Co-Location of QTL for Vigor and Resistance to Three Diseases in Juglans microcarpa × J. regia Rootstocks
Abstract
:1. Introduction
2. Results
2.1. QTL Mapping and Marker Selection
2.2. Prediction Accuracy of RF and rrBLUP Models to Discover Markers for P. vulnus
3. Discussion
3.1. Co-Located QTL
3.2. MAS and GS Prediction Accuracy
4. Materials and Methods
4.1. Plant Material
4.2. GBS and SNP Discovery
4.3. Phenotypic Analysis
4.4. Data Cleaning and Preparation
4.5. QTL Mapping
4.6. Prediction and Selection Performance Estimation
4.7. R Code and Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- California Agricultural Statistics Review. California Agricultural Statistics Review 2020–2021. 2022. Available online: https://www.cdfa.ca.gov/Statistics/PDFs/2022_Ag_Stats_Review.pdf (accessed on 17 January 2025).
- Saxe, H.J.; Walawage, S.L.; Balan, B.; Leslie, C.A.; Brown, P.J.; Browne, G.T.; Kluepfel, D.A.; Westphal, A.; Dandekar, A.M. Transcriptomic Evidence of a Link between Cell Wall Biogenesis, Pathogenesis, and Vigor in Walnut Root and Trunk Diseases. Int. J. Mol. Sci. 2024, 25, 931. [Google Scholar] [CrossRef] [PubMed]
- Kluepfel, D.; McClean, J.; Leslie, C.A.; Aradhya, M.; Luo, M.; Brown, P.J.; Ramasamy, R.K.; Luo, M.C.; Haisey, D.; Jan, D.; et al. Putting Phenotypic and Genotypic Tools to Work for Improving Walnut Rootstocks; Walnut Research Reports 2019; California Walnut Board: Folsom, CA, USA, 2020; pp. 63–74. [Google Scholar]
- Conson, A.R.O.; Taniguti, C.H.; Amadeu, R.R.; Andreotti, I.A.A.; de Souza, L.M.; dos Santos, L.H.B.; Rosa, J.R.B.F.; Mantello, C.C.; da Silva, C.C.; Junior, E.J.S.; et al. High-Resolution Genetic Map and QTL Analysis of Growth-Related Traits of Hevea brasiliensis Cultivated Under Suboptimal Temperature and Humidity Conditions. Front. Plant Sci. 2018, 9, 1255. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Sun, P.; Cheng, X.; Zhang, L.; Wang, L.; Hu, J. QTL mapping of drought-related traits in the hybrids of Populus deltoides ‘Danhong’ × Populus simonii ‘Tongliao1’. BMC Plant Biol. 2022, 22, 238. [Google Scholar] [CrossRef]
- Ramasamy, R.K.; Luo, M.C.; Leslie, C.A.; Velasco, D.; Ott, N.; McClean, A.; Dandekar, A.M.; Aradhya, M.; Brown, P.J.; Browne, G.T.; et al. Co-located quantitative trait loci mediate resistance to Agrobacterium tumefaciens disease score, Phytophthora cinnamomi, and P. pini in Juglans microcarpa × J. regia hybrids. Hortic. Res. 2021, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Hallingbäck, H.R.; Wu, H.X. Estimation of number and size of QTL effects in forest tree traits. Tree Genet. Genomes 2016, 12, 110. [Google Scholar] [CrossRef]
- Wang, D.; Yang, L.; Shi, C.; Li, S.; Tang, H.; He, C.; Cai, N.; Duan, A.; Gong, H. QTL mapping for growth-related traits by constructing the first genetic linkage map in Simao pine. BMC Plant Biol. 2022, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- De Mori, G.; Cipriani, G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int. J. Mol. Sci. 2023, 24, 8984. [Google Scholar] [CrossRef] [PubMed]
- Karaagac, E.; Vargas, A.M.; de Andrés, M.T.; Carreño, I.; Ibáñez, J.; Carreño, J.; Miguel Martínez-Zapater, J.; Cabezas, J.A. Marker assisted selection for seedlessness in table grape breeding. Tree Genet. Genomes 2012, 8, 1003–1015. [Google Scholar] [CrossRef]
- Kumar, A.; Sandhu, N.; Dixit, S.; Yadav, S.; Swamy, B.P.M.; Shamsudin, N.A.A. Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice 2018, 11, 35. [Google Scholar] [CrossRef]
- Fu, Y.B.; Peterson, G.W.; Dong, Y. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes. G3 2016, 6, 845–856. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-wide association studies in maize: Praise and stargaze. Mol. Plant 2017, 10, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Bedo, J.; Wenzl, P.; Kowalczyk, A.; Kilian, A. Precision-mapping and statistical validation of quantitative trait loci by machine learning. BMC Genet. 2008, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Koc, A.; Odilbekov, F.; Alamrani, M.; Henriksson, T.; Chawade, A. Predicting yellow rust in wheat breeding trials by proximal phenotyping and machine learning. Plant Methods 2022, 18, 30. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhang, L.; Zhou, Y. The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 2021, 63, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Menna, A.; Dora, S.; Sancho-Andrés, G.; Kashyap, A.; Meena, M.K.; Sklodowski, K.; Gasperini, D.; Coll, N.S.; Sánchez-Rodríguez, C. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol. 2021, 19, 161. [Google Scholar] [CrossRef] [PubMed]
- Roudier, F.; Fernandez, A.G.; Fujita, M.; Himmelspach, R.; Borner, G.H.; Schindelman, G.; Song, S.; Baskin, T.I.; Dupree, P.; Wasteneys, G.O.; et al. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 2005, 17, 1749–1763. [Google Scholar] [CrossRef]
- Nicol, F.; His, I.; Jauneau, A.; Vernhettes, S.; Canut, H.; Höfte, H. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 1998, 17, 5563–5576. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, R.; Tao, Z.; Li, X.; Li, Y.; Huang, J.; Li, X.; Han, X.; Feng, S.; Zhang, G.; et al. Cellulose Synthase Mutants Distinctively Affect Cell Growth and Cell Wall Integrity for Plant Biomass Production in Arabidopsis. Plant Cell Physiol. 2018, 59, 1144–1157. [Google Scholar] [CrossRef]
- Zhao, Y.; Mette, M.; Gowda, M.; Longin, C.F.H.; Reif, J.C. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 2014, 112, 638–645. [Google Scholar] [CrossRef]
- Cerrudo, D.; Cao, S.; Yuan, Y.; Martinez, C.; Suarez, E.A.; Babu, R.; Zhang, X.; Trachsel, S. Genomic Selection Outperforms Marker Assisted Selection for Grain Yield and Physiological Traits in a Maize Doubled Haploid Population Across Water Treatments. Front. Plant Sci. 2018, 9, 366. [Google Scholar] [CrossRef]
- McGranahan, G.; Browne, G.; Leslie, C.; Hackett, W.; McKenna, M. Walnut Rootstock ‘RX1’. US Plant Patent No. 20,649, 19 January 2010. [Google Scholar]
- McGranahan, G.; Leslie, C.; Hackett, W.; Browne, G.; McKenna, J.; Buzo, T.; Kaku, S.; McKenry, M. Walnut Rootstock ‘VX211’. US Plant Patent No. 21,179, 3 August 2010. [Google Scholar]
- Buzo, T.; Mckenna, J.; Kaku, S.; Anwar, S.A.; McKenry, M.V. VX211, A vigorous new walnut hybrid clone with nematode tolerance and a useful resistance mechanism. J. Nematol. 2009, 41, 211–216. [Google Scholar] [PubMed]
- Granato, I.; Fritsche-Neto, R. snpReady: Preparing Genotypic Datasets in Order to Run Genomic Analysis. R Package Version 0.9.6, 2018. Available online: https://cran.r-project.org/web/packages/snpReady (accessed on 1 January 2024).
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 255–258. [Google Scholar] [CrossRef]
- Posit Team. RStudio: Integrated Development Environment for R, Posit Software version 2023.6.0.421; PBC: Boston, MA, USA, 2023; Available online: http://www.posit.co/ (accessed on 1 January 2024).
- R Core Team. R: A Language and Environment for Statistical Computing R version 4.4.0 (2024-04-24 ucrt); R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 2 July 2024).
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Dowle, M.; Srinivasan, A. data.table: Extension of data.frame. 2022. Available online: https://cran.r-project.org/web/packages/data.table (accessed on 2 July 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. 2022. Available online: https://cran.r-project.org/web/packages/dplyr (accessed on 2 July 2024).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; Brand, T.v.D. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2022. Available online: https://cran.r-project.org/web/packages/ggplot2 (accessed on 2 July 2024).
- Dawson, C. ggprism: A ‘ggplot2’ Extension Inspired by ‘GraphPad Prism’. 2024. Available online: https://csdaw.github.io/ggprism/ (accessed on 2 July 2024).
- Wilke, C.; Wiernik, B. ggtext: Improved Text Rendering Support for ’ggplot2’. R Package Version 0.1.2. 2022. Available online: https://cran.r-project.org/web/packages/ggtext (accessed on 2 July 2024).
- Zhu, H. kableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R Package Version 1.4.0. 2024. Available online: https://cran.r-project.org/web/packages/kableExtra (accessed on 2 July 2024).
- Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. 2022. Available online: https://yihui.org/knitr/ (accessed on 2 July 2024).
- Saxe, H. OmicsAnalyst: Functions to Facilitate the Statistical Analysis of Omics Data. 2023. Available online: https://github.com/hsaxe/Omics-Analyst (accessed on 2 July 2024).
- Schauberger, P.; Walker, A. openxlsx: Read, Write and Edit xlsx Files. R Package Version 4.2.5.2. 2023. Available online: https://cran.r-project.org/web/packages/openxlsx (accessed on 2 July 2024).
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Allaire, J.; Xie, Y.; Dervieux, C.; McPherson, J.; Luraschi, J.; Ushey, K.; Atkins, A.; Wickham, H.; Cheng, J.; Chang, W. rmarkdown: Dynamic Documents for R. 2022. Available online: https://cran.r-project.org/web/packages/rmarkdown (accessed on 2 July 2024).
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. 2022. Available online: https://strengejacke.github.io/sjPlot/ (accessed on 2 July 2024).
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. 2022. Available online: https://cran.r-project.org/web/packages/stringr (accessed on 2 July 2024).
- Müller, K.; Wickham, H. tibble: Simple Data Frames. 2022. Available online: https://cran.r-project.org/web/packages/tibble (accessed on 2 July 2024).
- Fairbanks, M. tidytable: Tidy Interface to data.table. 2022. Available online: https://github.com/markfairbanks/tidytable (accessed on 2 July 2024).
- Robinson, D.; Silge, J. tidytext: Text Mining using dplyr, ggplot2, and Other Tidy Tools. 2022. Available online: https://github.com/juliasilge/tidytext (accessed on 2 July 2024).
- Wickham, H.; Girlich, M. tidyr: Tidy Messy Data. 2022. Available online: https://cran.r-project.org/web/packages/tidyr (accessed on 2 July 2024).
- Chang, W. webshot2: Take Screenshots of Web Pages. R Package Version 0.1.1. 2023. Available online: https://cran.r-project.org/web/packages/webshot2 (accessed on 2 July 2024).
Trait | Chromosome | Unique Markers | Length (bp) | Percent Variance Explained |
---|---|---|---|---|
Two-year P. vulnus Counts | 4D | 31 | 12,109,447 | 13.9% |
Three-year P. vulnus Counts | 4D | 17 | 5,298,334 | 13.1% |
Two-year Tree Height | 4D | 65 | 30,660,994 | 70.3% |
Three-year Tree Height | 4D | 65 | 30,660,994 | 41.4% |
Three-year Tree Height | 6D | 14 | 3,493,793 | 4.8% |
A. tumefaciens Disease Score | 4D | 59 | 30,060,179 | 45.4% |
Phytophthora spp. Disease Score | 4D | 38 | 21,190,695 | 21.0% |
Phytophthora spp. Disease Score | 6D | 3 | 3,720,218 | 6.1% |
Trait | Marker(s) | Chromosome | LOD | Length (bp) | Percent Variance Explained |
---|---|---|---|---|---|
Two-year P. vulnus Counts | 31.01_Jm4D_26669075 | 4D | 9.8 | 0 | 15.7% |
Three-year P. vulnus Counts | 31.01_Jm4D_26669075 | 4D | 7.6 | 0 | 12.9% |
Two-year Tree Height | 31.01_Jm4D_26669075 | 4D | 44.9 | 0 | 67.1% |
Three-year Tree Height | 31.01_Jm4D_26669075 | 4D | 22.2 | 0 | 33.8% |
A. tumefaciens Disease Score | 31.01_Jm4D_26168643 | 4D | 28.4 | 500,432 | 44.1% |
A. tumefaciens Disease Score | 31.01_Jm4D_26359154 | 4D | 28.4 | 500,432 | 44.1% |
A. tumefaciens Disease Score | 31.01_Jm4D_26669075 | 4D | 28.4 | 500,432 | 44.1% |
Phytophthora spp. Disease Score | 31.01_Jm4D_26168643 | 4D | 11.1 | 500,432 | 18.9% |
Phytophthora spp. Disease Score | 31.01_Jm4D_26359154 | 4D | 11.1 | 500,432 | 18.9% |
Phytophthora spp. Disease Score | 31.01_Jm4D_26669075 | 4D | 11.1 | 500,432 | 18.9% |
Trait | Chromosome | Unique Markers | Length (bp) | Percent Variance Explained |
---|---|---|---|---|
Two-year P. vulnus Counts | 3D | 2 | 372,371 | 7.0% |
Two-year P. vulnus Counts | 4D | 3 | 54,916 | 8.2% |
Three-year P. vulnus Counts | 1D | 39 | 24,916,299 | 8.5% |
Three-year P. vulnus Counts | 4D | 14 | 9,378,085 | 16.7% |
Two-year Tree Height | 4D | 31 | 21,274,993 | 20.1% |
Three-year Tree Height | 4D | 19 | 10,480,961 | 17.2% |
A. tumefaciens Disease Score | 4D | 59 | 31,696,222 | 39.7% |
A. tumefaciens Disease Score | 7D | 1 | 0 | 7.0% |
Phytophthora spp. Disease Score | 4D | 46 | 29,549,284 | 17.5% |
Trait | Marker(s) | Chromosome | LOD | Length (bp) | Percent Variance Explained |
---|---|---|---|---|---|
Two-year P. vulnus Counts | 31.09_Jm4D_23906200 | 4D | 3.9 | 54,916 | 8.2% |
Two-year P. vulnus Counts | 31.09_Jm4D_23960954 | 4D | 3.9 | 54,916 | 8.2% |
Two-year P. vulnus Counts | 31.09_Jm4D_23961116 | 4D | 3.9 | 54,916 | 8.2% |
Three-year P. vulnus Counts | 31.09_Jm4D_26359154 | 4D | 7.1 | 0 | 17.3% |
Two-year Tree Height | 31.09_Jm4D_25101968 | 4D | 6.2 | 0 | 23.5% |
Three-year Tree Height | 31.09_Jm4D_26359154 | 4D | 7.5 | 0 | 17.1% |
A. tumefaciens Disease Score | 31.09_Jm4D_26359154 | 4D | 18.9 | 0 | 36.9% |
Phytophthora spp. Disease Score | 31.09_Jm4D_23816262 | 4D | 11.0 | 443,002 | 17.6% |
Phytophthora spp. Disease Score | 31.09_Jm4D_24259264 | 4D | 11.0 | 443,002 | 17.6% |
Method | Female Parent | A. tumefaciens Disease Score | Phytophthora spp. Disease Score | Three-Year Tree Height | Three-Year P. vulnus Counts | Two-Year Tree Height | Two-Year P. vulnus Counts |
---|---|---|---|---|---|---|---|
RF | 31.01 | 0.67 *** | 0.49 ** | 0.59 *** | 0.33 ** | 0.84 *** | 0.35 ** |
RF | 31.09 | 0.58 *** | 0.38 ** | 0.31 * | 0.34 * | 0.46 * | 0.19 |
rrBLUP | 31.01 | 0.46 *** | 0.36 ** | 0.52 *** | 0.24 | 0.73 *** | 0.25 * |
rrBLUP | 31.09 | 0.42 ** | 0.25 * | 0.37 * | 0.31 * | 0.51 * | 0.19 |
Stat | Method | Female Parent | A. tumefaciens Disease Score | Phytophthora spp. Disease Score | Three-Year Tree Height | Three-Year P. vulnus Counts | Two-Year Tree Height | Two-Year P. vulnus Counts |
---|---|---|---|---|---|---|---|---|
Selection | RF | 31.01 | 1.54 *** | 25.8 * | 134 . | 30.1 * | 127 *** | 5.02 . |
No Selection | RF | 31.01 | 2.36 *** | 37.9 * | 112 . | 59.3 * | 89.3 *** | 12.5 . |
Selection | RF | 31.09 | 1.5 *** | 16.5 * | 113 | 46.7 . | 98.4 * | 13.9 |
No Selection | RF | 31.09 | 2.32 *** | 26.4 * | 99.3 | 94.1 . | 70.6 * | 19.4 |
Selection | rrBLUP | 31.01 | 1.72 ** | 31 | 143 * | 40.3 | 124 *** | 6.47 |
No Selection | rrBLUP | 31.01 | 2.36 ** | 37.9 | 112 * | 59.3 | 89.3 *** | 12.8 |
Selection | rrBLUP | 31.09 | 1.84 . | 19.9 . | 120 . | 54.4 | 86.6 | 13.5 |
No Selection | rrBLUP | 31.09 | 2.32 . | 26.4 . | 99.3 . | 94.1 | 70.6 | 19.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saxe, H.J.; Leslie, C.A.; Brown, P.J.; Westphal, A.; Kluepfel, D.A.; Browne, G.T.; Dandekar, A.M. Co-Location of QTL for Vigor and Resistance to Three Diseases in Juglans microcarpa × J. regia Rootstocks. Int. J. Mol. Sci. 2025, 26, 903. https://doi.org/10.3390/ijms26030903
Saxe HJ, Leslie CA, Brown PJ, Westphal A, Kluepfel DA, Browne GT, Dandekar AM. Co-Location of QTL for Vigor and Resistance to Three Diseases in Juglans microcarpa × J. regia Rootstocks. International Journal of Molecular Sciences. 2025; 26(3):903. https://doi.org/10.3390/ijms26030903
Chicago/Turabian StyleSaxe, Houston J., Charles A. Leslie, Patrick J. Brown, Andreas Westphal, Daniel A. Kluepfel, Gregory T. Browne, and Abhaya M. Dandekar. 2025. "Co-Location of QTL for Vigor and Resistance to Three Diseases in Juglans microcarpa × J. regia Rootstocks" International Journal of Molecular Sciences 26, no. 3: 903. https://doi.org/10.3390/ijms26030903
APA StyleSaxe, H. J., Leslie, C. A., Brown, P. J., Westphal, A., Kluepfel, D. A., Browne, G. T., & Dandekar, A. M. (2025). Co-Location of QTL for Vigor and Resistance to Three Diseases in Juglans microcarpa × J. regia Rootstocks. International Journal of Molecular Sciences, 26(3), 903. https://doi.org/10.3390/ijms26030903