Corydalis Tuber Extract Alleviates Atopic Dermatitis: Transcriptomics-Based Mechanism Prediction and In Vitro/In Vivo Studies
Abstract
:1. Introduction
2. Results
2.1. Simultaneous Analysis of Compounds in CTE Using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)
2.2. Identification and Functional Enrichment Analysis of Differentially Expressed Genes (DEGs) in TI-Stimulated HaCaT Cells
2.3. Effects of CTE and Its Compounds on Chemokine Production and Phosphorylated-Janus Kinase (JAK), Signal Transducers and Activators of Transcription (STAT), and Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) Expression in TI-Stimulated HaCaT Cells
2.4. Effects of Topical Application of CTE on HDM-Induced AD Symptoms in NC/Nga Mice
2.5. Effects of Topical Application of CTE on the Plasma Levels of Chemokines, Histamine, IgE, and Stress Hormones in HDM-Treated NC/Nga Mice
2.6. Effects of Topical Application of CTE on the Histopathological Alteration in HDM-Treated NC/Nga Mice
2.7. Effects of Topical Application of CTE on the Expression of TSLP, CD4+ T Cells, Interleukin (IL)-4, and ICAM-1 in HDM-Treated NC/Nga Mice
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Preparation of CTE
4.2. Chemicals and Reagents
4.3. UPLC-MS/MS Simultaneous Analysis of Compounds in CTE
4.4. Cell Culture and Viability Assay
4.5. Transcriptome and DEG Analysis in HaCaT Cells
4.6. Measurement of Chemokine Levels in HaCaT Cells
4.7. Western Blot
4.8. Animals and Treatment
4.9. Evaluation of Dermatitis Severity
4.10. Measurement of Plasma Chemokines, Histamine, IgE, and Stress Hormone Levels
4.11. Histopathological and IHC Analysis
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kakkar, V.; Saini, K.; Singh, K.K. Challenges of current treatment and exploring the future prospects of nanoformulations for treatment of atopic dermatitis. Pharmacol. Rep. 2023, 75, 1066–1095. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, M.; Su, Y.; Du, Y.; Wu, X.; Chen, X.; Song, Y.; Lai, L.; Cheng, H. Integrated transcriptomic and metabolomic analyses of DNCB-induced atopic dermatitis in mice. Life Sci. 2023, 317, 121474. [Google Scholar] [CrossRef] [PubMed]
- Homey, B.; Steinhoff, M.; Ruzicka, T.; Leung, D.Y. Cytokines and chemokines orchestrate atopic skin inflammation. J. Allergy Clin. Immunol. 2006, 118, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Hwang-Bo, J.; Veerappan, K.; Moon, H.; Park, J.; Chung, H. Anti-Atopic Dermatitis Effect of TPS240, a Novel Therapeutic Peptide, via Suppression of NF-kappaB and STAT3 Activation. Int. J. Mol. Sci. 2023, 24, 5814. [Google Scholar] [CrossRef]
- Sharma, S.; Naura, A.S. Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review. Biochem. Pharmacol. 2020, 173, 113790. [Google Scholar] [CrossRef]
- Maione, F.; Russo, R.; Khan, H.; Mascolo, N. Medicinal plants with anti-inflammatory activities. Nat. Prod. Res. 2016, 30, 1343–1352. [Google Scholar] [CrossRef]
- Matsuda, H.; Tokuoka, K.; Wu, J.; Tanaka, T.; Kubo, M. Inhibitory effects of methanolic extract from corydalis tuber against types I–IV allergic models. Biol. Pharm. Bull. 1995, 18, 963–967. [Google Scholar] [CrossRef]
- Xu, D.; Lin, H.; Tang, Y.; Huang, L.; Xu, J.; Nian, S.; Zhao, Y. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo. Hortic. Res. 2021, 8, 16. [Google Scholar] [CrossRef]
- Tian, B.; Tian, M.; Huang, S.M. Advances in phytochemical and modern pharmacological research of Rhizoma Corydalis. Pharm. Biol. 2020, 58, 265–275. [Google Scholar] [CrossRef]
- Sun, G.G.; Shih, J.H.; Chiou, S.H.; Hong, C.J.; Lu, S.W.; Pao, L.H. Chinese herbal medicines promote hippocampal neuroproliferation, reduce stress hormone levels, inhibit apoptosis, and improve behavior in chronically stressed mice. J. Ethnopharmacol. 2016, 193, 159–168. [Google Scholar] [CrossRef]
- Wu, H.; Wang, P.; Liu, M.; Tang, L.; Fang, J.; Zhao, Y.; Zhang, Y.; Li, D.; Xu, H.; Yang, H. A 1H-NMR-Based Metabonomic Study on the Anti-Depressive Effect of the Total Alkaloid of Corydalis Rhizoma. Molecules 2015, 20, 10047–10064. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Jeong, E.K.; Han, S.B.; Hong, J. HPLC Separation of Isoquinoline Alkaloids for Quality Control of Corydalis species. Bull. Korean Chem. Soc. 2011, 32, 3597–3602. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lim, H.S.; Kim, Y.; Lee, J.; Kim, B.Y.; Jeong, S.J. Neuroprotective Effect of Corydalis ternata Extract and Its Phytochemical Quantitative Analysis. Chem. Pharm. Bull. 2017, 65, 826–832. [Google Scholar] [CrossRef]
- Ding, B.; Zhou, T.; Fan, G.; Hong, Z.; Wu, Y. Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine Corydalis yanhusuo W.T. Wang by LC-MS/MS and LC-DAD. J. Pharm. Biomed. Anal. 2007, 45, 219–226. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Shi, Y.; Zhen, S.L.; Sun, H.; Jin, W. HPLC-MS analysis of ethanol extract of Corydalis yanhusuo and simultaneous determination of eight protoberberine quaternary alkaloids by HPLC-DAD. J. Chromatogr. Sci. 2010, 48, 441–444. [Google Scholar] [CrossRef]
- Jin, S.E.; Seo, C.S.; Jeon, W.Y.; Oh, Y.J.; Shin, H.K.; Jeong, H.G.; Ha, H. Evodiae Fructus extract suppresses inflammatory response in HaCaT cells and improves house dust mite-induced atopic dermatitis in NC/Nga mice. Sci. Rep. 2024, 14, 472. [Google Scholar] [CrossRef]
- Yang, M.; Sun, J.; Lu, Z.; Chen, G.; Guan, S.; Liu, X.; Jiang, B.; Ye, M.; Guo, D.A. Phytochemical analysis of traditional Chinese medicine using liquid chromatography coupled with mass spectrometry. J. Chromatogr. A 2009, 1216, 2045–2062. [Google Scholar] [CrossRef]
- Nguyen, L.T.H.; Choi, M.J.; Shin, H.M.; Yang, I.J. Coptisine Alleviates Imiquimod-Induced Psoriasis-like Skin Lesions and Anxiety-like Behavior in Mice. Molecules 2022, 27, 1412. [Google Scholar] [CrossRef]
- Andoh, T.; Yoshihisa, Y.; Rehman, M.U.; Tabuchi, Y.; Shimizu, T. Berberine induces anti-atopic dermatitis effects through the downregulation of cutaneous EIF3F and MALT1 in NC/Nga mice with atopy-like dermatitis. Biochem. Pharmacol. 2021, 185, 114439. [Google Scholar] [CrossRef]
- Matsuda, H.; Tokuoka, K.; Wu, J.; Shiomoto, H.; Kubo, M. Inhibitory effects of dehydrocorydaline isolated from Corydalis Tuber against type I–IV allergic models. Biol. Pharm. Bull. 1997, 20, 431–434. [Google Scholar] [CrossRef]
- Alam, M.B.; Ju, M.K.; Kwon, Y.G.; Lee, S.H. Protopine attenuates inflammation stimulated by carrageenan and LPS via the MAPK/NF-kappaB pathway. Food Chem. Toxicol. 2019, 131, 110583. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.S.; Kim, Y.H.; Pan, C.H.; Nho, C.W.; Samdan, J.; Yansan, J.; Lee, J.K. Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages. BMB Rep. 2012, 45, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Grewe, M.; Bruijnzeel-Koomen, C.A.; Schopf, E.; Thepen, T.; Langeveld-Wildschut, A.G.; Ruzicka, T.; Krutmann, J. A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol. Today 1998, 19, 359–361. [Google Scholar] [CrossRef]
- Xue, C.; Yao, Q.; Gu, X.; Shi, Q.; Yuan, X.; Chu, Q.; Bao, Z.; Lu, J.; Li, L. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduct. Target. Ther. 2023, 8, 204. [Google Scholar] [CrossRef]
- Nakashima, C.; Yanagihara, S.; Otsuka, A. Innovation in the treatment of atopic dermatitis: Emerging topical and oral Janus kinase inhibitors. Allergol. Int. 2022, 71, 40–46. [Google Scholar] [CrossRef]
- Nakamura, H.; Aoki, M.; Tamai, K.; Oishi, M.; Ogihara, T.; Kaneda, Y.; Morishita, R. Prevention and regression of atopic dermatitis by ointment containing NF-kB decoy oligodeoxynucleotides in NC/Nga atopic mouse model. Gene Ther. 2002, 9, 1221–1229. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Carroll, C.L.; Balkrishnan, R.; Feldman, S.R.; Fleischer, A.B., Jr.; Manuel, J.C. The burden of atopic dermatitis: Impact on the patient, family, and society. Pediatr. Dermatol. 2005, 22, 192–199. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Jin, S.E.; Ha, H.; Shin, H.K.; Seo, C.S. Anti-Allergic and Anti-Inflammatory Effects of Kuwanon G and Morusin on MC/9 Mast Cells and HaCaT Keratinocytes. Molecules 2019, 24, 265. [Google Scholar] [CrossRef]
- National Research Council (USA) Committee. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press (USA): Washington, DC, USA, 2011. [Google Scholar]
- Kleinman, E.; Laborada, J.; Metterle, L.; Eichenfield, L.F. What’s New in Topicals for Atopic Dermatitis? Am. J. Clin. Dermatol. 2022, 23, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Haruna, T.; Yasui, K.; Takahashi, H.; Iduhara, M.; Takaki, S.; Arimura, A. A novel atopic dermatitis model induced by topical application with Dermatophagoides farinae extract in NC/Nga mice. Allergol. Int. 2007, 56, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.E.; Ha, H.; Yoo, S.R.; Jeon, W.Y.; Lee, N.; Lee, M.Y.; Choi, S.; Jang, J.H.; Park, E.; Kim, S.; et al. Topical Application of a New Herbal Complex, NI-01, Ameliorates House Dust Mite-Induced Atopic Dermatitis in NC/Nga Mice. Nutrients 2020, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
Code No. | Name | Amount (mg/g) | RSD (%) |
---|---|---|---|
1 | Tetrahydrocolumbamine | 3.48 ± 0.16 | 4.51 |
2 | Protopine | 5.26 ± 0.11 | 2.07 |
3 | Columbamine | 4.05 ± 0.11 | 2.61 |
4 | Glaucine | 5.10 ± 0.06 | 1.12 |
5 | Coptisine Cl | 10.44 ± 0.13 | 1.26 |
6 | Tetrahydropalmatine | 5.51 ± 0.06 | 1.07 |
7 | Tetrahydrocoptisine | 1.42 ± 0.04 | 2.54 |
8 | Berberrubine Cl | 0.02 × 10−1 ± 0.01 × 10−2 | 2.88 |
9 | Canadine | 3.39 ± 0.03 | 0.94 |
10 | Corydaline | 5.71 ± 0.02 | 0.34 |
11 | Palmatine Cl | 6.86 ± 0.07 | 0.99 |
12 | Berberine Cl | 6.47 ± 0.20 | 3.17 |
13 | Dehydrocorydaline | 18.40 ± 0.17 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.-E.; Seo, C.-S.; Jeon, W.-Y.; Oh, Y.-J.; Shin, H.-K.; Ha, H. Corydalis Tuber Extract Alleviates Atopic Dermatitis: Transcriptomics-Based Mechanism Prediction and In Vitro/In Vivo Studies. Int. J. Mol. Sci. 2025, 26, 1291. https://doi.org/10.3390/ijms26031291
Jin S-E, Seo C-S, Jeon W-Y, Oh Y-J, Shin H-K, Ha H. Corydalis Tuber Extract Alleviates Atopic Dermatitis: Transcriptomics-Based Mechanism Prediction and In Vitro/In Vivo Studies. International Journal of Molecular Sciences. 2025; 26(3):1291. https://doi.org/10.3390/ijms26031291
Chicago/Turabian StyleJin, Seong-Eun, Chang-Seob Seo, Woo-Young Jeon, Yong-Jin Oh, Hyeun-Kyoo Shin, and Hyekyung Ha. 2025. "Corydalis Tuber Extract Alleviates Atopic Dermatitis: Transcriptomics-Based Mechanism Prediction and In Vitro/In Vivo Studies" International Journal of Molecular Sciences 26, no. 3: 1291. https://doi.org/10.3390/ijms26031291
APA StyleJin, S.-E., Seo, C.-S., Jeon, W.-Y., Oh, Y.-J., Shin, H.-K., & Ha, H. (2025). Corydalis Tuber Extract Alleviates Atopic Dermatitis: Transcriptomics-Based Mechanism Prediction and In Vitro/In Vivo Studies. International Journal of Molecular Sciences, 26(3), 1291. https://doi.org/10.3390/ijms26031291