Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting
Abstract
:1. Introduction
2. Types and Mechanisms of Programmed Ribosomal Frameshifting
3. Diverse Biological Functions of PRF
3.1. PRF for Maintaining Homeostasis
3.2. PRF for Ensuring Protein Stoichiometry
3.3. PRF for Producing Pathogenic Proteins
4. Molecular Regulation of PRF
4.1. PRF Regulation by Polyamines
4.2. PRF Regulation by Hypusinated eIF5A
5. Therapeutic Potential of PRF
5.1. Potential of PRF Inhibition
5.2. Potential of PRF Stimulation
6. Discussion and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
PRF | Programmed ribosomal frameshifting |
ORF | Open reading frame |
FSEs | Frameshift stimulatory elements |
P-site | Peptidyl-site |
A-site | Aminoacyl-site |
OAZ1 | Ornithine decarboxylase antizyme 1 |
ODC1 | Ornithine decarboxylase 1 |
AZIN1 | Antizyme inhibitor 1 |
PUT | Putrescine |
SPD | Spermidine |
SPM | Spermine |
eIF5A | Eukaryotic translation initiation factor 5A |
NSP | Non-structural protein |
SARS-CoV-2 | Severe acute respiratory syndrome-coronavirus 2 |
HIV | Human immunodeficiency virus |
PRRSV | Porcine reproductive and respiratory syndrome virus |
WNV | West Nile virus |
ASOs | Antisense oligonucleotides |
References
- Jackson, R.J.; Hellen, C.U.; Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010, 11, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Neelagandan, N.; Lamberti, I.; Carvalho, H.J.F.; Gobet, C.; Naef, F. What determines eukaryotic translation elongation: Recent molecular and quantitative analyses of protein synthesis. Open Biol. 2020, 10, 200292. [Google Scholar] [CrossRef] [PubMed]
- Dinman, J.D. Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip. Rev. RNA 2012, 3, 661–673. [Google Scholar] [CrossRef]
- Penn, W.D.; Harrington, H.R.; Schlebach, J.P.; Mukhopadhyay, S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu. Rev. Virol. 2020, 7, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, M.M.; Wu, C.; Andreev, D.E.; Sachs, M.S.; Atkins, J.F. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA. J. Biol. Chem. 2015, 290, 17863–17878. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, R.; Han, X.; Wang, W.; Liang, A. The Deficiency of Hypusinated eIF5A Decreases the Putrescine/Spermidine Ratio and Inhibits +1 Programmed Ribosomal Frameshifting during the Translation of Ty1 Retrotransposon in Saccharomyces cerevisiae. Int. J. Mol. Sci. 2024, 25, 1766. [Google Scholar] [CrossRef]
- Curcio, M.J.; Lutz, S.; Lesage, P. The Ty1 LTR-Retrotransposon of Budding Yeast, Saccharomyces cerevisiae. Microbiol. Spectr. 2015, 3, 927–964. [Google Scholar] [CrossRef]
- Balasundaram, D.; Dinman, J.D.; Tabor, C.W.; Tabor, H. SPE1 and SPE2: Two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J. Bacteriol. 1994, 176, 7126–7128. [Google Scholar] [CrossRef]
- Balasundaram, D.; Dinman, J.D.; Wickner, R.B.; Tabor, C.W.; Tabor, H. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1994, 91, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, F.; Eitson, J.L.; Ohlson, M.B.; Chang, T.-C.; Schoggins, J.W.; Mendell, J.T. CRISPR screening reveals a dependency on ribosome recycling for efficient SARS-CoV-2 programmed ribosomal frameshifting and viral replication. Cell Rep. 2023, 42, 112076. [Google Scholar] [CrossRef] [PubMed]
- Mulroney, T.E.; Pöyry, T.; Yam-Puc, J.C.; Rust, M.; Harvey, R.F.; Kalmar, L.; Horner, E.; Booth, L.; Ferreira, A.P.; Stoneley, M.; et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 2024, 625, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Gu, X.; Zhang, L.; Gong, S.; Song, S.; Chen, S.; Chen, Z.; Wang, X.; Li, Z.; Zhou, Y.; et al. Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human. Nucleic Acids Res. 2024, 52, 2463–2479. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Treffers, E.E.; Meier, M.; Patel, T.R.; Stetefeld, J.; Snijder, E.J.; Mark, B.L. Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression. J. Biol. Chem. 2020, 295, 17904–17921. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shang, P.; Shyu, D.; Carrillo, C.; Naraghi-Arani, P.; Jaing, C.J.; Renukaradhya, G.J.; Firth, A.E.; Snijder, E.J.; Fang, Y. Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses. Virology 2018, 517, 164–176. [Google Scholar] [CrossRef]
- Matsufuji, S.; Matsufuji, T.; Wills, N.M.; Gesteland, R.F.; Atkins, J.F. Reading two bases twice: Mammalian antizyme frameshifting in yeast. EMBO J. 1996, 15, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Matsufuji, S.; Murakami, Y.; Gesteland, R.F.; Atkins, J.F. Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J. 2000, 19, 1907–1917. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Simin, K.; Letsou, A.; Atkins, J.F.; Gesteland, R.F. The Drosophila Gene for Antizyme Requires Ribosomal Frameshifting for Expression and Contains an Intronic Gene for snRNP Sm D3 on the Opposite Strand. Mol. Cell. Biol. 1998, 18, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Kankare, K.; Uusi-Oukari, M.; Jänne, O.A. Structure, organization and expression of the mouse ornithine decarboxylase antizyme gene. Biochem. J. 1997, 324 Pt 3, 807–813. [Google Scholar] [CrossRef]
- Ivanov, I.P.; Gesteland, R.F.; Atkins, J.F. Antizyme expression: A subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Res. 2000, 28, 3185–3196. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.; Wen, J.-D. Programmed −1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Comput. Struct. Biotechnol. J. 2021, 19, 3580–3588. [Google Scholar] [CrossRef]
- Kelly, J.A.; Olson, A.N.; Neupane, K.; Munshi, S.; San Emeterio, J.; Pollack, L.; Woodside, M.T.; Dinman, J.D. Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). J. Biol. Chem. 2020, 295, 10741–10748. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Treffers, E.E.; Napthine, S.; Tas, A.; Zhu, L.; Sun, Z.; Bell, S.; Mark, B.L.; van Veelen, P.A.; van Hemert, M.J.; et al. Transactivation of programmed ribosomal frameshifting by a viral protein. Proc. Natl. Acad. Sci. USA 2014, 111, E2172–E2181. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tas, A.; Snijder, E.J.; Fang, Y. Identification of porcine reproductive and respiratory syndrome virus ORF1a-encoded non-structural proteins in virus-infected cells. J. Gen. Virol. 2012, 93, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Brierley, I.; Jenner, A.J.; Inglis, S.C. Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 1992, 227, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Gilbert, R.J.; Brierley, I. Spacer-length dependence of programmed −1 or −2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. Nucleic Acids Res. 2012, 40, 8674–8689. [Google Scholar] [CrossRef]
- Baranov, P.V.; Gesteland, R.F.; Atkins, J.F. Recoding: Translational bifurcations in gene expression. Gene 2002, 286, 187–201. [Google Scholar] [CrossRef]
- Munshi, S.; Neupane, K.; Ileperuma, S.M.; Halma, M.T.J.; Kelly, J.A.; Halpern, C.F.; Dinman, J.D.; Loerch, S.; Woodside, M.T. Identifying Inhibitors of −1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses. Viruses 2022, 14, 177. [Google Scholar] [CrossRef]
- Romero Romero, M.L.; Landerer, C.; Poehls, J.; Toth-Petroczy, A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci. 2022, 31, e4397. [Google Scholar] [CrossRef]
- Yang, Y.F.; Lee, C.Y.; Hsieh, J.Y.; Liu, Y.L.; Lin, C.L.; Liu, G.Y.; Hung, H.C. Regulation of polyamine homeostasis through an antizyme citrullination pathway. J. Cell Physiol. 2021, 236, 5646–5663. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Tarafdar, S.; Agarwal, S.; Tarafdar, A.; Sharma, S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med. Sci. 2021, 9, 44. [Google Scholar] [CrossRef]
- Matsufuji, S.; Matsufuji, T.; Miyazaki, Y.; Murakami, Y.; Atkins, J.F.; Gesteland, R.F.; Hayashi, S. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 1995, 80, 51–60. [Google Scholar] [CrossRef]
- Ivanov, I.P.; Anderson, C.B.; Gesteland, R.F.; Atkins, J.F. Identification of a new antizyme mRNA +1 frameshifting stimulatory pseudoknot in a subset of diverse invertebrates and its apparent absence in intermediate species. J. Mol. Biol. 2004, 339, 495–504. [Google Scholar] [CrossRef]
- Ivanov, I.P.; Atkins, J.F. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: Close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res. 2007, 35, 1842–1858. [Google Scholar] [CrossRef] [PubMed]
- Jacks, T.; Power, M.D.; Masiarz, F.R.; Luciw, P.A.; Barr, P.J.; Varmus, H.E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988, 331, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.F.; Crowe-McAuliffe, C.; Graves, R.; Cardno, T.S.; McKinney, C.; Poole, E.S.; Tate, W.P. The highly conserved codon following the slippery sequence supports −1 frameshift efficiency at the HIV-1 frameshift site. PLoS ONE 2015, 10, e0122176. [Google Scholar] [CrossRef]
- Anokhina, V.S.; McAnany, J.D.; Ciesla, J.H.; Hilimire, T.A.; Santoso, N.; Miao, H.; Miller, B.L. Enhancing the ligand efficiency of anti-HIV compounds targeting frameshift-stimulating RNA. Bioorg. Med. Chem. 2019, 27, 2972–2977. [Google Scholar] [CrossRef] [PubMed]
- Temperley, R.; Richter, R.; Dennerlein, S.; Lightowlers, R.N.; Chrzanowska-Lightowlers, Z.M. Hungry Codons Promote Frameshifting in Human Mitochondrial Ribosomes. Science 2010, 327, 301. [Google Scholar] [CrossRef]
- Firth, A.E.; Atkins, J.F. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1’ may derive from ribosomal frameshifting. Virol. J. 2009, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Melian, E.B.; Hall-Mendelin, S.; Du, F.; Owens, N.; Bosco-Lauth, A.M.; Nagasaki, T.; Rudd, S.; Brault, A.C.; Bowen, R.A.; Hall, R.A.; et al. Programmed Ribosomal Frameshift Alters Expression of West Nile Virus Genes and Facilitates Virus Replication in Birds and Mosquitoes. PLoS Pathog. 2014, 10, e1004447. [Google Scholar] [CrossRef] [PubMed]
- Moomau, C.; Musalgaonkar, S.; Khan, Y.A.; Jones, J.E.; Dinman, J.D. Structural and Functional Characterization of Programmed Ribosomal Frameshift Signals in West Nile Virus Strains Reveals High Structural Plasticity Among cis-Acting RNA Elements. J. Biol. Chem. 2016, 291, 15788–15795. [Google Scholar] [CrossRef] [PubMed]
- Melian, E.B.; Hinzman, E.E.; Nagasaki, T.; Firth, A.E.; Wills, N.M.; Nouwens, A.S.; Blitvich, B.J.; Leung, J.Y.; Funk, A.; Atkins, J.F.; et al. NS1’ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness. J. Virol. 2009, 84, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Young, L.B.; Melian, E.B.; Khromykh, A.A. NS1’ colocalizes with NS1 and can substitute for NS1 in West Nile virus replication. J. Virol. 2013, 87, 9384–9390. [Google Scholar] [CrossRef]
- Winkelmann, E.R.; Widman, D.G.; Suzuki, R.; Mason, P.W. Analyses of mutations selected by passaging a chimeric flavivirus identify mutations that alter infectivity and reveal an interaction between the structural proteins and the nonstructural glycoprotein NS1. Virology 2011, 421, 96–104. [Google Scholar] [CrossRef]
- Zhou, L.; Han, J.; Yang, H. The evolution and diversity of porcine reproductive and respiratory syndrome virus in China. Vet. Microbiol. 2024, 298, 110252. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.M.; Brown, K.; Shang, P.; Li, Y.; Soday, L.; Dinan, A.M.; Tumescheit, C.; Mockett, A.P.A.; Fang, Y.; Firth, A.E.; et al. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022, 11, e75668. [Google Scholar] [CrossRef]
- Gorbalenya, A.E.; Enjuanes, L.; Ziebuhr, J.; Snijder, E.J. Nidovirales: Evolving the largest RNA virus genome. Virus Res. 2006, 117, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, J.; Yu, C.; Zhu, X.; Xu, S.; Fang, L.; Xiao, S. Porcine Reproductive and Respiratory Syndrome Virus nsp11 Antagonizes Type I Interferon Signaling by Targeting IRF9. J. Virol. 2019, 93, 10-1128. [Google Scholar] [CrossRef]
- Guo, R.; Yan, X.; Li, Y.; Cui, J.; Misra, S.; Firth, A.E.; Snijder, E.J.; Fang, Y. A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny. PLoS Pathog. 2021, 17, e1009403. [Google Scholar] [CrossRef] [PubMed]
- Napthine, S.; Ling, R.; Finch, L.K.; Jones, J.D.; Bell, S.; Brierley, I.; Firth, A.E. Protein-directed ribosomal frameshifting temporally regulates gene expression. Nat. Commun. 2017, 8, 15582. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.M.; Becker, S.T.; O’Leary, C.A.; Juneja, P.; Yang, Y.; Moss, W.N. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop. Biochemistry 2024, 63, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.R.; Scaiola, A.; Loughran, G.; Leibundgut, M.; Kratzel, A.; Meurs, R.; Dreos, R.; O’Connor, K.M.; McMillan, A.; Bode, J.W.; et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 2021, 372, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Dong, X.; Ma, R.; Wang, W.; Xiao, X.; Tian, Z.; Wang, C.; Wang, Y.; Li, L.; Ren, L.; et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 2020, 11, 3810. [Google Scholar] [CrossRef]
- Xia, H.; Cao, Z.; Xie, X.; Zhang, X.; Chen, J.Y.; Wang, H.; Menachery, V.D.; Rajsbaum, R.; Shi, P.Y. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 2020, 33, 108234. [Google Scholar] [CrossRef]
- Li, J.Y.; Liao, C.H.; Wang, Q.; Tan, Y.J.; Luo, R.; Qiu, Y.; Ge, X.Y. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 2020, 286, 198074. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhao, K.; Zhang, B.; Hua, R.; Fang, Y.; Jiang, W.; Zhang, J.; Hui, L.; Zheng, Y.; Li, Y.; et al. SARS-CoV-2 NSP12 Protein Is Not an Interferon-β Antagonist. J. Virol. 2021, 95, e0074721. [Google Scholar] [CrossRef]
- Lee, J.S.; Park, S.; Jeong, H.W.; Ahn, J.Y.; Choi, S.J.; Lee, H.; Choi, B.; Nam, S.K.; Sa, M.; Kwon, J.S.; et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 2020, 5, eabd1554. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-H.; Potapov, V.; Dai, N.; Ong, J.L.; Roy, B. N1-methyl-pseudouridine is incorporated with higher fidelity than pseudouridine in synthetic RNAs. Sci. Rep. 2022, 12, 13017. [Google Scholar] [CrossRef] [PubMed]
- Winther, K.S.; Sørensen, M.A.; Svenningsen, S.L. Polyamines are Required for tRNA Anticodon Modification in Escherichia coli. J. Mol. Biol. 2021, 433, 167073. [Google Scholar] [CrossRef]
- Stegehake, D.; Kurosinski, M.A.; Schürmann, S.; Daniel, J.; Lüersen, K.; Liebau, E. Polyamine-independent Expression of Caenorhabditis elegans Antizyme. J. Biol. Chem. 2015, 290, 18090–18101. [Google Scholar] [CrossRef] [PubMed]
- Raney, A.; Law, G.L.; Mize, G.J.; Morris, D.R. Regulated translation termination at the upstream open reading frame in s-adenosylmethionine decarboxylase mRNA. J. Biol. Chem. 2002, 277, 5988–5994. [Google Scholar] [CrossRef]
- Park, M.H.; Wolff, E.C. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J. Biol. Chem. 2018, 293, 18710–18718. [Google Scholar] [CrossRef] [PubMed]
- Landau, G.; Bercovich, Z.; Park, M.H.; Kahana, C. The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J. Biol. Chem. 2010, 285, 12474–12481. [Google Scholar] [CrossRef]
- Wu, B.; Liu, S. Structural Insights into the Mechanisms Underlying Polyaminopathies. Int. J. Mol. Sci. 2024, 25, 6340. [Google Scholar] [CrossRef] [PubMed]
- Halwas, K.; Döring, L.M.; Oehlert, F.V.; Dohmen, R.J. Hypusinated eIF5A Promotes Ribosomal Frameshifting during Decoding of ODC Antizyme mRNA in Saccharomyces cerevisiae. Int. J. Mol. Sci. 2022, 23, 12972. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Shin, B.S.; Loughran, G.; Tzani, I.; Young-Baird, S.K.; Cao, C.; Atkins, J.F.; Dever, T.E. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Mol. Cell 2018, 70, 254–264.e256. [Google Scholar] [CrossRef]
- Su, M.C.; Chang, C.T.; Chu, C.H.; Tsai, C.H.; Chang, K.Y. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res. 2005, 33, 4265–4275. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.M.; Anderson, C.B.; Howard, M.T. Antisense-induced ribosomal frameshifting. Nucleic Acids Res. 2006, 34, 4302–4310. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.T.; Gesteland, R.F.; Atkins, J.F. Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides. RNA 2004, 10, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Liberman, J.A.; Salim, M.; Krucinska, J.; Wedekind, J.E. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Nat. Chem. Biol. 2013, 9, 353–355. [Google Scholar] [CrossRef]
- Zhang, K.; Zheludev, I.N.; Hagey, R.J.; Haslecker, R.; Hou, Y.J.; Kretsch, R.; Pintilie, G.D.; Rangan, R.; Kladwang, W.; Li, S.; et al. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 2021, 28, 747–754. [Google Scholar] [CrossRef]
- Varricchio, C.; Mathez, G.; Pillonel, T.; Bertelli, C.; Kaiser, L.; Tapparel, C.; Brancale, A.; Cagno, V. Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed −1 ribosomal frameshifting. bioRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Staple, D.W.; Venditti, V.; Niccolai, N.; Elson-Schwab, L.; Tor, Y.; Butcher, S.E. Guanidinoneomycin B recognition of an HIV-1 RNA helix. Chembiochem 2008, 9, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Abriola, L.; Niederer, R.O.; Pedersen, S.F.; Alfajaro, M.M.; Silva Monteiro, V.; Wilen, C.B.; Ho, Y.C.; Gilbert, W.V.; Surovtseva, Y.V.; et al. Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting. Proc. Natl. Acad. Sci. USA 2021, 118, e2023051118. [Google Scholar] [CrossRef] [PubMed]
- Dinman, J.D.; Ruiz-Echevarria, M.J.; Czaplinski, K.; Peltz, S.W. Peptidyl-transferase inhibitors have antiviral properties by altering programmed −1 ribosomal frameshifting efficiencies: Development of model systems. Proc. Natl. Acad. Sci. USA 1997, 94, 6606–6611. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.; Park, M.W.; Jeong, S. Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus. PLoS ONE 2011, 6, e24067. [Google Scholar] [CrossRef]
- Ofori, L.O.; Hilimire, T.A.; Bennett, R.P.; Brown, N.W., Jr.; Smith, H.C.; Miller, B.L. High-Affinity Recognition of HIV-1 Frameshift-Stimulating RNA Alters Frameshifting in Vitro and Interferes with HIV-1 Infectivity. J. Med. Chem. 2014, 57, 723–732. [Google Scholar] [CrossRef]
- Marcheschi, R.J.; Tonelli, M.; Kumar, A.; Butcher, S.E. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication. ACS Chem. Biol. 2011, 6, 857–864. [Google Scholar] [CrossRef]
- Hung, M.; Patel, P.; Davis, S.; Green, S.R. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J. Virol. 1998, 72, 4819–4824. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Chen, S.-C.; Wu, T.-Y.; Chen, C.-Y.; Yu, C.-H. Programmable modulation of ribosomal frameshifting by mRNA targeting CRISPR-Cas12a system. iScience 2023, 26, 108492. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, A.; Adams, M.; Cao, X.; Yamaguchi, A.; Henderson, J.; Busch-Østergren, P.; Udager, A.; Pitchiaya, S.; Tourdot, B.; Kasputis, T.; et al. Antisense oligonucleotides and nucleic acids generate hypersensitive platelets. Thromb. Res. 2021, 200, 64–71. [Google Scholar] [CrossRef]
- Papargyri, N.; Pontoppidan, M.; Andersen, M.R.; Koch, T.; Hagedorn, P.H. Chemical Diversity of Locked Nucleic Acid-Modified Antisense Oligonucleotides Allows Optimization of Pharmaceutical Properties. Mol. Ther. Nucleic Acids 2020, 19, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Aupeix-Scheidler, K.; Chabas, S.; Bidou, L.; Rousset, J.P.; Leng, M.; Toulmé, J.J. Inhibition of in vitro and ex vivo translation by a transplatin-modified oligo(2’-O-methylribonucleotide) directed against the HIV-1 gag-pol frameshift signal. Nucleic Acids Res. 2000, 28, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Bao, X.; Ren, Y.; Jia, L.; Zou, S.; Han, J.; Zhao, M.; Han, M.; Li, H.; Hua, Q.; et al. Targeting HDAC/OAZ1 axis with a novel inhibitor effectively reverses cisplatin resistance in non-small cell lung cancer. Cell Death Dis. 2019, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Noteborn, M.H.; Olsthoorn, R.C. Stimulation of ribosomal frameshifting by antisense LNA. Nucleic Acids Res. 2010, 38, 8277–8283. [Google Scholar] [CrossRef] [PubMed]
- Sei, S.; Ahadova, A.; Keskin, D.B.; Bohaumilitzky, L.; Gebert, J.; von Knebel Doeberitz, M.; Lipkin, S.M.; Kloor, M. Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Front. Oncol. 2023, 13, 1147590. [Google Scholar] [CrossRef] [PubMed]
- Belew, A.; Hepler, N.; Jacobs, J.; Dinman, J. PRFdb: A database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals. BMC Genom. 2008, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Mikl, M.; Pilpel, Y.; Segal, E. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat. Commun. 2020, 11, 3061. [Google Scholar] [CrossRef]
- Cardno, T.S.; Shimaki, Y.; Sleebs, B.E.; Lackovic, K.; Parisot, J.P.; Moss, R.M.; Crowe-McAuliffe, C.; Mathew, S.F.; Edgar, C.D.; Kleffmann, T.; et al. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators. PLoS ONE 2015, 10, e0139036. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramamonjiharisoa, M.B.M.; Liu, S. Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting. Int. J. Mol. Sci. 2025, 26, 1294. https://doi.org/10.3390/ijms26031294
Ramamonjiharisoa MBM, Liu S. Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting. International Journal of Molecular Sciences. 2025; 26(3):1294. https://doi.org/10.3390/ijms26031294
Chicago/Turabian StyleRamamonjiharisoa, Miora Bruna Marielle, and Sen Liu. 2025. "Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting" International Journal of Molecular Sciences 26, no. 3: 1294. https://doi.org/10.3390/ijms26031294
APA StyleRamamonjiharisoa, M. B. M., & Liu, S. (2025). Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting. International Journal of Molecular Sciences, 26(3), 1294. https://doi.org/10.3390/ijms26031294