Assessment of Cyclin D1 Expression: Prognostic Value and Functional Insights in Endometrial Cancer: In Silico Study
Abstract
:1. Introduction
2. Results
2.1. CCND1 Immunoexpression in Endometrial Cancer and Adjacent Normal Tissue
2.2. Tumor Characteristics with Respect to CCND1 Immunoexpression
2.3. Analysis of CCND1 Protein Expression in Relation to Overall Survival
2.4. CCND1 mRNA Expression in Endometrial Cancer and Normal Tissue Based on TGCA Databases
2.5. Functional Enrichment Analysis
2.6. Relationships to Survival
3. Discussion
4. Materials and Methods
4.1. Patients and Tissue Material
4.2. Immunohistochemistry
4.3. Immunohistochemical Scoring
4.4. Database Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazidimoradi, A.; Momenimovahed, Z.; Khalajinia, Z.; Allahqoli, L.; Salehiniya, H.; Alkatout, I. The Global Incidence, Mortality, and Burden of Uterine Cancer in 2019 and Correlation with SDI, Tobacco, Dietary Risks, and Metabolic Risk Factors: An Ecological Study. Health Sci. Rep. 2024, 7, e1835. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial Cancer. Lancet 2022, 399, 1412–1428. [Google Scholar] [CrossRef]
- Uterine Cancer Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/uterine-cancer (accessed on 13 January 2025).
- Markowska, A.; Baranowski, W.; Pityński, K.; Chudecka-Głaz, A.; Markowska, J.; Sawicki, W. Metastases and Recurrence Risk Factors in Endometrial Cancer—The Role of Selected Molecular Changes, Hormonal Factors, Diagnostic Methods and Surgery Procedures. Cancers 2023, 16, 179. [Google Scholar] [CrossRef]
- Saglam, O. Uncommon Morphologic Types of Endometrial Cancer and Their Mimickers: How Much Does Molecular Classification Improve the Practice for Challenging Cases? Life 2024, 14, 387. [Google Scholar] [CrossRef]
- Makker, V.; MacKay, H.; Ray-Coquard, I.; Levine, D.A.; Westin, S.N.; Aoki, D.; Oaknin, A. Endometrial Cancer. Nat. Rev. Dis. Primer 2021, 7, 88. [Google Scholar] [CrossRef]
- Malumbres, M.; Barbacid, M. Cell Cycle, CDKs and Cancer: A Changing Paradigm. Nat. Rev. Cancer 2009, 9, 153–166. [Google Scholar] [CrossRef]
- Moreno-Bueno, G.; Rodríguez-Perales, S.; Sánchez-Estévez, C.; Hardisson, D.; Sarrió, D.; Prat, J.; Cigudosa, J.C.; Matias-Guiu, X.; Palacios, J. Cyclin D1 Gene (CCND1) Mutations in Endometrial Cancer. Oncogene 2003, 22, 6115–6118. [Google Scholar] [CrossRef]
- Sangwan, K.; Garg, M.; Pathak, N.; Bharti, L. Expression of Cyclin D1 in Hyperplasia and Carcinoma of Endometrium and Its Correlation with Histologic Grade, Tumor Type, and Clinicopathological Features. J. Lab. Physicians 2020, 12, 165–170. [Google Scholar] [CrossRef]
- Goel, S.; DeCristo, M.J.; McAllister, S.S.; Zhao, J.J. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018, 28, 911–925. [Google Scholar] [CrossRef]
- Khabaz, M.N.; Abdelrahman, A.S.; Butt, N.S.; Al-Maghrabi, B.; Al-Maghrabi, J. Cyclin D1 Is Significantly Associated with Stage of Tumor and Predicts Poor Survival in Endometrial Carcinoma Patients. Ann. Diagn. Pathol. 2017, 30, 47–51. [Google Scholar] [CrossRef]
- Stefanoudakis, D.; Karopoulou, E.; Matsas, A.; Katsampoula, G.A.; Tsarna, E.; Stamoula, E.; Christopoulos, P. Immunotherapy in Cervical and Endometrial Cancer: Current Landscape and Future Directions. Life 2024, 14, 344. [Google Scholar] [CrossRef]
- Fatima, I.; Barman, S.; Rai, R.; Thiel, K.W.; Chandra, V. Targeting Wnt Signaling in Endometrial Cancer. Cancers 2021, 13, 2351. [Google Scholar] [CrossRef]
- Lei, Z.-N.; Teng, Q.-X.; Tian, Q.; Chen, W.; Xie, Y.; Wu, K.; Zeng, Q.; Zeng, L.; Pan, Y.; Chen, Z.-S.; et al. Signaling Pathways and Therapeutic Interventions in Gastric Cancer. Signal Transduct. Target. Ther. 2022, 7, 358. [Google Scholar] [CrossRef]
- Parrish, M.L.; Broaddus, R.R.; Gladden, A.B. Mechanisms of Mutant β-Catenin in Endometrial Cancer Progression. Front. Oncol. 2022, 12, 1009345. [Google Scholar] [CrossRef]
- Song, P.; Gao, Z.; Bao, Y.; Chen, L.; Huang, Y.; Liu, Y.; Dong, Q.; Wei, X. Wnt/β-Catenin Signaling Pathway in Carcinogenesis and Cancer Therapy. J. Hematol. Oncol. 2024, 17, 46. [Google Scholar] [CrossRef]
- Jayraj, A.S.; Abdul-Aziz, S.; Mburu, A.; Upadhyay, A.; Singh, N.; Ghatage, P. Narrative Review on the Evolving Role of HER2/Neu Targeting in Uterine Serous Cancers. Ann. Transl. Med. 2024, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S.; Zeybek, B.; Santin, A.D. Targeting Her2/Neu in Uterine Serous Carcinoma: A Paradigm Shift in Management. Oncotarget 2018, 9, 36652–36653. [Google Scholar] [CrossRef]
- Sarmadi, S.; Izadi-mood, N.; Mansourzadeh, N.; Motevalli, D. Evaluation of HER2/Neu Expression in High-Grade Endometrial Carcinoma and Its Clinicopathological Correlation. Iran. J. Pathol. 2019, 14, 322–328. [Google Scholar] [CrossRef]
- Tsuda, H.; Yamamoto, K.; Inoue, T.; Uchiyama, I.; Umesaki, N. The Role of P16-Cyclin D/CDK-pRb Pathway in the Tumorigenesis of Endometrioid-Type Endometrial Carcinoma. Br. J. Cancer 2000, 82, 675–682. [Google Scholar] [CrossRef]
- Quddus, M.R.; Latkovich, P.; Castellani, W.J.; Sung, C.J.; Steinhoff, M.M.; Briggs, R.C.; Miranda, R.N. Expression of Cyclin D1 in Normal, Metaplastic, Hyperplastic Endometrium and Endometrioid Carcinoma Suggests a Role in Endometrial Carcinogenesis. Arch. Pathol. Lab. Med. 2002, 126, 459–463. [Google Scholar] [CrossRef]
- Xu, J.; Lin, D.I. Oncogenic C-Terminal Cyclin D1 (CCND1) Mutations Are Enriched in Endometrioid Endometrial Adenocarcinomas. PLoS ONE 2018, 13, e0199688. [Google Scholar] [CrossRef] [PubMed]
- Zapiecki, K.; Manahan, K.J.; Miller, G.A.; Geisler, J.P. Cyclin E Is Overexpressed by Clear Cell Carcinomas of the Endometrium and Is a Prognostic Indicator of Survival. Eur. J. Gynaecol. Oncol. 2015, 36, 114–116. [Google Scholar]
- Berg, H.F.; Ju, Z.; Myrvold, M.; Fasmer, K.E.; Halle, M.K.; Hoivik, E.A.; Westin, S.N.; Trovik, J.; Haldorsen, I.S.; Mills, G.B.; et al. Development of Prediction Models for Lymph Node Metastasis in Endometrioid Endometrial Carcinoma. Br. J. Cancer 2020, 122, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Mu, K.; Wang, Y.; Zhou, Z.; Zhang, J.; Sheng, Y.; Zhang, T. CyclinD1, a Prominent Prognostic Marker for Endometrial Diseases. Diagn. Pathol. 2013, 8, 138. [Google Scholar] [CrossRef]
- Dolicka, D.; Sobolewski, C.; Correia de Sousa, M.; Gjorgjieva, M.; Foti, M. mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int. J. Mol. Sci. 2020, 21, 6648. [Google Scholar] [CrossRef]
- Panda, A.C.; Abdelmohsen, K.; Martindale, J.L.; Di Germanio, C.; Yang, X.; Grammatikakis, I.; Noh, J.H.; Zhang, Y.; Lehrmann, E.; Dudekula, D.B.; et al. Novel RNA-Binding Activity of MYF5 Enhances Ccnd1/Cyclin D1 mRNA Translation during Myogenesis. Nucleic Acids Res. 2016, 44, 2393–2408. [Google Scholar] [CrossRef]
- Alam, S.; Zunic, A.; Venkat, S.; Feigin, M.E.; Atanassov, B.S. Regulation of Cyclin D1 Degradation by Ubiquitin-Specific Protease 27X Is Critical for Cancer Cell Proliferation and Tumor Growth. Mol. Cancer Res. 2022, 20, 1751–1762. [Google Scholar] [CrossRef]
- Mohanty, A.; Sandoval, N.; Das, M.; Pillai, R.; Chen, L.; Chen, R.W.; Amin, H.M.; Wang, M.; Marcucci, G.; Weisenburger, D.D.; et al. CCND1 Mutations Increase Protein Stability and Promote Ibrutinib Resistance in Mantle Cell Lymphoma. Oncotarget 2016, 7, 73558–73572. [Google Scholar] [CrossRef]
- Stekel, Z.; Sheng, Y.; Zhang, W. The Multifaceted Role of the Ubiquitin Proteasome System in Pathogenesis and Diseases. Biomolecules 2022, 12, 925. [Google Scholar] [CrossRef]
- Yildirim, H.T.; Nergiz, D.; Sadullahoglu, C.; Akgunduz, Z.; Yildirim, S.; Dogan, S.; Sezer, C. The Extent of Cyclin D1 Expression in Endometrial Pathologies and Relevance of Cyclin D1 with the Clinicopathological Features of Endometrioid Endometrial Carcinoma. Indian J. Pathol. Microbiol. 2020, 63, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Atram, M.A.; Shivkumar, V.B.; Gangane, N.M. Immunohistochemical Analysis Of Novel Biomarkers Cyclin D1, P53 And Ki67 In Endometrial Carcinoma: Clinicopathological Significance And Prognostic Value. Gulf J. Oncolog. 2022, 1, 15–23. [Google Scholar] [PubMed]
- Lapke, N.; Chen, C.-H.; Chang, T.-C.; Chao, A.; Lu, Y.-J.; Lai, C.-H.; Tan, K.T.; Chen, H.-C.; Lu, H.-Y.; Chen, S.-J. Genetic Alterations and Their Therapeutic Implications in Epithelial Ovarian Cancer. BMC Cancer 2021, 21, 499. [Google Scholar] [CrossRef]
- Habermann, J.K.; Bündgen, N.K.; Gemoll, T.; Hautaniemi, S.; Lundgren, C.; Wangsa, D.; Doering, J.; Bruch, H.-P.; Nordstroem, B.; Roblick, U.J.; et al. Genomic Instability Influences the Transcriptome and Proteome in Endometrial Cancer Subtypes. Mol. Cancer 2011, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Ogłuszka, M.; Orzechowska, M.; Jędroszka, D.; Witas, P.; Bednarek, A.K. Evaluate Cutpoints: Adaptable Continuous Data Distribution System for Determining Survival in Kaplan-Meier Estimator. Comput. Methods Programs Biomed. 2019, 177, 133–139. [Google Scholar] [CrossRef] [PubMed]
Cyclin D1 | ||||
---|---|---|---|---|
Variables | Number (%) n = 128 | ↑n = 98 | ↓n = 30 | p-Value |
Age | ||||
≤60 | 41 (32.03) | 31 (75.61) | 10 (24.39) | 0.8613 |
>60 | 87 (67.97) | 67 (77.01) | 20 (22.99) | |
Histological grade | ||||
G1 | 9 (7.03) | 5 (55.56) | 4 (44.45) | 0.2090 |
G2 | 73 (57.03) | 59 (80.82) | 14 (46.67) | |
G3 | 46 (35.94) | 34 (73.91) | 12 (26.08) | |
pT status | ||||
T1 | 70 (54.69) | 53 (75.71) | 17 (24.29) | 0.7741 |
T2 | 36 (28.12) | 29 (80.56) | 7 (19.44) | |
T3 | 17 (13.28) | 13 (76.47) | 4 (23.53) | |
T4 | 5 (3.91) | 3 (60) | 2 (40) | |
pN status | ||||
N0 | 106 (82.81) | 80 (75.47) | 26 (24.54) | 0.7823 |
N1 | 22 (17.19) | 18 (81.82) | 4 (18.18) | |
pM status | ||||
M0 | 116 (90.63) | 88 (75.86) | 28 (25.14) | 0.7307 |
M1 | 12 (9.37) | 10 (83.33) | 2 (16.67) | |
FIGO | ||||
I | 61 (47.66) | 46 (75.41) | 15 (24.59) | 0.6862 |
II | 30 (23.44) | 23 (76.67) | 7 (23.33) | |
III | 26 (20.31) | 19 (73.08) | 7 (26.92) | |
IV | 11 (8.59) | 10 (90.9) | 1 (9.09) | |
LVSI | ||||
N | 103 (80.47) | 77 (74.76) | 26 (25.24) | 0.4347 |
T | 25 (19.53) | 21 (84.00) | 4 (16.00) | |
Histological type | ||||
Endometrioid cancer | 102 (79.69) | 79 (77.45) | 23 (22.55) | 0.6136 |
Non-endometrioid cancer | 26 (20.31) | 19 (73.08) | 7 (26.92) |
CCND1 (+) Correlated Gene | Cytoband | Spearman’s Correlation | p-Value | CCND1 (+) Correlated Gene | Cytoband | Spearman’s Correlation | p-Value |
---|---|---|---|---|---|---|---|
SPRY2 | 13q31.1 | 0.519 | 1.08 × 10–37 | SMIM3 | 5q33.1 | 0.332 | 4.72 × 10–15 |
SPRY4 | 5q31.3 | 0.465 | 1.27 × 10–29 | MIDN | 19p13.3 | 0.332 | 4.74 × 10−15 |
ETV4 | 17q21.31 | 0.440 | 2.59 × 10–26 | PRAG1 | 8p23.1 | 0.332 | 4.91 × 10−15 |
SPRY1 | 4q28.1 | 0.420 | 6.26 × 10–24 | SHC4 | 15q21.1 | 0.332 | 5.02 × 10−15 |
ETV5 | 3q27.2 | 0.418 | 1.00 × 10–23 | AKAP13 | 15q25.3 | 0.332 | 5.19 × 10−15 |
MYEOV | 11q13.3 | 0.418 | 1.17 × 10–23 | INHBA | 7p14.1 | 0.330 | 7.93 × 10−15 |
PHLDA1 | 12q21.2 | 0.417 | 1.33 × 10–23 | LRRC8A | 9q34.11 | 0.329 | 8.46 × 10−15 |
DUSP6 | 12q21.33 | 0.403 | 5.27 × 10–22 | SPRED1 | 15q14 | 0.328 | 1.03 × 10−14 |
PMEPA1 | 20q13.31 | 0.400 | 1.24 × 10–21 | RPSAP52 | 12q14.3 | 0.328 | 1.08 × 10−14 |
DUSP4 | 8p12 | 0.388 | 1.99 × 10–20 | N4BP1 | 16q12.1 | 0.327 | 1.44 × 10−14 |
KIF26B | 1q44 | 0.366 | 4.16 × 10–18 | CBARP | 19p13.3 | 0.324 | 2.41 × 10−14 |
MMP2 | 16q12.2 | 0.360 | 1.44 × 10–17 | SPRED2 | 2p14 | 0.323 | 2.91 × 10−14 |
BAMBI | 10p12.1 | 0.359 | 1.66 × 10–17 | TLE3 | 15q23 | 0.321 | 4.56 × 10−14 |
TNS4 | 17q21.2 | 0.355 | 4.53 × 10–17 | AP1S3 | 2q36.1 | 0.319 | 6.47 × 10−14 |
COL1A2 | 7q21.3 | 0.354 | 5.85 × 10–17 | SIGLEC15 | 18q21.1 | 0.319 | 6.85 × 10−14 |
PLK2 | 5q11.2 | 0.353 | 7.21 × 10–17 | SHB | 9p13.1 | 0.317 | 8.60 × 10−14 |
HIVEP3 | 1p34.2 | 0.351 | 9.31 × 10–17 | PIP5K1C | 19p13.3 | 0.317 | 9.81 × 10−14 |
TGFA | 2p13.3 | 0.349 | 1.46 × 10–16 | ETV1 | 7p21.2 | 0.317 | 9.94 × 10−14 |
HMGA2 | 12q14.3 | 0.340 | 1.04 × 10–15 | PDGFB | 22q13.1 | 0.316 | 1.01 × 10−13 |
FBN1 | 15q21.1 | 0.339 | 1.13 × 10–15 | CYGB | 17q25.1 | 0.316 | 1.13 × 10−13 |
CNN2 | 19p13.3 | 0.339 | 1.33 × 10–15 | PDGFRB | 5q32 | 0.315 | 1.32 × 10−13 |
COL1A1 | 17q21.33 | 0.338 | 1.50 × 10–15 | COL5A1 | 9q34.3 | 0.315 | 1.38 × 10−13 |
HAS3 | 16q22.1 | 0.337 | 1.68 × 10–15 | EDAR | 2q13 | 0.313 | 1.78 × 10−13 |
CHPF | 2q35 | 0.336 | 2.04 × 10–15 | PRDM1 | 6q21 | 0.313 | 1.97 × 10−13 |
FRMD6 | 14q22.1 | 0.335 | 2.73 × 10–15 | COL6A3 | 2q37.3 | 0.313 | 2.09 × 10−13 |
CCND1 (−) Correlated Gene | Cytoband | Spearman’s Correlation | p-Value | CCND1 (−) Correlated Gene | Cytoband | Spearman’s Correlation | p-Value |
---|---|---|---|---|---|---|---|
CDKN2B-AS1 | 9p21.3 | –0.400 | 1.20 × 10−21 | DDO | 6q21 | −0.289 | 1.36 × 10−11 |
MCCC1 | 3q27.1 | −0.354 | 5.83 × 10−17 | CEP43 | 6q27 | −0.289 | 1.38 × 10−11 |
PTGS1 | 9q33.2 | −0.352 | 8.03 × 10−17 | IL12A | 3q25.33 | −0.288 | 1.49 × 10−11 |
CEP70 | 3q22.3 | −0.346 | 2.67 × 10−16 | MX1 | 21q22.3 | −0.284 | 3.34 × 10−11 |
SVOPL | 7q34 | −0.346 | 3.03 × 10−16 | CCNE1 | 19q12 | −0.282 | 4.14 × 10−11 |
CDKN2A | 9p21.3 | −0.331 | 5.79 × 10−15 | APOA1 | 11q23.3 | −0.281 | 4.91 × 10−11 |
ERBB4 | 2q34 | −0.328 | 1.15 × 10−14 | OPTN | 10p13 | −0.281 | 5.15 × 10−11 |
KATNAL2 | 18q21.1 | −0.325 | 1.93 × 10−14 | PDHA1 | Xp22.12 | −0.280 | 6.09 × 10−11 |
PLAAT1 | 3q29 | −0.315 | 1.37 × 10−13 | NHLRC1 | 6p22.3 | −0.279 | 6.69 × 10−11 |
HIBADH | 7p15.2 | −0.314 | 1.63 × 10−13 | GEMIN8P4 | 1p22.2 | −0.277 | 9.21 × 10−11 |
RTP4 | 3q27.3 | −0.311 | 2.90 × 10−13 | IQCC | 1p35.2 | −0.276 | 1.08 × 10−10 |
AIFM1 | Xq26.1 | −0.309 | 4.09 × 10−13 | FABP3 | 1p35.2 | −0.276 | 1.14 × 10−10 |
NRG4 | 15q24.2 | −0.309 | 4.26 × 10−13 | FAAH2 | Xp11.21 | −0.276 | 1.23 × 10−10 |
SAYSD1 | 6p21.2 | −0.302 | 1.42 × 10−12 | CAND2 | 3p25.2 | −0.275 | 1.32 × 10−10 |
TMEM14B | 6p24.2 | −0.300 | 2.18 × 10−12 | HERC5 | 4q22.1 | −0.275 | 1.42 × 10−10 |
CHTOP | 1q21.3 | −0.299 | 2.22 × 10−12 | RUVBL1 | 3q21.3 | −0.274 | 1.52 × 10−10 |
RIOX2 | 3q11.2 | −0.297 | 3.58 × 10−12 | NFS1 | 20q11.22 | −0.274 | 1.68 × 10−10 |
ERICH5 | 8q22.2 | −0.295 | 4.50 × 10−12 | ICA1L | 2q33.2 | −0.273 | 1.75 × 10−10 |
KLHL32 | 6q16.1 | −0.293 | 6.72 × 10−12 | PRKCD | 3p21.1 | −0.272 | 2.19 × 10−10 |
SEMA6D | 15q21.1 | −0.291 | 9.11 × 10−12 | HSPBAP1 | 3q21.1 | −0.272 | 2.33 × 10−10 |
VPS45 | 1q21.2 | −0.291 | 9.15 × 10−12 | NIT2 | 3q12.2 | −0.269 | 3.52 × 10−10 |
FBXO43 | 8q22.2 | −0.291 | 9.59 × 10−12 | PARP12 | 7q34 | −0.269 | 3.69 × 10−10 |
CR1L | 1q32.2 | −0.291 | 1.01 × 10−11 | CP | 3q24-q25.1 | −0.269 | 3.72 × 10–10 |
VNN3P | 6q23.2 | −0.291 | 1.03 × 10−11 | PLIN5 | 19p13.3 | −0.269 | 3.73 × 10–10 |
MBOAT1 | 6p22.3 | −0.289 | 1.26 × 10–11 | NECTIN3 | 3q13.13 | −0.268 | 4.21 × 10–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymański, M.; Jerka, D.; Bonowicz, K.; Antosik, P.; Gagat, M. Assessment of Cyclin D1 Expression: Prognostic Value and Functional Insights in Endometrial Cancer: In Silico Study. Int. J. Mol. Sci. 2025, 26, 890. https://doi.org/10.3390/ijms26030890
Szymański M, Jerka D, Bonowicz K, Antosik P, Gagat M. Assessment of Cyclin D1 Expression: Prognostic Value and Functional Insights in Endometrial Cancer: In Silico Study. International Journal of Molecular Sciences. 2025; 26(3):890. https://doi.org/10.3390/ijms26030890
Chicago/Turabian StyleSzymański, Marcin, Dominika Jerka, Klaudia Bonowicz, Paulina Antosik, and Maciej Gagat. 2025. "Assessment of Cyclin D1 Expression: Prognostic Value and Functional Insights in Endometrial Cancer: In Silico Study" International Journal of Molecular Sciences 26, no. 3: 890. https://doi.org/10.3390/ijms26030890
APA StyleSzymański, M., Jerka, D., Bonowicz, K., Antosik, P., & Gagat, M. (2025). Assessment of Cyclin D1 Expression: Prognostic Value and Functional Insights in Endometrial Cancer: In Silico Study. International Journal of Molecular Sciences, 26(3), 890. https://doi.org/10.3390/ijms26030890