Lymphocyte Subset Imbalance in Cardiometabolic Diseases: Are T Cells the Missing Link?
Abstract
:1. Introduction
2. FCM Immunophenotyping for T Cell Characterization
3. Atherosclerosis
4. Hypertension
5. Diabetes
6. Stroke
7. Myocardial Diseases
8. CVD Pharmacological Treatment and Imbalance of Lymphocyte Subsets
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cano, R.L.E.; Lopera, H.D.E. Introduction to T and B lymphocytes. In Autoimmunity: From Bench to Bedside [Internet]; Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., Levy, R.A., Cervera, R., Eds.; El Rosario University Press: Bogota, Colombia, 2013; Chapter 5. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459471/ (accessed on 8 January 2025).
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Reali, E.; Ferrando-Martinez, S.; Catalfamo, M. Editorial: The Interplay Between Immune Activation and Cardiovascular Disease During Infection, Autoimmunity and Aging: The Role of T Cells. Front. Immunol. 2021, 12, 719517. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 2010, 28, 445–489. [Google Scholar] [CrossRef]
- Meitei, H.T.; Lal, G. T cell receptor signaling in the differentiation and plasticity of CD4+ T cells. Cytokine Growth Factor Rev. 2023, 69, 14–27. [Google Scholar] [CrossRef]
- Klose, C.S.; Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 2016, 17, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Cossarizza, A.; Chang, H.D.; Radbruch, A.; Akdis, M.; Andrä, I.; Annunziato, F.; Bacher, P.; Barnaba, V.; Battistini, L.; Bauer, W.M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 2017, 47, 1584–1797. [Google Scholar] [CrossRef]
- Lambert, C.; Yanikkaya Demirel, G.; Keller, T.; Preijers, F.; Psarra, K.; Schiemann, M.; Özçürümez, M.; Sack, U. Flow Cytometric Analyses of Lymphocyte Markers in Immune Oncology: A Comprehensive Guidance for Validation Practice According to Laws and Standards. Front. Immunol. 2020, 11, 2169. [Google Scholar] [CrossRef]
- Chen, C.H.; Lu, T.P. Utilizing gene expression profiles to characterize tumor infiltrating lymphocytes in cancers. Ann. Transl. Med. 2019, 7, S289. [Google Scholar] [CrossRef] [PubMed]
- Boyalla, V.; Gallego-Colon, E.; Spartalis, M. Immunity and inflammation in cardiovascular disorders. BMC Cardiovasc. Disord. 2023, 23, 148. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Liu, J.; Hu, W.; Chen, Z.; Lan, J.; Zhang, T.; Zhang, Y.; Wu, X.; Zhong, Z.; Zhang, D.; et al. Targeting pro-inflammatory T cells as a novel therapeutic approach to potentially resolve atherosclerosis in humans. Cell Res. 2024, 34, 407–427, Erratum in Cell Res. 2024, 34, 815. [Google Scholar] [CrossRef]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.X.; Kostapanos, M.; Griffiths, C.; Arbon, E.L.; Hubsch, A.; Kaloyirou, F.; Helmy, J.; Hoole, S.P.; Rudd, J.H.F.; Wood, G.; et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): Protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open 2018, 8, e022452. [Google Scholar] [CrossRef] [PubMed]
- Gopal, R.; Marinelli, M.A.; Alcorn, J.F. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front. Immunol. 2020, 11, 570681. [Google Scholar] [CrossRef] [PubMed]
- Maecker, H.T.; McCoy, J.P.; Nussenblatt, R. Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 2012, 12, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Finak, G.; Langweiler, M.; Jaimes, M.; Malek, M.; Taghiyar, J.; Korin, Y.; Raddassi, K.; Devine, L.; Obermoser, G.; Pekalski, M.L.; et al. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep. 2016, 6, 20686. [Google Scholar] [CrossRef] [PubMed]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [PubMed]
- Bjornson, Z.B.; Nolan, G.P.; Fantl, W.J. Single-cell mass cytometry for analysis of immune system functional states. Curr. Opin. Immunol. 2013, 25, 484–494. [Google Scholar] [CrossRef]
- Mahnke, Y.; Chattopadhyay, P.; Roederer, M. Publication of optimized multicolor immunofluorescence panels. Cytom. Part A 2010, 77, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Roederer, M.; Tárnok, A. OMIPs—Orchestrating multiplexity in polychromatic science. Cytom. Part A 2010, 77, 811–812. [Google Scholar] [CrossRef]
- Brestoff, J.R. Full spectrum flow cytometry in the clinical laboratory. Int. J. Lab. Hematol. 2023, 45, 44–49. [Google Scholar] [CrossRef]
- Mahnke, Y.D.; Beddall, M.H.; Roederer, M. OMIP-017: Human CD4(+) helper T-cell subsets including follicular helper cells. Cytom. Part A 2013, 83, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Bocsi, J.; Melzer, S.; Dähnert, I.; Tárnok, A. OMIP-023: 10-color, 13 antibody panel for in-depth phenotyping of human peripheral blood leukocytes. Cytom. Part A 2014, 85, 781–784. [Google Scholar] [CrossRef]
- Moncunill, G.; Han, H.; Dobaño, C.; McElrath, M.J.; De Rosa, S.C. OMIP-024: Pan-leukocyte immunophenotypic characterization of PBMC subsets in human samples. Cytom. Part A 2014, 85, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Wingender, G.; Kronenberg, M. OMIP-030: Characterization of human T cell subsets via surface markers. Cytom. Part A 2015, 87, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Staser, K.W.; Eades, W.; Choi, J.; Karpova, D.; DiPersio, J.F. OMIP-042: 21-color flow cytometry to comprehensively immunophenotype major lymphocyte and myeloid subsets in human peripheral blood. Cytom. Part A 2018, 93, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Nowatzky, J.; Stagnar, C.; Manches, O. OMIP-053: Identification, Classification, and Isolation of Major FoxP3 Expressing Human CD4+ Treg Subsets. Cytom. Part A 2019, 95, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Liechti, T.; Roederer, M. OMIP-060: 30-Parameter Flow Cytometry Panel to Assess T Cell Effector Functions and Regulatory T Cells. Cytom. Part A 2019, 95, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Payne, K.; Li, W.; Salomon, R.; Ma, C.S. OMIP-063: 28-Color Flow Cytometry Panel for Broad Human Immunophenotyping. Cytom. Part A 2020, 97, 777–781. [Google Scholar] [CrossRef]
- Swanson, P.A., 2nd; Seder, R.A. OMIP-067: 28-Color Flow Cytometry Panel to Evaluate Human T-Cell Phenotype and Function. Cytom. Part A 2020, 97, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Park, L.M.; Lannigan, J.; Low, Q.; Jaimes, M.C.; Bonilla, D.L. OMIP-069 version 2: Update to the 40-color full Spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytom. Part A 2024, 105, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.R.; Zhong, N.; Zhang, X.M.; Zhao, Z.B.; Balderas, R.; Li, L.; Lian, Z.X. OMIP 071: A 31-Parameter Flow Cytometry Panel for In-Depth Immunophenotyping of Human T-Cell Subsets Using Surface Markers. Cytom. Part A 2021, 99, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Boesch, M.; Sykora, M.; Gasteiger, S.; Baty, F.; Brutsche, M.H.; Sopper, S. OMIP 077: Definition of all principal human leukocyte populations using a broadly applicable 14-color panel. Cytom. Part A 2022, 101, 15–20. [Google Scholar] [CrossRef]
- Nogimori, T.; Sugawara, Y.; Higashiguchi, M.; Murakami, H.; Akita, H.; Takahama, S.; Tanaka, S.; Yamamoto, T. OMIP 078: A 31-parameter panel for comprehensive immunophenotyping of multiple immune cells in human peripheral blood mononuclear cells. Cytom. Part A 2021, 99, 893–898. [Google Scholar] [CrossRef]
- Vanikova, S.; Koladiya, A.; Musil, J. OMIP-080: 29-Color flow cytometry panel for comprehensive evaluation of NK and T cells reconstitution after hematopoietic stem cells transplantation. Cytom. Part A 2022, 101, 21–26. [Google Scholar] [CrossRef]
- Huys, E.H.L.P.G.; Hobo, W.; Preijers, F.W.M.B. OMIP-081: A new 21-monoclonal antibody 10-color panel for diagnostic polychromatic immunophenotyping. Cytom. Part A 2022, 101, 117–121. [Google Scholar] [CrossRef]
- Roos, E.O.; Mwangi, W.N.; Gerner, W.; Waters, R.; Hammond, J.A. OMIP-089: Cattle T-cell phenotyping by an 8-color panel. Cytom. Part A 2023, 103, 279–282. [Google Scholar] [CrossRef]
- Stroukov, W.; Mastronicola, D.; Albany, C.J.; Catak, Z.; Lombardi, G.; Scottà, C. OMIP-090: A 20-parameter flow cytometry panel for rapid analysis of cell diversity and homing capacity in human conventional and regulatory T cells. Cytom. Part A 2023, 103, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Jalali, S.; Licciardi, P.V.; Pellicci, D.G. OMIP-91: A 27-color flow cytometry panel to evaluate the phenotype and function of human conventional and unconventional T-cells. Cytom. Part A 2023, 103, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Pierzchalski, A.; Zenclussen, A.C.; Herberth, G. OMIP-94: Twenty-four-color (thirty-marker) panel for deep immunophenotyping of immune cells in human peripheral blood. Cytom. Part A 2023, 103, 695–702. [Google Scholar] [CrossRef]
- Zacharias, Z.R.; Houtman, J.C.D. OMIP-099: 31-color spectral flow cytometry panel to investigate the steady-state phenotype of human T cells. Cytom. Part A 2024, 105, 10–15. [Google Scholar] [CrossRef]
- Imbratta, C.; Reid, T.D.; Toefy, A.; Scriba, T.J.; Nemes, E. OMIP-101: 27-color flow cytometry panel for immunophenotyping of major leukocyte populations in fixed whole blood. Cytom. Part A 2024, 105, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Konecny, A.J.; Mage, P.L.; Tyznik, A.J.; Prlic, M.; Mair, F. OMIP-102: 50-color phenotyping of the human immune system with in-depth assessment of T cells and dendritic cells. Cytom. Part A 2024, 105, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Musil, J.; Ptacek, A.; Vanikova, S. OMIP-106: A 30-color panel for analysis of check-point inhibitory networks in the bone marrow of acute myeloid leukemia patients. Cytom. Part A 2024, 105, 729–736. [Google Scholar] [CrossRef]
- Park, L.M.; Lannigan, J.; Low, Q.; Jaimes, M.C.; Bonilla, D.L. OMIP-109: 45-color full spectrum flow cytometry panel for deep immunophenotyping of the major lineages present in human peripheral blood mononuclear cells with emphasis on the T cell memory compartment. Cytom. Part A 2024, 105, 807–815. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Brioschi, S.; Wang, W.L.; Peng, V.; Wang, M.; Shchukina, I.; Greenberg, Z.J.; Bando, J.K.; Jaeger, N.; Czepielewski, R.S.; Swain, A.; et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 2021, 373, eabf9277. [Google Scholar] [CrossRef]
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Popa-Fotea, N.M.; Ferdoschi, C.E.; Micheu, M.M. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1200341. [Google Scholar] [CrossRef] [PubMed]
- Ramji, D.P.; Davies, T.S. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015, 26, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef]
- Winkels, H.; Ehinger, E.; Vassallo, M.; Buscher, K.; Dinh, H.Q.; Kobiyama, K.; Hamers, A.A.J.; Cochain, C.; Vafadarnejad, E.; Saliba, A.E.; et al. Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ. Res. 2018, 122, 1675–1688. [Google Scholar] [CrossRef]
- Hinkley, H.; Counts, D.A.; VonCanon, E.; Lacy, M. T Cells in Atherosclerosis: Key Players in the Pathogenesis of Vascular Disease. Cells 2023, 12, 2152. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Delgobo, M.; Heinrichs, M.; Hapke, N.; Ashour, D.; Appel, M.; Srivastava, M.; Heckel, T.; Spyridopoulos, I.; Hofmann, U.; Frantz, S.; et al. Terminally Differentiated CD4+ T Cells Promote Myocardial Inflammaging. Front. Immunol. 2021, 12, 584538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Nicoletti, A.; Elhage, R.; Hansson, G.K. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000, 102, 2919–2922. [Google Scholar] [CrossRef]
- Friebel, J.; Witkowski, M.; Wegner, M.; Blöbaum, L.; Lammel, S.; Schencke, P.A.; Jakobs, K.; Puccini, M.; Reißner, D.; Steffens, D.; et al. Cytotoxic CD8+ T Cells Are Involved in the Thrombo-Inflammatory Response during First-Diagnosed Atrial Fibrillation. Cells 2022, 12, 141. [Google Scholar] [CrossRef]
- Engelen, S.E.; Robinson, A.J.B.; Zurke, Y.X.; Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? Nat. Rev. Cardiol. 2022, 19, 522–542. [Google Scholar] [CrossRef] [PubMed]
- Grivel, J.C.; Ivanova, O.; Pinegina, N.; Blank, P.S.; Shpektor, A.; Margolis, L.B.; Vasilieva, E. Activation of T lymphocytes in atherosclerotic plaques. Arter. Thromb. Vasc. Biol. 2011, 31, 2929–2937. [Google Scholar] [CrossRef]
- Padgett, L.E.; Dinh, H.Q.; Wu, R.; Gaddis, D.E.; Araujo, D.J.; Winkels, H.; Nguyen, A.; McNamara, C.A.; Hedrick, C.C. Naive CD8+ T Cells Expressing CD95 Increase Human Cardiovascular Disease Severity. Arter. Thromb. Vasc. Biol. 2020, 40, 2845–2859, Erratum in Arter. Thromb. Vasc. Biol. 2021, 41, e383. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, R.; Winkels, H.; Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 2020, 17, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, S.; Kwon, M.; Shin, M.K.; Kim, M.K. Association of C-Reactive Protein with Risk of Developing Type 2 Diabetes Mellitus, and Role of Obesity and Hypertension: A Large Population-Based Korean Cohort Study. Sci. Rep. 2019, 9, 4573. [Google Scholar] [CrossRef]
- Xu, J.P.; Zeng, R.X.; Zhang, Y.Z.; Lin, S.S.; Tan, J.W.; Zhu, H.Y.; Mai, X.Y.; Guo, L.H.; Zhang, M.Z. Systemic inflammation markers and the prevalence of hypertension: A NHANES cross-sectional study. Hypertens. Res. 2023, 46, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Camargo, L.L.; Rios, F.J.; Montezano, A.C.; Touyz, R.M. Reactive oxygen species in hypertension. Nat. Rev. Cardiol. 2024, 22, 20–37. [Google Scholar] [CrossRef]
- Alexander, Y.; Osto, E.; Schmidt-Trucksäss, A.; Shechter, M.; Trifunovic, D.; Duncker, D.J.; Aboyans, V.; Bäck, M.; Badimon, L.; Cosentino, F.; et al. Endothelial function in cardiovascular medicine: A consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 2021, 117, 29–42. [Google Scholar] [CrossRef]
- Gallo, G.; Volpe, M.; Savoia, C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front. Med. 2022, 8, 798958. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.G.; Patrick, D.M. Immune Mechanisms in Hypertension. Hypertension 2024, 81, 1659–1674. [Google Scholar] [CrossRef] [PubMed]
- Satou, R.; Penrose, H.; Navar, L.G. Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Curr. Hypertens. Rep. 2018, 20, 100. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.C.; Nosalski, R.; MacRitchie, N.; Tomaszewski, M.; Maffia, P.; Harrison, D.G.; Guzik, T.J. Therapeutic targeting of inflammation in hypertension: From novel mechanisms to translational perspective. Cardiovasc. Res. 2021, 117, 2589–2609. [Google Scholar] [CrossRef]
- Hengel, F.E.; Benitah, J.P.; Wenzel, U.O. Mosaic theory revised: Inflammation and salt play central roles in arterial hypertension. Cell. Mol. Immunol. 2022, 19, 561–576. [Google Scholar] [CrossRef]
- Itani, H.A.; McMaster, W.G., Jr.; Saleh, M.A.; Nazarewicz, R.R.; Mikolajczyk, T.P.; Kaszuba, A.M.; Konior, A.; Prejbisz, A.; Januszewicz, A.; Norlander, A.E.; et al. Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. Hypertension 2016, 68, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Dos Passos, R.R.; Santos, C.V.; Priviero, F.; Briones, A.M.; Tostes, R.C.; Webb, R.C.; Bomfim, G.F. Immunomodulatory Activity of Cytokines in Hypertension: A Vascular Perspective. Hypertension 2024, 81, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Smigoc Schweiger, D. Recent Advances in Immune-Based Therapies for Type 1 Diabetes. Horm. Res. Paediatr. 2023, 96, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Burrack, A.L.; Martinov, T.; Fife, B.T. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front. Endocrinol. 2017, 8, 343. [Google Scholar] [CrossRef]
- Teniente-Serra, A.; Pizarro, E.; Quirant-Sánchez, B.; Fernández, M.A.; Vives-Pi, M.; Martinez-Caceres, E.M. Identifying Changes in Peripheral Lymphocyte Subpopulations in Adult Onset Type 1 Diabetes. Front. Immunol. 2021, 12, 784110. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Afshan, N.; Singh, A.; Singh, S.K.; Yadav, S.; Kumar, M.; Sarma, D.K.; Verma, V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur. J. Cell Biol. 2023, 102, 151329. [Google Scholar] [CrossRef]
- Martín-Timón, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; Del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444–470. [Google Scholar] [CrossRef] [PubMed]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Rao, X.; Zhong, J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. J. Diabetes Res. 2017, 2017, 6494795. [Google Scholar] [CrossRef]
- Nekoua, M.P.; Fachinan, R.; Atchamou, A.K.; Nouatin, O.; Amoussou-Guenou, D.; Amoussou-Guenou, M.K.; Moutairou, K.; Yessoufou, A. Modulation of immune cells and Th1/Th2 cytokines in insulin-treated type 2 diabetes mellitus. Afr. Health Sci. 2016, 16, 712–724. [Google Scholar] [CrossRef]
- Jagannathan-Bogdan, M.; McDonnell, M.E.; Shin, H.; Rehman, Q.; Hasturk, H.; Apovian, C.M.; Nikolajczyk, B.S. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J. Immunol. 2011, 186, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, K.; Liu, S.; Xu, Y.; Tang, L. Tim-3 Expression Causes NK Cell Dysfunction in Type 2 Diabetes Patients. Front. Immunol. 2022, 13, 852436. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, J.; Shou, J.; Zhang, W.; Chen, C. Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp. Neurol. 2021, 343, 113782. [Google Scholar] [CrossRef] [PubMed]
- Zera, K.A.; Buckwalter, M.S. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020, 17, 414–435. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, X.; Gu, L.; Zhu, H.; Zhong, Y.; Ye, Y.; Xiong, X.; Jian, Z. New Insight Into Neutrophils: A Potential Therapeutic Target for Cerebral Ischemia. Front. Immunol. 2021, 12, 692061. [Google Scholar] [CrossRef] [PubMed]
- Shui, X.; Chen, J.; Fu, Z.; Zhu, H.; Tao, H.; Li, Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J. Inflamm. Res. 2024, 17, 3335–3352. [Google Scholar] [CrossRef]
- Fan, P.L.; Wang, S.S.; Chu, S.F.; Chen, N.H. Time-dependent dual effect of microglia in ischemic stroke. Neurochem. Int. 2023, 169, 105584. [Google Scholar] [CrossRef] [PubMed]
- Blank-Stein, N.; Mass, E. Macrophage and monocyte subsets in response to ischemic stroke. Eur. J. Immunol. 2023, 53, e2250233. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C.; Buckwalter, M.S.; Anrather, J. Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J. Clin. Investig. 2020, 130, 2777–2788. [Google Scholar] [CrossRef]
- Okada, T.; Suzuki, H.; Travis, Z.D.; Zhang, J.H. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr. Neuropharmacol. 2020, 18, 1187–1212. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, S.; Li, Y.; Sun, Y.; Xiong, X.; Hu, X.; Chen, J.; Qiu, S. Interleukins and Ischemic Stroke. Front. Immunol. 2022, 13, 828447. [Google Scholar] [CrossRef] [PubMed]
- Iside, C.; Affinito, O.; Punzo, B.; Salvatore, M.; Mirabelli, P.; Cavaliere, C.; Franzese, M. Stratification of Patients with Coronary Artery Disease by Circulating Cytokines Profile: A Pilot Study. J. Clin. Med. 2023, 12, 6649. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.N.; Gonzales, R.; Feng, Y.; Wood, K.; Chai, Z.; Dong, J.F.; La Cava, A.; Shi, F.D.; Liu, Q. Brain Ischemia Induces Diversified Neuroantigen-Specific T-Cell Responses That Exacerbate Brain Injury. Stroke 2018, 49, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.Y.; Ye, Y.Z.; Zhu, X.Q.; Smerin, D.; Gu, L.J.; Xiong, X.X.; Zhang, H.F.; Jian, Z.H. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J. Neuroinflamm. 2021, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, C.; Ren, Y.; Song, J.; Fan, K.; Gao, L.; Ji, X.; Chen, X.; Zhao, H. Nanomaterial-Based Strategies for Attenuating T-Cell-Mediated Immunodepression in Stroke Patients: Advancing Research Perspectives. Int. J. Nanomed. 2024, 19, 5793–5812. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dong, J.; Zhang, Z.; Liu, Y.; Wang, Y. Regulatory T cells: A suppressor arm in post-stroke immune homeostasis. Neurobiol. Dis. 2023, 189, 106350. [Google Scholar] [CrossRef]
- Wang, H.Y.; Ye, J.R.; Cui, L.Y.; Chu, S.F.; Chen, N.H. Regulatory T cells in ischemic stroke. Acta Pharmacol. Sin. 2022, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yue, X.; Jia, M.; Wang, J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 2023, 9, e17986. [Google Scholar] [CrossRef] [PubMed]
- Bouras, M.; Asehnoune, K.; Roquilly, A. Immune modulation after traumatic brain injury. Front. Med. 2022, 9, 995044. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Li, Q.; Zhou, H.; Sun, L.; Lin, C.; Jin, Y.; Wang, D.; Guo, G. The role of major immune cells in myocardial infarction. Front. Immunol. 2023, 13, 1084460. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.D.; Rousseau, S.T.; Bermea, K.C.; Bhalodia, A.; Lovell, J.P.; Zita, M.D.; Čiháková, D.; Adamo, L. Myocardial Immune Cells: The Basis of Cardiac Immunology. J. Immunol. 2023, 210, 1198–1207. [Google Scholar] [CrossRef]
- Stephenson, E.; Savvatis, K.; Mohiddin, S.A.; Marelli-Berg, F.M. T-cell immunity in myocardial inflammation: Pathogenic role and therapeutic manipulation. Br. J. Pharmacol. 2017, 174, 3914–3925. [Google Scholar] [CrossRef] [PubMed]
- Zacchigna, S.; Martinelli, V.; Moimas, S.; Colliva, A.; Anzini, M.; Nordio, A.; Costa, A.; Rehman, M.; Vodret, S.; Pierro, C.; et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 2018, 9, 2432. [Google Scholar] [CrossRef]
- Kallikourdis, M.; Condorelli, G. An Immune Checkpoint Inhibitor Heart: How CD45RA+ Effector Memory CD8+ T Cells (Temra) Are Implicated in Immune Checkpoint Inhibitor Myocarditis. Circulation 2022, 146, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Gao, D.; Wang, X.; Liu, B.; Shan, X.; Sun, Y.; Ma, D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front. Immunol. 2024, 15, 1331609. [Google Scholar] [CrossRef] [PubMed]
- Adamo, L.; Rocha-Resende, C.; Lin, C.Y.; Evans, S.; Williams, J.; Dun, H.; Li, W.; Mpoy, C.; Andhey, P.S.; Rogers, B.E.; et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight 2020, 5, e134700. [Google Scholar] [CrossRef] [PubMed]
- Bermea, K.; Bhalodia, A.; Huff, A.; Rousseau, S.; Adamo, L. The Role of B Cells in Cardiomyopathy and Heart Failure. Curr. Cardiol. Rep. 2022, 24, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, J.; Zhou, H.; Qu, T.; Wang, Y.; Jiang, K.; Liu, Y.; Xu, Y.; Chen, M.; Chen, L. B cell subsets contribute to myocardial protection by inducing neutrophil apoptosis after ischemia and reperfusion. JCI Insight 2024, 9, e167201. [Google Scholar] [CrossRef]
- Ong, S.; Rose, N.R.; Čiháková, D. Natural killer cells in inflammatory heart disease. Clin. Immunol. 2017, 175, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Dalal, R.; Cao, C.D.; Postoak, J.L.; Yang, G.; Zhang, Q.; Wang, Z.; Lal, H.; Van Kaer, L. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc. Natl. Acad. Sci. USA 2019, 116, 21673–21684. [Google Scholar] [CrossRef] [PubMed]
- Saleh, D.; Jones, R.T.L.; Schroth, S.L.; Thorp, E.B.; Feinstein, M.J. Emerging Roles for Dendritic Cells in Heart Failure. Biomolecules 2023, 13, 1535. [Google Scholar] [CrossRef] [PubMed]
- Alcaide, P.; Kallikourdis, M.; Emig, R.; Prabhu, S.D. Myocardial Inflammation in Heart Failure With Reduced and Preserved Ejection Fraction. Circ. Res. 2024, 134, 1752–1766. [Google Scholar] [CrossRef] [PubMed]
- Albany, C.J.; Trevelin, S.C.; Giganti, G.; Lombardi, G.; Scottà, C. Getting to the Heart of the Matter: The Role of Regulatory T-Cells (Tregs) in Cardiovascular Disease (CVD) and Atherosclerosis. Front. Immunol. 2019, 10, 2795. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.S.; Handke, J.; Gillmann, H.J.; Zhang, Q.; Dehne, S.; Janssen, H.; Arens, C.; Espeter, F.; Sander, A.; Giannitsis, E.; et al. Frontline Science: Low regulatory T cells predict perioperative major adverse cardiovascular and cerebrovascular events after noncardiac surgery. J. Leukoc. Biol. 2020, 107, 717–730. [Google Scholar] [CrossRef]
- Murphy, A.J.; Febbraio, M.A. Immune-based therapies in cardiovascular and metabolic diseases: Past, present and future. Nat. Rev. Immunol. 2021, 21, 669–679. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
Specificity | Fluorochromes | Clones | Purpose | OMIP |
---|---|---|---|---|
CD2 | PerCP/Cy5.5 | TS1/8 | Identification of ILCs, NK cell phenotyping | 69 [31], 109 [45] |
APC-AF700 | 39C15 | 81 [36] | ||
Qdot 605 | S5.5 | 102 [43] | ||
CD3 | AF594, ECD, QD605, AF488, BV570, BUV496, AF647, APC-AF750, BUV395 | UCHT1 | Mature T cells | 17 [22], 24 [24], 30 [25], 42 [26], 63 [29], 67 [30], 101 [42], 102 [43], 80 [35], 81 [36], 91 [39] |
V500, APC-Cy7 | SP34-2 | 23 [23], 78 [34] | ||
AF700 | HIT3a, UCHT1 | 90 [38] | ||
PerCP/Cy5.5, APC-H7, BV510, Spark Blue 550 | SK7 | 53 [27], 60 [28], 71 [32], 69 [31], 99 [41], 109 [45], 94 [40] | ||
BUV805 | SK3 | 71 [32] | ||
BV605 | OKT3, UCHT1 | 77 [33], 106 [44] | ||
BV711 | MM1A | 89 [37] | ||
CD4 | QD800 | OKT4 | CD4 T cell and NKT-like cell lineage marker | 17 [22] |
APC-H7, BUV395, BV510, BUV496, BUV661, BUV805, cFluor YG584, PE-Cy5.5, PerCP, NovaFluor Blue 610-70s, BV480, NovaFluor Blue 585, PerCP/Fire 806 | SK3 | 23 [23], 24 [24], 90 [38], 30 [25], 42 [26], 53 [27], 60 [28], 63 [29], 67 [30], 69 [31], 78 [34], 94 [40], 99 [41], 101 [42], 102 [43], 109 [45] | ||
BV750 | RPA-T8 | 71 [32] | ||
BV570, BUV496 | RPA-T4 | 80 [35], 106 [44], 91 [39] | ||
PE-Cy7 | SFCI12T4B11 | 81 [36] | ||
CD5 | PE-Cy5.5 | BL1a | T-cell lineage, B-cell subset | 81 [36] |
CD7 | PE-Cy7 | M-A251 | Naïve/effector T cell | 71 [32] |
FITC | 8H8.1 | 81 [36] | ||
CD8 | QD585, eF650, BUV496, PE, BUV563, BUV805, BV570 | RPA-T8 | CD8 T, NK, NKT-Like, and MAIT cells | 17 [22], 30 [25], 63 [28], 67 [30], 78 [34], 80 [35], 101 [42] |
PerCP-Cy5.5, BV510, BUV805, BV750 | SK1 | 24 [24], 60 [28], 69 [31], 99 [41], 109 [45], 91 [39] | ||
BV650 | RPA-T8, SK1 | 42 [26], 53 [27] | ||
BV786 | NCAM16.2 | 71 [32] | ||
PB | B9.11 | 81 [36] | ||
FITC | SK1, RPA-T8, B9.11 | 94 [40], 106 [44], 23 [23] | ||
NovaFluor Blue 585 | OKT8 | 102 [43] | ||
PE-Texas Red | CC63 | 89 [37] | ||
CD11a | BUV496 | HI111 | Activation | 99 [41] |
CD16 | PE-Cy7, APC-Cy7, BUV496, BV650, AF700, BV605, PE-AF700 | 3G8 | T-cell subsets, NK cells, monocyte differentiation, eosinophil exclusion, myeloid lineage | 23 [23], 24 [24], 42 [26], 69 [31], 109 [45], 78 [34], 80 [35], 94 [40], 101 [42], 102 [43] |
APC-efluor780 | ebioCB16 | 77 [33] | ||
PE | B73.1 | 81 [36] | ||
CD25 | ECD | B1.49.9 | IL-2 Receptor a, Treg, lymphocyte activation marker | 23 [23] |
BV421 | M-A251, HIL-7R-M21 | 24 [24], 71 [32] | ||
BV711, BUV563, BYG584, BUV737 | 2A3 | 30 [25], 42 [26], 60 [28], 63 [29], 80 [35] | ||
PE/dazzle™ 594, BUV805 | M-A251 | 53 [27], 106 [44] | ||
BB700, PE-Cy7, BV605, BB515 | BC96 | 67 [30], 94 [40], 99 [41], 102 [43] | ||
cFluor BYG710 | 4 E 3 | 69 [31], 109 [45] | ||
PE-Cy5 | IL-A111 | 89 [37] | ||
PE/CF594 | M-A251, BC96 | 90 [38], 91 [39] | ||
CD27 | BV785, BV750 | O323 | Memory B cells; naïve and CM CD4+ and CD8+ T | 67 [30], 94 [40] |
BV786 | L128 | 60 [28] | ||
BB515, PE-Cy7, BUV615, PB, BUV805, BB660 | M-T271 | 63 [29], 109 [45], 78 [34], 80 [35], 99 [41], 101 [42], 102 [43] | ||
CD28 | BV650, BV711, BV750, BV480 | CD28.2 | T cell and NK cell differentiation, co-stimulation molecule | 69 [31], 109 [45], 90 [38], 99 [41], 102 [43] |
PE | CD28.2, DX2 | 60 [28], 71 [32] | ||
CD31 | cFluor YG584, BV786 | WM59 | Differentiation, adhesion molecule | 67 [30], 80 [35] |
CD38 | PE-Cy5.5 | LS198.4.3 | Monocyte, mDC, T cell, and B cell activation/differentiation, plasmablasts | 23 [23] |
PE-Cy5, BV421, BUV661, APC/Fire810, BB660, BB700, BV480 | HIT2 | 24 [24], 42 [26], 77 [33], 67 [30], 69 [31], 78 [34], 101 [42], 106 [44] | ||
eF450, PerCP-eF710, APC/Fire810, BUV737, BUV395 | HB7 | 30 [25], 94 [40], 102 [43], 109 [45], 53 [27] | ||
Spark YG 581 | S17015F | 99 [41] | ||
CD39 | BUV661 | TU66 | B cell, T regulatory, Treg activation marker and monocyte differentiation | 60 [28], 69 [31], 109 [45] |
PE-Cy7, PE/Fire810, BV785, R718, APC/Fire750 | A1 | 80 [35], 94 [40], 99 [41], 102 [43], 53 [27], 106 [44] | ||
CD45 | PB, KO | J.33 | Pan-leukocyte antigen | 23 [23], 81 [36] |
PerCP, Spark Blue 550 | 2D1 | 69 [31], 109 [45], 99 [41] | ||
APC-R700 | UCHT1 | 71 [32] | ||
BV480, BUV496, BV570, BV785, BUV805, BUV395 | HI30 | 77 [33], 78 [34], 94 [40], 101 [42], 102 [43], 106 [44] | ||
CD45RA | QD655 | 5H9 | Memory/differentiation, TEMRA T cells, naive/memory | 17 [22] |
BV650, BV570, BV711, PerCP-Cy5.5, PB, BUV496, APC-eFluor 780, Spark UV 387 | HI100 | 24 [24], 30 [25], 67 [30], 53 [27], 42 [26], 80 [35], 94 [40], 90 [38], 91 [39], 101 [42], 102 [43] | ||
BUV395 | HI100, 5H9 | 63 [29], 69 [31], 99 [41], 109 [45] | ||
CD45RO | BV570, PerCP, PB | UCHL1 | Phenotyping of T cells, naive versus memory, memory CM and EM | 60 [28], 78 [34], 102 [43], 99 [41], 106 [44] |
PE-CF594 | DX12 | 71 [32] | ||
FITC | IL-A116 | 89 [37] | ||
CD49d | BUV563 | L25 | Activation | 99 [41] |
CD56 | PE-Cy7 | N901 (NKH-1) | N-Cam, NK, NKT, γδ T cell differentiation, and some memory CD8+ T cells | 23 [23] |
BV605, BV510, BV711 | HCD56 | 24 [24], 94 [40], 101 [42] | ||
BUV737, BB790, BUV737, PE-Cy7, PE-CF594, PE, BV786 | NCAM16.2 | 42 [26], 63 [29], 69 [31], 77 [33], 80 [35], 81 [36], 99 [41], 106 [44] | ||
BV650 | M-A251 | 71 [32] | ||
PE-Cy5 | B159 | 78 [34] | ||
BUV563 | NCAM16.1 | 102 [43] | ||
cFluor YG584 | 5.1H11 | 109 [45] | ||
CD57 | FITC, BB515, PE | NK-1 | NK and CD8+ T cell immune senescence, Terminal differentiation, T cell and NK cell differentiation, and memory status | 24 [24], 78 [34], 101 [42], 102 [43] |
cFluor B532, APC | HNK-1 | 69 [31], 94 [40] | ||
BV480 | M-T701 | 71 [32] | ||
BV605 | QA17A04 | 80 [35] | ||
cFluor B532 BV785 | cFluor B532 BV785 | 109 [45] | ||
CD62L | BUV395, BUV496, BV650 | DREG-56 | T-cell, TN and TCM cells | 80 [35], 106 [44], 94 [40] |
PerCP-Cy5.5 | CC32 | 89 [37] | ||
CD69 | PE | TP1.55.3 | Phenotyping of T cells, tissue residency marker, activation | 23 [23] |
BV711, BUV496, BUV737, PE/Fire640, BV650 | FN50 | 60 [28], 80 [35], 91 [39], 94 [40], 102 [43] | ||
BB790 | FN50, 2E7 | 67 [30], 71 [32] | ||
CD73 | BUV661 | AD2 | Subset differentiation | 99 [41] |
CD94 | APC/Fire750 | DX22 | Activation marker on NK and CD8 T cells | 94 [40] |
CD95 | BUV737, PE-Cy5, BV650, BUV737, PE/Fire640 | DX2 | T cell activation and differentiation | 60 [28], 69 [31], 109 [45], 80 [35], 90 [38], 99 [41] |
BUV661 | NK-1 | 71 [32] | ||
CD103 | BB630 | UCHL1 | Intraepithelial lymphocytes and Treg | 71 [32] |
BV750, PE-Fire640 | Ber-ACT8 | 102 [43], 109 [45] | ||
CD112 | PE | TX31 | Inhibitory ligand | 106 [44] |
CD122 | BV421 | TU27 | IL-15 receptor subunit on T cells, NK, and NKT-like cells | 106 [44] |
CD127 (IL-7Rα) | APC-AF700 | R 34.34 | IL-7 Receptor a, Treg, Tregs/memory/differentiation, and ILC identification | 23 [23] |
APC, BV421, cFluor R720, AF647, AF700, PE-Cy7 | A019D5 | 24 [34], 53 [27], 69 [31], 109 [45], 94 [40], 99 [41], 67 [30] | ||
APC-eF780 | RDR5 | 30 [25], 42 [26] | ||
BB700, BB630, BV786, APC-R700, RB744 | HIL-7R-M21 | 63 [29], 78 [34], 90 [38], 91 [39], 102 [43] | ||
PE-Cy5 | OF-5A12 | 71 [32] | ||
PE-Cy5.5 | eBioRD5 | 101 [42] | ||
CD137 | BB790, AF647 | 4B4-1 | Activation marker | 60 [28], 91 [39] |
CD154 (CD40L) | BV480 | TRAP1 | Activation marker | 60 [28] |
BV421, BV605 | 24–31 | 91 [39], 67 [30] | ||
CD155 | BUV737 | SKII.4 | Inhibitory ligand | 106 [44] |
NKG2A (CD159a) | BB790, BV421 | 131,411 | NK and NKT-like cell inhibitory receptor | 106 [44], 80 [35] |
APC | REA110 | 69 [31] | ||
NKG2C (CD159c) | AF700 | 134591 | NK cell-activating receptor | 24 [24] |
PE | FAB138P, REA205 | 80 [35], 69 [31] | ||
CD161 | FITC, BV786, BV650, BV421 | DX12 | MAIT, NK, NKT, and a subset of CD8+ T cells | 17 [22], 63 [29], 101 [42], 102 [43] |
PerCP-Cy5.5, BV785, APC | HP-3G10 | 30 [25], 94 [40], 109 [45] | ||
BUV737 | CD28.2 | 71 [32] | ||
PE-Vio770 | REA631 | 91 [39] | ||
CD183 (CXCR3) | FITC, PE, BV421, APC | 1C6 | Dendritic cell, T cell, and B cell differentiation, migration, Tfh/Th marker | 30 [25], 42 [26], 63 [29], 91 [39] |
PE-Fire 640, PE-Cy7, PE-Dazzle 594 | G025H7 | 102 [43], 69 [31], 109 [45], 99 [41], 67 [30] | ||
PE-Cy5 | 1C6/CXCR3 | 17 [22], 80 [35], 90 [38] | ||
BV510 | 12G5 | 71 [32] | ||
CD184 (CXCR4) | BUV563 | RF8B2 | Th marker | 71 [32] |
CD185 (CXCR5) | BV750, PE-Cy7, AF647, BUV805, BB700, BUV563 | RF8B2 | mNKT/MAIT cells, T cell differentiation, Th subset, Tfh cells | 69 [31], 109 [45], 42 [26], 17 [22], 91 [39], 99 [41], 67 [30] |
BUV615 | RF8B2, 13B 1E5 | 63 [29], 71 [32] | ||
PE | J252D4 | 90 [38] | ||
CD186 (CXCR6) | BB700 | 1G1 | Th marker | 71 [32] |
CD194 (CCR4) | PE-Cy7 | TG6/CCR4 | Chemokine receptor; Th subset identification | 17 [22] |
BUV395 | 11A9 | 71 [32] | ||
BV605 | L291H4, IG1 | 90 [38], 91 [39], 42 [26] | ||
BUV615, BB700, BV786, PE | 1G1 | 80 [35], 99 [41], 102 [43], 30 [25] | ||
CD195 (CCR5) | BUV563 | 2D7/CCR5 | Monocyte, dendritic cell, T and B cells | 109 [45] |
PE/Cy7 | J418F1 | 90 [38] | ||
CD196 (CCR6) | BV786 | G034 | Chemokine receptor, Th subset, Th17 cells, differentiation/trafficking | 30 [25] |
BV711 | BV711, G034E3 | 69 [31], 109 [45] | ||
BV605, BV650, BV785, BV711, APC | G034E3 | 17 [22], 91 [39], 42 [26], 99 [41], 90 [38] | ||
BB630, BUV563 | 11A9 | 63 [29], 80 [35] | ||
BUV496 | 2-L1-A | 71 [32] | ||
CD197 (CCR7) | Ax680, BUV395, PE-CF594 | 150503 | Naïve/memory classification, TN and TEM cells | 17 [22], 60 [28], 101 [42], 30 [25], 42 [26] |
BV605, BV785, BV421, PE, PE-Cy7, PE-Fire810, BV650, AF700 | G043H7 | 102 [43], 24 [24], 90 [38], 53 [27], 63 [29], 69 [31], 109 [45], 91 [39], 99 [41], 67 [30] | ||
APC-Cy7 | 1D11 | 71 [32] | ||
CD200 | BB660 | MRC OX-104 | Inhibitory ligand | 106 [44] |
CD226 (DNAM-1) | BV421 | 11A8 | Exclusion of functionally unstable Treg for in vitro expansion, tTreg identification | 99 [41] |
Real Blue 780, BUV563, BV750 | DX11 | 109 [45], 106 [44], 80 [35] | ||
PE/Cy7 | HB7 | 53 [27] | ||
CD272 | RB613 | J168-540 | Activation | 102 [43] |
CD274 (PD-L1) | PE-CF594 | MIH1 | Inhibitory ligand | 106 [44] |
CD275 | PE-Cy7 | 2D3 | Co-stimulatory ligand | 106 [44] |
CD276 | BUV615 | 7-517 | Inhibitory ligand | 106 [44] |
CD278 | PE-Cy5.5 | ISA-3 | Phenotyping of T cells, activation | 102 [43] |
BB630 | DX29 | 106 [44] | ||
CD279 (PD-1) | PE-Cy7, PE-CF594, BUV661, BV786, BUV615 | EH12.1 | T cells, activation and T cell inhibitory receptor, exhaustion marker, Tfh marker | 102 [43], 63 [29], 80 [35], 106 [44], 78 [34], 91 [39] |
BV785, BV421, BB660 | EH12.2H7 | 69 [31], 17 [22], 94 [40], 67 [30] | ||
BB515 | G46-6 | 71 [32] | ||
PE | NAT105 | 99 [41] | ||
CD366 (TIM-3) | BB515 | A15153G, 7D3 | T cell inhibitory receptor | 99 [41], 109 [45] |
BV480 | 7D3 | 80 [35] | ||
PE-Cy5 | F38-2E2 | 106 [44] | ||
FoxP3 | APC | 236A/E7 | Treg identification | 53 [27] |
PE-Cy5.5, AF660 | PCH101 | 60 [28], 80 [35], 106 [44], 99 [41] |
Human | |||
Disease | Cell Subset | Tissues | References |
Atherosclerosis | CD8+ CD8+ TEMRA CD4+ | Endomyocardial biopsy Blood Atherosclerotic plaque | Friebel, J. et al. [57] Grivel, J.-C. et al. [59] Fan, L. et al. [11] |
Hypertension | CD4+ and CD8+ | Blood | Itani, HA. et al. [71] |
Diabetes | CD4+ TEM CD4+ TN Treg NKT | Blood | Teniente-Serra, A. et al. [75] Nekoua, M.P. et al. [80] Jagannathan-Bogdan, M. et al. [81] Daryabor, G. et al. [12] |
Stroke | CD4+ Treg | Brain Blood | Jin, W.N. et al. [93] Wang, H. et al. [98] |
Myocardial diseases | CD8+ TEMRA CD4+ | Blood Ventricular tissue | Zhu, H.A.-O. et al. [91] |
Mouse | |||
Disease | Cell Subset | Tissues | References |
Atherosclerosis | CD4+ TEMRA CD4+ CD8+ | Heart cryosections Blood | Delgobo, M. et al. [55] Zhou, X. et al. [56] Padgett, L.E. et al. [60] |
Hypertension | CD8+ | Blood | Hengel, F.E. et al. [70] |
Stroke | CD4+ T cells | Spleen Brain | Jin, W.N. et al. [93] |
Myocardial diseases | CD8+ TEMRA CD4+, CD8+ CD4+ CD19+CD5+ | Blood Heart Pericardial adipose tissue | Zhu, H.A.-O. et al. [91] Wu, L.A.-O.X. et al. [83] |
Rat | |||
Disease | Cell Subset | Tissues | References |
Myocardial diseases | Breg | Hearts | Huang, F. et al. [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picone, F.; Giudice, V.; Iside, C.; Venturini, E.; Di Pietro, P.; Vecchione, C.; Selleri, C.; Carrizzo, A. Lymphocyte Subset Imbalance in Cardiometabolic Diseases: Are T Cells the Missing Link? Int. J. Mol. Sci. 2025, 26, 868. https://doi.org/10.3390/ijms26030868
Picone F, Giudice V, Iside C, Venturini E, Di Pietro P, Vecchione C, Selleri C, Carrizzo A. Lymphocyte Subset Imbalance in Cardiometabolic Diseases: Are T Cells the Missing Link? International Journal of Molecular Sciences. 2025; 26(3):868. https://doi.org/10.3390/ijms26030868
Chicago/Turabian StylePicone, Francesca, Valentina Giudice, Concetta Iside, Eleonora Venturini, Paola Di Pietro, Carmine Vecchione, Carmine Selleri, and Albino Carrizzo. 2025. "Lymphocyte Subset Imbalance in Cardiometabolic Diseases: Are T Cells the Missing Link?" International Journal of Molecular Sciences 26, no. 3: 868. https://doi.org/10.3390/ijms26030868
APA StylePicone, F., Giudice, V., Iside, C., Venturini, E., Di Pietro, P., Vecchione, C., Selleri, C., & Carrizzo, A. (2025). Lymphocyte Subset Imbalance in Cardiometabolic Diseases: Are T Cells the Missing Link? International Journal of Molecular Sciences, 26(3), 868. https://doi.org/10.3390/ijms26030868