Genomic Tools for Medicinal Properties of Goat Milk for Cosmetic and Health Benefits: A Narrative Review
Abstract
:1. Introduction
2. Benefits and Medicinal Properties of Goat Milk and Its Potential Use in Skin Therapies
3. Goat Milk Genomics and Genomic Tools
3.1. The Illumina Goat SNP Chip
3.2. Next-Generation Sequencing (NGS)
3.3. Whole-Genome Sequencing
3.4. RNA-Sequencing
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gipson, T.A. Recent Advances in Breeding and Genetics for Dairy Goats. Asian-Australas. J. Anim. Sci. 2019, 32, 1275–1283. [Google Scholar] [CrossRef]
- Scopinich-Cisternas, J.; Strahsburger, E. Goat Type: The Key Factor to Produce Goat Milk with Economic Profitable Purpose in Arid and Desert Zones. Idesia 2019, 37, 122–123. [Google Scholar] [CrossRef]
- Ncube, K.T.; Dzomba, E.F.; Hadebe, K.; Soma, P.; Frylinck, L.; Muchadeyi, F.C. Carcass Quality Profiles and Associated Genomic Regions of South African Goat Populations Investigated Using Goat SNP50K Genotypes. Animals 2022, 12, 364. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Tulsidas Dudhrejiya, P.; Valentine Pinto, S. Goat Milk Products and Their Significance. Beverage Food World 2017, 44, 21–25. [Google Scholar]
- Ncube, K.T.; Mdladla, K.; Dzomba, E.F.; Muchadeyi, F.C. Targeted High-Throughput Growth Hormone 1 Gene Sequencing Reveals High within-Breed Genetic Diversity in South African Goats. Anim. Genet. 2016, 47, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Dzomba, E.F.; Mdladla, K.; Ncube, K.T.; Muchadeyi, F.C. Genomics for the Improvement of Productivity and Robustness of South African Goat Breeds. In Sustainable Goat Production in Adverse Environments; Springer: Cham, Switzerland, 2018; ISBN 9783319718552. [Google Scholar]
- Andre Mataveia, G.; Visser, C.; Sitoe, A. Smallholder Goat Production in Southern Africa: A Review. In Goat Science-Environment, Health and Economy; IntechOpen: London, UK, 2023. [Google Scholar]
- Bosman, L.; van Marle-Köster, E.; Visser, C. Genetic Diversity of South African Dairy Goats for Genetic Management and Improvement. Small Rumin. Res. 2015, 123, 224–231. [Google Scholar] [CrossRef]
- Donkin, E.; Boyazoglu, P. Diseases and Mortality of Goat Kids in a South African Milk Goat Herd. In Proceedings of the 8th International Conference on Goats, Pretoria, South Africa, 4–9 July 2004; South African Journal of Animal Science. pp. 258–261. [Google Scholar]
- Muller, C. Genetic Parameter Estimation and Breeding Plans for the South African Dairy Goat Herd. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2005. [Google Scholar]
- Amiri Ghanatsaman, Z.; Ayatolahi Mehrgardi, A.; Asadollahpour Nanaei, H.; Esmailizadeh, A. Comparative Genomic Analysis Uncovers Candidate Genes Related with Milk Production and Adaptive Traits in Goat Breeds. Sci. Rep. 2023, 13, 8722. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Palhière, I.; Maroteau, C.; Bardou, P.; Canale-Tabet, K.; Sarry, J.; Woloszyn, F.; Bertrand-Michel, J.; Racke, I.; Besir, H.; et al. A Genome Scan for Milk Production Traits in Dairy Goats Reveals Two New Mutations in Dgat1 Reducing Milk Fat Content. Sci. Rep. 2017, 7, 1872. [Google Scholar] [CrossRef]
- Lima, M.J.R.; Teixeira-Lemos, E.; Oliveira, J.; Teixeira-Lemos, L.P.; Monteiro, A.M.C.; Costa, J.M. Nutritional and Health Profile of Goat Products: Focus on Health Benefits of Goat Milk. In Goat Science; InTech: London, UK, 2018. [Google Scholar]
- Kazimierska, K.; Kalinowska-Lis, U. Milk Proteins—Their Biological Activities and Use in Cosmetics and Dermatology. Molecules 2021, 26, 3253. [Google Scholar] [CrossRef] [PubMed]
- Haenlein, G.F.W. Goat Milk in Human Nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk–Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals; Wiley: Hoboken, NJ, USA, 2017; pp. 42–83. [Google Scholar]
- Turkmen, N. The Nutritional Value and Health Benefits of Goat Milk Components. In Nutrients in Dairy and their Implications on Health and Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 441–449. [Google Scholar]
- Badal, R.; Singh, R.; Upadhyay, A. An Insight into Therapeutic and Nutritional Profile of Aja Dugdha (Goat’s Milk): A Review. Int. J. Ayurveda Pharma Res. 2023, 11, 87–96. [Google Scholar] [CrossRef]
- Bahna, S.L. Cow’s Milk Allergy versus Cow Milk Intolerance. Ann. Allergy Asthma Immunol. 2002, 89, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Dezmirean, D.S.; Bobis, O.; Ranjha, M.M.A.N.; Ansari, M.J.; Hemeg, H.A.; et al. Recent Insights Into Processing Approaches and Potential Health Benefits of Goat Milk and Its Products: A Review. Front. Nutr. 2021, 8, 789117. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaur, G.; Brar, R.P.S.; Preet, G.S. Goat Milk Composition and Nutritional Value: A Review. Pharma Innov. J. 2021, 10, 536–540. [Google Scholar]
- Kiskini, A.; Difilippo, E. Oligosaccharides in Goat Milk: Structure, Health Effects and Isolation. Cell Mol. Biol. 2013, 59, 25–30. [Google Scholar]
- Balakrishnan, G.; Agrawal, R. Antioxidant Activity and Fatty Acid Profile of Fermented Milk Prepared by Pediococcus Pentosaceus. J. Food Sci. Technol. 2014, 51, 4138–4142. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, S.S.; te Poele, E.M.; Chatziioannou, A.C.; Benjamins, E.; Haandrikman, A.; Dijkhuizen, L. Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. J. Agric. Food Chem. 2020, 68, 13469–13485. [Google Scholar] [CrossRef]
- Abd Rahman, M.R.; Hassan, Z.; Hassan, M.S.; Hashim, R.; Shing, W.L.; Jaafar, S.H.S. Multi-Nutrient Milk Quality Analysis Applying Chemometrics: A Supplementation-Based Approach Using Dairy Goats. J. Adv. Res. Appl. Sci. Eng. Technol. 2022, 28, 123–143. [Google Scholar] [CrossRef]
- Kober, M.-M.; Bowe, W.P. The Effect of Probiotics on Immune Regulation, Acne, and Photoaging. Int. J. Womens Dermatol. 2015, 1, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Triprisila, L.; Suharjono, S.; Christianto, A.; Fatchiyah, F. The Comparing of Antimicrobial Activity of CSN1S2 Protein of Fresh Milk and Yoghurt Goat Breed Ethawah Inhibited the Pathogenic Bacteria. Mater. Socio Medica 2016, 28, 244. [Google Scholar] [CrossRef]
- Singh, A.; Duche, R.T.; Wandhare, A.G.; Sian, J.K.; Singh, B.P.; Sihag, M.K.; Singh, K.S.; Sangwan, V.; Talan, S.; Panwar, H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob. Proteins 2023, 15, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Crisà, A.; Claps, S.; Moioli, B.; Marchitelli, C. Identification of the Complete Coding CDNAs and Expression Analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the Colostrum and Milk of the Garganica and Maltese Goat Breeds to Reveal Possible Implications for Oligosaccharide Biosynthesis. BMC Vet. Res. 2019, 15, 457. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, O.T. The Evolution of Milk Secretion and Its Ancient Origins. Animal 2012, 6, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Behrouz, S.; Saadat, S.; Memarzia, A.; Sarir, H.; Folkerts, G.; Boskabady, M.H. The Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Camel Milk. Front. Immunol. 2022, 13, 855342. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, G.; Mecocci, S.; De Ciucis, C.G.; Mura, L.; Dell’Anno, F.; Zinellu, S.; Fruscione, F.; De Paolis, L.; Carta, T.; Anfossi, A.G.; et al. Goat Milk Extracellular Vesicles: Immuno-Modulation Effects on Porcine Monocyte-Derived Macrophages in vitro. Front. Immunol. 2023, 14, 1209898. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. Goat Milk. In Milk and Dairy Products in Human Nutrition; Wiley: Hoboken, NJ, USA, 2013; pp. 498–518. [Google Scholar]
- Wang, H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers 2021, 13, 3868. [Google Scholar] [CrossRef]
- Supakorn, C. The Important Candidate Genes in Goats—A Review. J. Sci. Technol. 2009, 6, 17–36. Available online: https://wjst.wu.ac.th/index.php/wjst/article/view/70 (accessed on 16 December 2024).
- Ncube, K.N. Gene Expression Profiling of South African Indigenous Goat Breeds Using RNA-Seq Technologies in Search of Genes Associated with Growth and Carcass Quality Traits; University of Kwa-Zulu Natal: Pietermaritzburg, South Africa, 2020. [Google Scholar]
- Salgado Pardo, J.I.; Delgado Bermejo, J.V.; González Ariza, A.; León Jurado, J.M.; Marín Navas, C.; Iglesias Pastrana, C.; Martínez Martínez, M.D.A.; Navas González, F.J. Candidate Genes and Their Expressions Involved in the Regulation of Milk and Meat Production and Quality in Goats (Capra Hircus). Animals 2022, 12, 988. [Google Scholar] [CrossRef]
- Banos, G.; Woolliams, J.A.; Woodward, B.W.; Forbes, A.B.; Coffey, M.P. Impact of Single Nucleotide Polymorphisms in Leptin, Leptin Receptor, Growth Hormone Receptor, and Diacylglycerol Acyltransferase (DGAT1) Gene Loci on Milk Production, Feed, and Body Energy Traits of UK Dairy Cows. J. Dairy. Sci. 2008, 91, 3190–3200. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Insights into Bioactive Peptides in Cosmetics. Cosmetics 2023, 10, 111. [Google Scholar] [CrossRef]
- Getaneh, M.; Alemayehu, K. Candidate Genes Associated with Economically Important Traits in Dairy Goats. Cogent Food Agric. 2022, 8, 2149131. [Google Scholar] [CrossRef]
- Massender, E.; Brito, L.F.; Maignel, L.; Oliveira, H.R.; Jafarikia, M.; Baes, C.F.; Sullivan, B.; Schenkel, F.S. Single-Step Genomic Evaluation of Milk Production Traits in Canadian Alpine and Saanen Dairy Goats. J. Dairy. Sci. 2022, 105, 2393–2407. [Google Scholar] [CrossRef]
- Belfeki, L.; Torres, D.; Salemi, S.; Pesenti, M.E.; Trumtel, S.; Boukadiri, A. Transcriptomic Profile of Goat Mammary Gland Epithelial Cells Using Single-Cell RNA-Sequencing. Sci. Rep. 2018, 8, 1–12. [Google Scholar]
- Alakilli, S.Y.; Mahrous, K.F.; Salem, L.M.; Ahmed, E.S. Genetic Polymorphism of Five Genes Associated with Growth Traits in Goat. Afr. J. Biotechnol. 2012, 11, 14738–14748. [Google Scholar] [CrossRef]
- Dough, B. Single Nucleotide Polymorphisms (SNPs). Computational Molecular Biology Biochemistry 218. BioMedical Informatics 231. 2010. Available online: http://biochem218.stanford.edu/ (accessed on 16 December 2024).
- Sharma, U.; Banerjee, P.; Joshi, J.; Kumar, R. Identification of SNPs in Goats (Capra Hircus) Using RNA-Seq Analysis. Int. J. Anim. Vet. Adv. 2012, 4, 272–283. [Google Scholar]
- Salem, M.; Vallejo, R.L.; Leeds, T.D.; Palti, Y.; Liu, S.; Sabbagh, A.; Rexroad, C.E.; Yao, J. RNA-Seq Identifies SNP Markers for Growth Traits in Rainbow Trout. PLoS ONE 2012, 7, e36264. [Google Scholar] [CrossRef]
- Tosser-Klopp, G.; Bardou, P.; Bouchez, O.; Cabau, C.; Crooijmans, R.; Dong, Y.; Donnadieu-Tonon, C.; Eggen, A.; Heuven, H.C.M.; Jamli, S.; et al. Design and Characterization of a 52K SNP Chip for Goats. PLoS ONE 2014, 9, e86227. [Google Scholar] [CrossRef] [PubMed]
- Lashmar, S.F.; Visser, C.; Van Marle-Köster, E. Validation of the 50k Illumina Goat SNP Chip in the South African Angora Goat. South Afr. J. Anim. Sci. 2015, 45, 56–59. [Google Scholar] [CrossRef]
- Mdladla, K.; Dzomba, E.F.; Muchadeyi, F.C. The Potential of Landscape Genomics Approach in the Characterization of Adaptive Genetic Diversity in Indigenous Goat Genetic Resources: A South African Perspective. Small Rumin. Res. 2017, 150, 87–92. [Google Scholar] [CrossRef]
- Mdladla, K.; Dzomba, E.F.; Huson, H.J.; Muchadeyi, F.C. Population Genomic Structure and Linkage Disequilibrium Analysis of South African Goat Breeds Using Genome-Wide SNP Data. Anim. Genet. 2016, 47, 471–482. [Google Scholar] [CrossRef]
- Rahmatalla, S.A.; Arends, D.; Brockmann, G.A. Review: Genetic and Protein Variants of Milk Caseins in Goats. Front. Genet. 2022, 13, 995349. [Google Scholar] [CrossRef] [PubMed]
- Magoro, A.M.; Mtileni, B.; Hadebe, K.; Zwane, A. Assessment of Genetic Diversity and Conservation in South African Indigenous Goat Ecotypes: A Review. Animals 2022, 12, 3353. [Google Scholar] [CrossRef]
- Franklin, W.A.; Aisner, D.L.; Post, M.D.; Bunn, P.A.; Garcia, M.V. Pathology, Biomarkers, and Molecular Diagnostics. In Abeloff’s Clinical Oncology, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 226–252.e6. ISBN 9780323222112. [Google Scholar]
- Malatji, D.P. A Genomic Insight into the Diversity and Pathogenesis of Village Chickens in a Ascaridia Galli Infested Environment. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2017. [Google Scholar]
- Lan, X.Y.; Li, M.J.; Chen, H.; Zhang, L.Z.; Jing, Y.J.; Wei, T.B.; Ren, G.; Wang, X.; Fang, X.T.; Zhang, C.L.; et al. Analysis of Caprine Pituitary Specific Transcription Factor-1 Gene Polymorphism in Indigenous Chinese Goats. Mol. Biol. Rep. 2009, 36, 705–709. [Google Scholar] [CrossRef]
- Boon, E.M.J.; Faas, B.H.W. Benefits and Limitations of Whole Genome versus Targeted Approaches for Noninvasive Prenatal Testing for Fetal Aneuploidies. Prenat. Diagn. 2013, 33, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Mohlatlole, R.P.; Dzomba, E.F.; Muchadeyi, F.C. Addressing Production Challenges in Goat Production Systems of South Africa: The Genomics Approach. Small Rumin. Res. 2015, 131, 43–49. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhou, G.; Guo, J.; Yan, H.; Niu, Y.; Li, Y.; Yuan, C.; Geng, R.; Lan, X.; et al. Whole-Genome Sequencing of Eight Goat Populations for the Detection of Selection Signatures Underlying Production and Adaptive Traits. Sci. Rep. 2016, 6, 38932. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, H.; Li, P.; Li, L.; Zhong, T.; Wang, L.; Ma, J.; Chen, X.; Song, T.; Zhang, H. Whole-Genome Sequencing Reveals Selection Signatures Associated with Important Traits in Six Goat Breeds. Sci. Rep. 2018, 8, 10405. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, M.; Li, X.; Ni, W.; Xu, Y.; Yao, R.; Wei, B.; Zhang, M.; Li, H.; Zhao, Y.; et al. Whole-Genome Resequencing Reveals Loci Associated With Thoracic Vertebrae Number in Sheep. Front. Genet. 2019, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, O.; Ahbara, A.M.; Haile, A.; Alemayehu, K.; Han, J.-L.; Mwacharo, J.M. Whole-Genome Resequencing Reveals Genomic Variation and Dynamics in Ethiopian Indigenous Goats. Front. Genet. 2024, 15, 1353026. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Liu, X.; Yang, T.; Huang, Z.; Hanif, Q.; Asif, M.; Khan, Q.M.; Mansoor, S. Genomic Variants Identified from Wholegenome Resequencing of Indicine Cattle Breeds from Pakistan. PLoS ONE 2019, 14, e0215065. [Google Scholar] [CrossRef]
- Bickhart, D.M.; Rosen, B.D.; Koren, S.; Sayre, B.L.; Hastie, A.R.; Chan, S.; Lee, J.; Lam, E.T.; Liachko, I.; Sullivan, S.T.; et al. Single-Molecule Sequencing and Chromatin Conformation Capture Enable de Novo Reference Assembly of the Domestic Goat Genome. Nat. Genet. 2017, 49, 643–650. [Google Scholar] [CrossRef]
- Cánovas, A.; Rincon, G.; Islas-Trejo, A.; Wickramasinghe, S.; Medrano, J.F. SNP Discovery in the Bovine Milk Transcriptome Using RNA-Seq Technology. Mamm. Genome 2010, 21, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Guan, D.; Landi, V.; Luigi-Sierra, M.G.; Delgado, J.V.; Such, X.; Castelló, A.; Cabrera, B.; Mármol-Sánchez, E.; Fernández-Alvarez, J.; de la Torre Casañas, J.L.R.; et al. Analyzing the Genomic and Transcriptomic Architecture of Milk Traits in Murciano-Granadina Goats. J. Anim. Sci. Biotechnol. 2020, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Xuan, R.; Wang, J.; Zhao, X.; Li, Q.; Wang, Y.; Du, S.; Duan, Q.; Guo, Y.; Ji, Z.; Chao, T. Transcriptome Analysis of Goat Mammary Gland Tissue Reveals the Adaptive Strategies and Molecular Mechanisms of Lactation and Involution. Int. J. Mol. Sci. 2022, 23, 14424. [Google Scholar] [CrossRef]
- Berton, M.P.; Fonseca, L.F.S.; Gimenez, D.F.J.; Utembergue, B.L.; Cesar, A.S.M.; Coutinho, L.L.; de Lemos, M.V.A.; Aboujaoude, C.; Pereira, A.S.C.; Silva, R.M. de O.; et al. Gene Expression Profile of Intramuscular Muscle in Nellore Cattle with Extreme Values of Fatty Acid. BMC Genom. 2016, 17, 972. [Google Scholar] [CrossRef] [PubMed]
Gene | Name | Function | Associated Healing Properties | References |
---|---|---|---|---|
LALBA | α-Lactalbumin | Encodes α-Lactalbumin protein | Enhances skin barrier function; promotes wound healing | [12,29,30] |
LTF | Lactoferrin | Encodes Lactoferrin protein | Anti-inflammatory and antimicrobial effects | [16] |
IL10 | Interleukin-10 | Encodes Interleukin-10 | Suppresses inflammation; regulates immune response | [31,32] |
TGF-β1 | Transforming Growth Factor Beta 1 | Modulates inflammation; promotes tissue repair | Plays a key role in regulating immune responses and promoting tissue regeneration | [13,33] |
COL7A1 | Collagen Type VII alpha 1 chain | Encodes Collagen Type VII alpha 1 chain | Promotes wound healing and tissue regeneration | [14,34] |
Gene | Name | Associated Traits | References |
---|---|---|---|
ABCG2 | ATP Binding Cassette Subfamily G Member 2 | Milk production and composition traits | [11] |
ADAMTS20 | ADAM metallopeptidase with thrombospondin type 1 motif 20 | Milk production and its protein content | [40] |
CK Deoxycytidine kinase | CK Deoxycytidine kinase | Milk production | [40,41] |
CSN1S1 | αs1 Casein | Protein and fat content | [12] |
DGAT1 | Diacylglycerol O-Acyltransferase 1 | Fat content | [12] |
MOB1B OB kinase activator 1B | MOB1B OB kinase activator 1B | Milk production | [40,41] |
NCAM2 | Neural Cell Adhesion Molecule 2 | Fat, protein, and milk yield | [11] |
PDE9A | Phosphodiesterase 9A | Protein content | [12] |
PLD2 | Phospholipase D 2 | Protein yield | [12] |
RPL8 Ribosomal protein L8 | RPL8 Ribosomal protein L8 | Milk production | [40,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ncube, K.T.; Modiba, M.C.; Mpofu, T.J.; Nephawe, K.A.; Mtileni, B. Genomic Tools for Medicinal Properties of Goat Milk for Cosmetic and Health Benefits: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 893. https://doi.org/10.3390/ijms26030893
Ncube KT, Modiba MC, Mpofu TJ, Nephawe KA, Mtileni B. Genomic Tools for Medicinal Properties of Goat Milk for Cosmetic and Health Benefits: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(3):893. https://doi.org/10.3390/ijms26030893
Chicago/Turabian StyleNcube, Keabetswe T., Mamokoma C. Modiba, Takalani J. Mpofu, Khathutshelo A. Nephawe, and Bohani Mtileni. 2025. "Genomic Tools for Medicinal Properties of Goat Milk for Cosmetic and Health Benefits: A Narrative Review" International Journal of Molecular Sciences 26, no. 3: 893. https://doi.org/10.3390/ijms26030893
APA StyleNcube, K. T., Modiba, M. C., Mpofu, T. J., Nephawe, K. A., & Mtileni, B. (2025). Genomic Tools for Medicinal Properties of Goat Milk for Cosmetic and Health Benefits: A Narrative Review. International Journal of Molecular Sciences, 26(3), 893. https://doi.org/10.3390/ijms26030893