genom. 2015, 15, 107–120. [Google Scholar] [CrossRef]
- Zhang, R.; Wise, R.R.; Struck, K.R.; Sharkey, T.D. Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth. Res. 2010, 105, 123–134. [Google Scholar] [CrossRef]
- Hu, S.; Ding, Y.; Zhu, C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. Front. Plant Sci. 2020, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Humbert, S.; Howell, S.H. ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Res. Notes 2012, 5, 144. [Google Scholar] [CrossRef]
- Li, Z.; Tang, J.; Srivastava, R.; Bassham, D.C.; Howell, S.H. The transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize. Plant Cell 2020, 32, 3559–3575. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yang, L.; Jia, G.; Yan, K.; Zhang, S.; Yang, G.; Wu, C.; Gai, Y.; Zheng, C.; Huang, J. Maize HEAT UP-REGULATED GENE 1 plays vital roles in heat stress tolerance. J. Exp. Bot. 2022, 73, 6417–6433. [Google Scholar] [CrossRef]
- Tian, F.; Hu, X.; Yao, T.; Yang, X.; Chen, J.; Lu, M.; Zhang, J. Recent advances in the roles of HSFs and HSPs in heat stress response in woody plants. Front. Plant Sci. 2021, 12, 704905. [Google Scholar] [CrossRef]
- Chen, S.; He, N.; Chen, J.; Guo, F. Identification of core subunits of photosystem II as action sites of HSP 21, which is activated by the GUN 5-mediated retrograde pathway in Arabidopsis. Plant J. 2017, 89, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, Y.; Gong, F.; Zhang, D.; Zhang, L.; Wu, L.; Li, C.; Wang, W. Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays L.). J. Proteom. 2015, 115, 81–92. [Google Scholar] [CrossRef]
- Cao, L.; Wang, G.; Fahim, A.M.; Pang, Y.; Zhang, Q.; Zhang, X.; Wang, Z.; Lu, X. Comprehensive Analysis of the DnaJ/HSP40 Gene Family in Maize (Zea mays L.) Reveals that ZmDnaJ96 Enhances Abiotic Stress Tolerance. J. Plant Growth Regul. 2024, 43, 1548–1569. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Zhang, B.; Zou, H. Expression of ZmNAGK in tobacco enhances heat stress tolerance via activation of antioxidant-associated defense. Plant Physiol. Biochem. 2023, 199, 107719. [Google Scholar] [CrossRef]
- Miller, G.; Schlauch, K.; Tam, R.; Cortes, D.; Torres, M.A.; Shulaev, V.; Dangl, J.L.; Mittler, R. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2009, 2, ra45. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol Plant. 2006, 126, 45–51. [Google Scholar] [CrossRef]
- Roldán-Arjona, T.; Ariza, R.R. Repair and tolerance of oxidative DNA damage in plants. Mutat. Res. Rev. Mutat. 2009, 681, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Atsuhisa, K.; Tadaaki, K.; Eiichiro, M. Heat meets DNA: DNA damage and repair. Therm. Med. Cambridge. 2018, 34, 15–22. [Google Scholar] [CrossRef]
- Zhao, L.; Bao, C.; Shang, Y.; He, X.; Ma, C.; Lei, X.; Mi, D.; Sun, Y. The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. BioMed Res. Int. 2020, 2020, 4834965. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Huang, J. MRN complex is an essential effector of DNA damage repair. J. Zhejiang Univ. Sci. B 2021, 22, 31–37. [Google Scholar] [CrossRef]
- Dubrez, L.; Causse, S.; Borges Bonan, N.; Dumétier, B.; Garrido, C. Heat-shock proteins: Chaperoning DNA repair. Oncogene 2020, 39, 516–529. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Sun, H.; Wang, T.; Ru, W.; Pan, L.; Zhao, X.; Dong, Z.; Huang, W.; Jin, W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. Plant Cell 2022, 34, 3702–3717. [Google Scholar] [CrossRef]
- Sakamoto, T.; Inui, Y.T.; Uraguchi, S.; Yoshizumi, T.; Matsunaga, S.; Mastui, M.; Umeda, M.; Fukui, K.; Fujiwara, T. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 2011, 23, 3533–3546. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Zhang, T.; Wang, Y.; Cui, Z.; He, Y. ZmRAD51C is Essential for Double-Strand Break Repair and Homologous Recombination in Maize Meiosis. Int. J. Mol. Sci. 2019, 20, 5513. [Google Scholar] [CrossRef]
- Lin, Z.; Nei, M.; Ma, H. The origins and early evolution of DNA mismatch repair genes—Multiple horizontal gene transfers and co-evolution. Nucleic Acids Res. 2007, 35, 7591–7603. [Google Scholar] [CrossRef] [PubMed]
- Raquel, S.M.; Sara, F.C.; Kensuke, K.; Akira, O.; Hirokazu, T.; Víctor, Q.; José, L.M.; María, R.P. Functional conservation and divergence of Arabidopsis VENOSA4 and human SAMHD1 in DNA repair. Heliyon 2025, 11, e41019. [Google Scholar]
- Kamaliyan, Z.; Clarke, T.L. Zinc finger proteins: Guardians of genome stability. Front. Cell Dev. Biol. 2024, 25, 1448789. [Google Scholar] [CrossRef]
- Almozyan, S.; Coulton, J.; Babaei-Jadidi, R.; Nateri, A.S. FLYWCH1, a Multi-Functional Zinc Finger Protein Contributes to the DNA Repair Pathway. Cells 2021, 13, 889. [Google Scholar] [CrossRef] [PubMed]
- Englbrecht, C.C.; Schoof, H.; Böhm, S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genom. 2004, 5, 39. [Google Scholar] [CrossRef]
- Fletcher, S.C.; Coleman, M.L. Human 2-oxoglutarate-dependent oxygenases: Nutrient sensors, stress responders, and disease mediators. Biochem. Soc. Trans. 2020, 48, 1843–1858. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, A.L.; Schär, P. DNA glycosylases: In DNA repair and beyond. Chromosoma 2012, 121, 1–20. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Yu, Y.; Feng, L.; Jia, J.; Liu, B.; Li, B.; Guo, H.; Zhai, J. A comprehensive online database for exploring approximately 20.;000 public Arabidopsis RNA-seq libraries. Mol. Plant. 2020, 7, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, T.; Li, X.; Zhao, H.; Lin, S.; Huang, J.; Yang, B.; Guo, X. DNA damage-induced proteasome phosphorylation controls substrate recognition and facilitates DNA repair. Proc. Natl. Acad. Sci. USA 2024, 121, e2321204121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fang, D.; Cheng, X.; Cao, J.; Tan, X. Insights into the Molecular Evolution of AT-Hook Motif Nuclear Localization Genes in Brassica napus. Front. Plant Sci. 2021, 9, 714305. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, W.; Zheng, X.; Lu, L.; Chen, X.; Hao, Z.; Liu, S.; Chen, Y. AT-Hook Transcription Factors Show Functions in Liriodendron chinense under Drought Stress and Somatic Embryogenesis. Plants 2023, 17, 1353. [Google Scholar] [CrossRef] [PubMed]
- Bravard, A.; Vacher, M.; Gouget, B.; Coutant, A.; de Boisferon, F.H.; Marsin, S.; Chevillard, S.; Radicella, J.P. Redox regulation of human OGG1 activity in response to cellular oxidative stress. Mol. Cell. Biol. 2006, 26, 7430–7436. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Benítez-Buelga, C.; Calvo, P.A.; Hanna, B.M.F.; Mortusewicz, O.; Masuyer, G.; Davies, J.; Wallner, O.; Sanjiv, K.; Albers, J.J.; et al. Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science 2022, 376, 1471–1476. [Google Scholar] [CrossRef]
- Ye, D.; Guan, K.; Xiong, Y. Metabolism Activity and Targeting of D- and L-2-Hydroxyglutarates. Trends Cancer 2018, 4, 151–165. [Google Scholar] [CrossRef]
- Huang, F.; He, Y. Epigenetic control of gene expression by cellular metabolisms in plants. Curr. Opin. Plant Biol. 2024, 81, 102572. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Park, Y.J.; Park, C.M. HOS1 activates DNA repair systems to enhance plant thermotolerance. Nat. Plants 2020, 6, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Z.; Ji, Y.; Wang, C.; Wang, S.; Shi, Y.; Le, J.; Zhang, M. The heat shock factor 20-HSF4-cellulose synthase A2 module regulates heat stress tolerance in maize. Plant Cell 2024, 36, 2652–2667. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Sun, Y.; Wang, J.; Xiang, R.; Li, Z. Involvement of osmoregulation, glyoxalase, and non-glyoxalase systems in signaling molecule glutamic acid-boosted thermotolerance in maize seedlings. Protoplasma 2022, 259, 1507–1520. [Google Scholar] [CrossRef]
- Li, Z.; Lu, X.; Chen, J. Gasotransmitter ammonia accelerates seed germination, seedling growth, and thermotolerance acquirement in maize. Plant Signal. Behav. 2023, 18, 2163338. [Google Scholar] [CrossRef] [PubMed]
- Jighly, A.; Lin, Z.; Pembleton, L.W.; Cogan, N.O.I.; Spangenberg, G.C.; Hayes, B.J.; Daetwyler, H.D. Boosting genetic gain in allogamous crops via speed breeding and genomic selection. Front. Plant Sci. 2019, 10, 1364. [Google Scholar] [CrossRef] [PubMed]
- Resende, R.T.; Piepho, H.P.; Rosa, G.J.M.; Silva-Junior, O.B.; e Silva, F.F.; de Resende, M.D.V.; Grattapaglia, D. Enviromics in breeding: Applications and perspectives on envirotypic-assisted selection. Theor. Appl. Genet. 2021, 134, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, D.; He, F.; Wang, J.; Joshi, T.; Xu, D. Phenotype prediction and genome-wide association study using deep convolutional neural network of soybean. Front. Genet. 2019, 10, 486384. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Genetically Engineered Crops: Past Experience and Future Prospects. Genetically Engineered Crops: Experiences and Prospects; National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [PubMed]
- Pellegrino, E.; Bedini, S.; Nuti, M.; Ercoli, L. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: A meta-analysis of 21 years of field data. Sci. Rep. 2018, 8, 3113. [Google Scholar]
- Glover, D. The corporate shaping of GM crops as a technology for the poor. J. Peasant Stud. 2010, 37, 67–90. [Google Scholar] [CrossRef]
- Chassy, B.M. Food safety risks and consumer health. New Biotechnol. 2010, 27, 534–544. [Google Scholar] [CrossRef]
- Hansson, S.O. A Science-Informed Ethics for Agricultural Biotechnology. Crop Breed. Genet. Genom. 2019, 1, e190006. [Google Scholar]
- Qaim, M. The economics of genetically modified crops. Annu. Rev. Resour. Econ. 2020, 1, 665–694. [Google Scholar] [CrossRef]
- Huesing, J.E.; Andres, D.; Braverman, M.P.; Burns, A.; Felsot, A.S.; Harrigan, G.G.; Hellmich, R.L.; Reynolds, A.; Shelton, A.M.; Jansen van Rijssen, W.; et al. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector. J. Agric. Food Chem. 2016, 64, 394–402. [Google Scholar] [CrossRef]
- Rizwan, M.; Hussain, M.; Shimelis, H.; Hameed, M.U.; Atif, R.M.; Azhar, M.T.; Qamar, Z.; Asif, M. Gene flow from major genetically modified crops and strategies for containment and mitigation of transgene escape: A review. Appl. Ecol. Environ. Res. 2019, 17, 11191–11208. [Google Scholar] [CrossRef]
- Ahmad, M. Plant breeding advancements with “CRISPR-Cas” genome editing technologies will assist future food security. Front. Plant Sci. 2023, 14, 1133036. [Google Scholar] [CrossRef] [PubMed]
- Sadikiel Mmbando, G. The Adoption of Genetically Modified Crops in Africa: The Public’s Current Perception, the Regulatory Obstacles, and Ethical Challenges. GM Crops Food 2024, 15, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Macnaghten, P.; Habets, M. Breaking the impasse: Towards a forward-looking governance framework for gene editing with plants. Plants People Planet 2020, 2, 353–365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Song, H.; Qi, M.; Wang, M.; Bai, Y.; Sun, Y.; Yu, H. Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance. Int. J. Mol. Sci. 2025, 26, 1283. https://doi.org/10.3390/ijms26031283
Fan Z, Song H, Qi M, Wang M, Bai Y, Sun Y, Yu H. Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance. International Journal of Molecular Sciences. 2025; 26(3):1283. https://doi.org/10.3390/ijms26031283
Chicago/Turabian StyleFan, Zhaoyi, Haoqi Song, Mengyuan Qi, Mengqing Wang, Yunfeng Bai, Yuhui Sun, and Haidong Yu. 2025. "Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance" International Journal of Molecular Sciences 26, no. 3: 1283. https://doi.org/10.3390/ijms26031283
APA StyleFan, Z., Song, H., Qi, M., Wang, M., Bai, Y., Sun, Y., & Yu, H. (2025). Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance. International Journal of Molecular Sciences, 26(3), 1283. https://doi.org/10.3390/ijms26031283