Advances in Targeted Therapy for Systemic Lupus Erythematosus: Current Treatments and Novel Approaches
Abstract
:1. Introduction
2. Current Landscape of Evidence-Based and Novel Therapies in Systemic Lupus Erythematosus
2.1. Belimumab
2.2. Anifrolumab
2.3. Rituximab
2.4. Voclosporin
3. Emerging Therapies
3.1. Novel Biological Agents in Development
- Obinutuzumab
- Dapirolizumab Pegol
- Telitacicept
- Litifilimab
- Upadacitinib
- Deucravacitinib
- Others
Agent | Mechanism of Action | Trial Phase | Patient Population | Primary Endpoint (Treatment vs. Placebo) | Key Secondary Outcome |
---|---|---|---|---|---|
Obinutuzumab [39] | Type II anti-CD20 mAb | II | Active/chronic LN | CRR at week 52: 35% vs. 23% | CRR at week 104: 41% vs. 23% |
Dapirolizumab pegol [42] | PEGylated anti-CD40L | III | Moderate to severely active SLE, stable LN | Dose–response relationship of BICLA response rates at week 24: none | BICLA response rate: 48.8–54.5% vs. 37.2% |
Telitacicept [44] | TACI-Fc fusion protein (BlyS/APRIL inhibitor) | IIb | Active SLE | SRI-4 response rate at week 48: 71.0–75.8% vs. 33.9% | GC dose reduction with 240 mg dose |
Litifilimab [46] | Anti-BDCA2 | II | SLE (SLEDAI-2K ≥ 4) | Total number of active joints at week 24: 19.0 ± 8.4 vs. 21.6 ± 8.5 | Most secondary endpoints not met |
Upadacitinib [47] | JAK1 inhibitor | II | Moderate to severely active SLE | SRI-4 response rate and GC dose ≤ 10 mg QD at week 24: 54.8% vs. 37.3% | SRI-4, BICLA, LLDAS response rate at week 48: 45.2% vs. 32.0%, 53.2% vs. 25.3%, 50.0% vs. 24.0%. Overall flares at week 24: 1.9 vs. 2.8. |
Deucravatinib [48] | TYK2 inhibitor | II | Active SLE | SRI-4 response rate at week 32: 58% vs. 34% | BICLA, CLASI-50, LLDAS response rates, active joint count at week 48: 57.1% vs. 34.4%, 47.3% vs. 25.6%, 36.6% vs. 13.3%, −8.9 vs. −7.6. |
3.2. CAR T Cell Therapy and T Cell Engager Therapy
- CAR T Cell Therapy
- T Cell Engager Therapy
4. Future Perspectives: Precision Medicine in Systemic Lupus Erythematosus
- Genetic Factors in SLE Pathogenesis and Patient Stratification
- Biomarker-Based Patient Stratification
- Predicting Treatment Response
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
APC | antigen-presenting cells |
APRIL | A proliferation-inducing ligand |
BAFF/BlyS | B cell activating factor/B lymphocyte stimulator |
BAFF-R | B cell activating factor receptor |
BCMA | B cell maturation antigen |
BDCA2 | blood dendritic cell antigen 2 |
BEL/PBO | belimumab with placebo |
BEL/RTX | belimumab with rituximab |
BICLA | British Isles Lupus Assessment Group-based Composite Lupus Assessment |
BILAG | British Isles Lupus Assessment Group (index) |
CAR | chimeric antigen receptor |
CD | cluster of differentiation |
CD40L | cluster of differentiation 40 ligand |
CRS | cytokine release syndrome |
CXCL10 | cysteine-X-cysteine motif chemokine ligand 10 |
DORIS | Definition Of Remission In SLE |
eGFR | estimated glomerular filtration rate |
eQTLs | expression quantitative trait loci |
EULAR | European League Against Rheumatism |
GFR | glomerular filtration rate |
GWAS | genome-wide association studies |
HZ | herpes zoster |
ICANS | immune effector cell-associated neurotoxicity syndrome |
IFN | interferon |
IFNAR | interferon receptor |
IFNAR1 | interferon receptor 1 |
IGS | interferon gene signature |
Ig | immunoglobulin |
IL | interleukin |
JAK | Janus kinase |
JAK1 | Janus kinase 1 |
KDIGO | Kidney Disease: Improving Global Outcomes |
LLDAS | Lupus Low Disease Activity State |
LN | lupus nephritis |
pDC | plasmacytoid dendritic cells |
PDGFRA | platelet-derived growth factor receptor alpha |
PGA | Physician’s Global Assessment |
RA | rheumatoid arthritis |
SELENA-SLEDAI | Safety of Estrogens in Lupus Erythematosus National Assessment–Systemic Lupus Erythematosus Disease Activity Index |
SLE | systemic lupus erythematosus |
SLEDAI-2K | Systemic Lupus Erythematosus Disease Activity Index 2000 |
SRI-4 | Systemic Lupus Erythematosus Responder Index |
TACI | transmembrane activator, calcium modulator, and cyclophilin ligand interactor |
TCE | T cell engager |
Treg | regulatory T cell |
TYK2 | Tyrosine kinase |
References
- Tsokos, G.C. The immunology of systemic lupus erythematosus. Nat. Immunol. 2024, 25, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Ugarte-Gil, M.F.; Hanly, J.; Urowitz, M.; Gordon, C.; Bae, S.C.; Romero-Diaz, J.; Sanchez-Guerrero, J.; Bernatsky, S.; Clarke, A.E.; Wallace, D.J.; et al. Remission and low disease activity (LDA) prevent damage accrual in patients with systemic lupus erythematosus: Results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort. Ann. Rheum. Dis. 2022, 81, 1541–1548. [Google Scholar] [CrossRef]
- Figueroa-Parra, G.; Cuéllar-Gutiérrez, M.C.; González-Treviño, M.; Sanchez-Rodriguez, A.; Flores-Gouyonnet, J.; Meade-Aguilar, J.A.; Prokop, L.J.; Murad, M.H.; Dall’Era, M.; Rovin, B.H.; et al. Impact of glucocorticoid dose on complete response, serious infections, and mortality during the initial therapy of lupus nephritis: A systematic review and meta-analysis of the control arms of randomized controlled trials. Arthritis Rheumatol. 2024, 76, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Bultink IE, M.; de Vries, F.; van Vollenhoven, R.F.; Lalmohamed, A. Mortality, causes of death and influence of medication use in patients with systemic lupus erythematosus vs matched controls. Rheumatology 2021, 60, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Shen, L.J.; Hsu, P.N.; Shen, C.Y.; Hall, S.A.; Hsiao, F.Y. Cumulative burden of glucocorticoid-related adverse events in patients with systemic lupus erythematosus: Findings from a 12-year longitudinal study. J. Rheumatol. 2018, 45, 83–89. [Google Scholar] [CrossRef]
- Usiskin, I.M.; Kyttaris, V.C. Estimating glucocorticoid-related morbidity in lupus nephritis using the glucocorticoid toxicity index. Lupus 2023, 32, 565–570. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Andersen, J.; Aringer, M.; Arnaud, L.; Bae, S.C.; Boletis, J.; Bruce, I.N.; Cervera, R.; Doria, A.; et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 2024, 83, 15–29. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Lupus Nephritis Work Group. KDIGO 2024 clinical practice guideline for the management of LUPUS NEPHRITIS. Kidney Int. 2024, 105, S1–S69. [Google Scholar] [CrossRef]
- Navarra, S.V.; Guzmán, R.M.; Gallacher, A.E.; Hall, S.; Levy, R.A.; Jimenez, R.E.; Li, E.K.; Thomas, M.; Kim, H.Y.; Leónm, M.G.; et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: A randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377, 721–731. [Google Scholar] [CrossRef]
- Furie, R.; Petri, M.; Zamani, O.; Cervera, R.; Wallace, D.J.; Tegzová, D.; Sanchez-Guerrero, J.; Schwarting, A.; Merrill, J.T.; Chatham, W.W.; et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011, 63, 3918–3930. [Google Scholar] [CrossRef]
- Furie, R.A.; Petri, M.A.; Wallace, D.J.; Ginzler, E.M.; Merrill, J.T.; Stohl, W.; Chatham, W.W.; Strand, V.; Weinstein, A.; Chevrier, M.R.; et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum. 2009, 61, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- van Vollenhoven, R.F.; Petri, M.A.; Cervera, R.; Roth, D.A.; Ji, B.N.; Kleoudis, C.S.; Zhong, Z.J.; Freimuth, W. Belimumab in the treatment of systemic lupus erythematosus: High disease activity predictors of response. Ann. Rheum. Dis. 2012, 71, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.; Rovin, B.H.; Houssiau, F.; Malvar, A.; Teng, Y.K.O.; Contreras, G.; Amoura, Z.; Yu, X.; Mok, C.C.; Santiago, M.B.; et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N. Engl. J. Med. 2020, 383, 1117–1128. [Google Scholar] [CrossRef]
- Rovin, B.H.; Furie, R.; Teng, Y.K.O.; Contreras, G.; Malvar, A.; Yu, X.; Ji, B.; Green, Y.; Gonzalez-Rivera, T.; Bass, D.; et al. A secondary analysis of the Belimumab International Study in Lupus Nephritis trial examined effects of belimumab on kidney outcomes and preservation of kidney function in patients with lupus nephritis. Kidney Int. 2022, 101, 403–413. [Google Scholar] [CrossRef]
- Hunnicutt, J.N.; Fairburn-Beech, J.; Georgiou, M.E.; Richards, A.; Gregan, Y.I.; Quasny, H.; Chauhan, D. Evaluating disease control following belimumab treatment in patients with SLE enrolled in the US OBSErve study. Lupus Sci. Med. 2022, 9, e000710. [Google Scholar] [CrossRef]
- Singh, J.A.; Shah, N.P.; Mudano, A.S. Belimumab for systemic lupus erythematosus. Cochrane Database Syst. Rev. 2021, 2, CD010668. [Google Scholar] [CrossRef]
- Gatto, M.; Saccon, F.; Zen, M.; Regola, F.; Fredi, M.; Andreoli, L.; Tincani, A.; Urban, M.L.; Emmi, G.; Ceccarelli, F.; et al. Early disease and low baseline damage as predictors of response to belimumab in patients with systemic lupus erythematosus in a real-life setting. Arthritis Rheumatol. 2020, 72, 1314–1324. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kusuda, M.; Yamaguchi, Y. Interferons and systemic lupus erythematosus: Pathogenesis, clinical features, and treatments in interferon-driven disease. Mod. Rheumatol. 2023, 33, 857–867. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tummala, R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: An overview from clinical trials. Mod. Rheumatol. 2021, 31, 1–12. [Google Scholar] [CrossRef]
- Furie, R.A.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Kalunian, K.C.; Vital, E.M.; Lawrence Ford, T.; Gupta, R.; Hiepe, F.; Santiago, M.; et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019, 1, e208–e219. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.-L.; Yee, C.-S.; Gordon, C.; Isenberg, D. From BILAG to BILAG-based combined lupus assessment-30 years on. Rheumatology 2016, 55, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Morand, E.F.; Abreu, G.; Furie, R.A.; Golder, V.; Tummala, R. Lupus low disease activity state attainment in the phase 3 TULIP trials of anifrolumab in active systemic lupus erythematosus. Ann. Rheum. Dis. 2023, 82, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Merrill, J.T.; Furie, R.; Werth, V.P.; Khamashta, M.; Drappa, J.; Wang, L.; Illei, G.; Tummala, R. Anifrolumab effects on rash and arthritis: Impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci. Med. 2018, 5, e000284. [Google Scholar] [CrossRef]
- Chatham, W.W.; Furie, R.; Saxena, A.; Brohawn, P.; Schwetje, E.; Abreu, G.; Tummala, R. Long-term safety and efficacy of anifrolumab in adults with systemic lupus erythematosus: Results of a phase II open-label extension study. Arthritis Rheumatol. 2021, 73, 816–825. [Google Scholar] [CrossRef]
- Kalunian, K.C.; Furie, R.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Tanaka, Y.; Winthrop, K.; Hupka, I.; Zhang, L.J.; Werther, S.; et al. A randomized, placebo-controlled phase III extension trial of the long-term safety and tolerability of anifrolumab in active systemic lupus erythematosus. Arthritis Rheumatol. 2023, 75, 253–265. [Google Scholar] [CrossRef]
- Jayne, D.; Rovin, B.; Mysler, E.F.; Furie, R.A.; Houssiau, F.A.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Chia, Y.L.; Tummala, R.; et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 2022, 81, 496–506. [Google Scholar] [CrossRef]
- Merrill, J.T.; Neuwelt, C.M.; Wallace, D.J.; Shanahan, J.C.; Latinis, K.M.; Oates, J.C.; Utset, T.O.; Gordon, C.; Isenberg, D.A.; Hsieh, H.J.; et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: The randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010, 62, 222–233. [Google Scholar] [CrossRef]
- Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012, 64, 1215–1226. [Google Scholar] [CrossRef]
- McCarthy, E.M.; Sutton, E.; Nesbit, S.; White, J.; Parker, B.; Jayne, D.; Griffiths, B.; Isenberg, D.A.; Rahman, A.; Gordon, C.; et al. Short-term efficacy and safety of rituximab therapy in refractory systemic lupus erythematosus: Results from the British Isles Lupus Assessment Group Biologics Register. Rheumatology 2018, 57, 470–479. [Google Scholar] [CrossRef]
- Terrier, B.; Amoura, Z.; Ravaud, P.; Hachulla, E.; Jouenne, R.; Combe, B.; Bonnet, C.; Cacoub, P.; Cantagrel, A.; de Bandt, M.; et al. Safety and efficacy of rituximab in systemic lupus erythematosus: Results from 136 patients from the French AutoImmunity and Rituximab registry. Arthritis Rheum. 2010, 62, 2458–2466. [Google Scholar] [CrossRef]
- Serris, A.; Amoura, Z.; Canouï-Poitrine, F.; Terrier, B.; Hachulla, E.; Costedoat-Chalumeau, N.; Papo, T.; Lambotte, O.; Saadoun, D.; Hié, M.; et al. Efficacy and safety of rituximab for systemic lupus erythematosus-associated immune cytopenias: A multicenter retrospective cohort study of 71 adults. Am. J. Hematol. 2018, 93, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Atisha-Fregoso, Y.; Malkiel, S.; Harris, K.M.; Byron, M.; Ding, L.; Kanaparthi, S.; Barry, W.T.; Gao, W.; Ryker, K.; Tosta, P.; et al. Phase II randomized trial of rituximab plus cyclophosphamide followed by belimumab for the treatment of lupus nephritis. Arthritis Rheumatol. 2021, 73, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Shipa, M.; Santos, L.R.; Nguyen, D.X.; Embleton-Thirsk, A.; Parvaz, M.; Heptinstall, L.L.; Pepper, R.J.; Isenberg, D.A.; Gordon, C.; Ehrenstein, M.R. Identification of biomarkers to stratify response to B-cell-targeted therapies in systemic lupus erythematosus: An exploratory analysis of a randomised controlled trial. Lancet Rheumatol. 2023, 5, e24–e35. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C.; Allaart, C.F.; Amoura, Z.; Bruce, I.N.; Cagnoli, P.C.; Chatham, W.W.; Clark, K.L.; Furie, R.; Groark, J.; Urowitz, M.B.; et al. Efficacy and safety of sequential therapy with subcutaneous belimumab and one cycle of rituximab in patients with systemic lupus erythematosus: The phase 3, randomised, placebo-controlled BLISS-BELIEVE study. Ann. Rheum. Dis. 2024, 83, 1502–1512. [Google Scholar] [CrossRef]
- Rovin, B.H.; Teng, Y.K.O.; Ginzler, E.M.; Arriens, C.; Caster, D.J.; Romero-Diaz, J.; Gibson, K.; Kaplan, J.; Lisk, L.; Navarra, S.; et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2021, 397, 2070–2080. [Google Scholar] [CrossRef]
- Saxena, A.; Ginzler, E.M.; Gibson, K.; Satirapoj, B.; Santillán, A.E.Z.; Levchenko, O.; Navarra, S.; Atsumi, T.; Yasuda, S.; Chavez-Perez, N.N.; et al. Safety and efficacy of long-term voclosporin treatment for lupus nephritis in the phase 3 AURORA 2 clinical trial. Arthritis Rheumatol. 2024, 76, 59–67. [Google Scholar] [CrossRef]
- Reddy, V.; Klein, C.; Isenberg, D.A.; Glennie, M.J.; Cambridge, G.; Cragg, M.S.; Leandro, M.J. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology 2017, 56, 1227–1237. [Google Scholar] [CrossRef]
- Furie, R.A.; Aroca, G.; Cascino, M.D.; Garg, J.P.; Rovin, B.H.; Alvarez, A.; Fragoso-Loyo, H.; Zuta-Santillan, E.; Schindler, T.; Brunetta, P.; et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: A randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2022, 81, 100–107. [Google Scholar] [CrossRef]
- Arnold, J.; Dass, S.; Twigg, S.; Jones, C.H.; Rhodes, B.; Hewins, P.; Chakravorty, M.; Courtney, P.; Ehrenstein, M.; Md Yusof, M.Y.; et al. Efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. Rheumatology 2022, 61, 4905–4909. [Google Scholar] [CrossRef]
- Boumpas, D.T.; Furie, R.; Manzi, S.; Illei, G.G.; Wallace, D.J.; Balow, J.E.; Vaishnaw, A. A short course of BG9588 (anti–CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 2003, 48, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.A.; Bruce, I.N.; Dörner, T.; Leon, M.G.; Leszczyński, P.; Urowitz, M.; Haier, B.; Jimenez, T.; Brittain, C.; Liu, J.; et al. Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology 2021, 60, 5397–5407. [Google Scholar] [CrossRef] [PubMed]
- Megan Clowse, David Isenberg, Joan Merrill, Thomas Dörner, Michelle Petri, Edward Vital, Eric Morand, Teri Jimenez, Stephen Brookes, Janine Gaiha-Rohrbach, Christophe Martin, Annette Nelde and Christian Stach. Dapirolizumab Pegol Demonstrated Significant Improvement in Systemic Lupus Erythematosus Disease Activity: Efficacy and Safety Results of a Phase 3 Trial. ACR Convergence 2024. 2024. Available online: https://acrabstracts.org/abstract/dapirolizumab-pegol-demonstrated-significant-improvement-in-systemic-lupus-erythematosus-disease-activity-efficacy-and-safety-results-of-a-phase-3-trial/ (accessed on 21 December 2024).
- Wu, D.; Li, J.; Xu, D.; Merrill, J.T.; van Vollenhoven, R.F.; Liu, Y.; Hu, J.; Li, Y.; Li, F.; Huang, C.; et al. Telitacicept in patients with active systemic lupus erythematosus: Results of a phase 2b, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2024, 83, 475–487. [Google Scholar]
- Efficacy and Immunological Evaluation of Telitacicept and Low Dose IL2 in the Treatment of Systemic Lupus Erythematosus: A Randomise Prospective Study. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT05339217 (accessed on 16 January 2025).
- Furie, R.A.; van Vollenhoven, R.F.; Kalunian, K.; Navarra, S.; Romero-Diaz, J.; Werth, V.P.; Huang, X.; Clark, G.; Carroll, H.; Meyers, A.; et al. Trial of anti-BDCA2 antibody litifilimab for systemic lupus erythematosus. N. Engl. J. Med. 2022, 387, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Merrill, J.T.; Tanaka, Y.; D’Cruz, D.; Vila-Rivera, K.; Siri, D.; Zeng, X.; Saxena, A.; Aringer, M.; D’Silva, K.M.; Cheng, L.; et al. Efficacy and safety of upadacitinib or elsubrutinib alone or in combination for patients with systemic lupus erythematosus: A phase 2 randomized controlled trial. Arthritis Rheumatol. 2024, 76, 1518–1529. [Google Scholar]
- Morand, E.; Pike, M.; Merrill, J.T.; van Vollenhoven, R.; Werth, V.P.; Hobar, C.; Delev, N.; Shah, V.; Sharkey, B.; Wegman, T.; et al. Deucravacitinib, a tyrosine kinase 2 inhibitor, in systemic lupus erythematosus: A phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2023, 75, 242–252. [Google Scholar] [CrossRef]
- Arriens, C.; Askanase, A.; Furie, R.; Morand, E.F.; Van Vollenhoven, R.; Connors, K.; Davey, M.; Delev, N.; Shah, V.; Stevens, A.; et al. Ab0530 design of 2 phase 3, double-blind, placebo-controlled, global trials of deucravacitinib, an oral, selective, allosteric tyrosine kinase 2 (tyk2) inhibitor, in patients with active systemic lupus erythematosus. In Scientific Abstracts; BMJ Publishing Group Ltd.: London, UK; European League Against Rheumatism: Zürich, Switzerland, 2023; Volume 82. [Google Scholar]
- He, J.; Zhang, R.; Shao, M.; Zhao, X.; Miao, M.; Chen, J.; Liu, J.; Zhang, X.; Zhang, X.; Jin, Y.; et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: A randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2020, 79, 141–149. [Google Scholar]
- Rosenzwajg, M.; Lorenzon, R.; Cacoub, P.; Pham, H.P.; Pitoiset, F.; El Soufi, K.; RIbet, C.; Bernard, C.; Aractingi, S.; Banneville, B.; et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 2019, 78, 209–217. [Google Scholar] [CrossRef] [PubMed]
- A Prospective, Single-Center Study of Comparing the Efficacy and Safety of Human Umbilical Cord Mesenchymal Stem Cells and Low-dose IL-2 in the Treatment of Lupus Nephritis. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT05631717 (accessed on 16 January 2025).
- van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Wagner, C.L.; Lipsky, P.; Touma, Z.; Werth, V.P.; Gordon, R.M.; Zhou, B.; Hsu, B.; et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: Results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 2018, 392, 1330–1339. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Kalunian, K.C.; Dörner, T.; Hahn, B.H.; Tanaka, Y.; Gordon, R.M.; Shu, C.; Fei, K.; Gao, S.; Seridi, L.; et al. Phase 3, multicentre, randomised, placebo-controlled study evaluating the efficacy and safety of ustekinumab in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2022, 81, 1556–1563. [Google Scholar]
- Costa, R.; Antunes, P.; Salvador, P.; Oliveira, P.; Marinho, A. Secukinumab on refractory lupus nephritis. Cureus 2021, 13, e17198. [Google Scholar]
- Sato, K.; Aizaki, Y.; Yoshida, Y.; Mimura, T. Treatment of psoriatic arthritis complicated by systemic lupus erythematosus with the IL-17 blocker secukinumab and an analysis of the serum cytokine profile. Mod. Rheumatol. Case Rep. 2020, 4, 181–185. [Google Scholar] [CrossRef] [PubMed]
- A Pilot Study to Assess the Safety and Efficacy of Secukinumab in Alleviating Symptoms of Discoid Lupus Erythematosus. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT03866317 (accessed on 16 January 2025).
- A Two-year, Phase III Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Trial to Evaluate the Safety, Efficacy, and Tolerability of 300 mg s.c. Secukinumab Versus Placebo, in Combination With SoC Therapy, in Patients With Active Lupus Nephritis. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT04181762?cond=Systemic%20Lupus%20Erythematosus&intr=Secukinumab&rank=3 (accessed on 16 January 2025).
- A Three-year, Open-Label Extension Study of Subcutaneous Secukinumab to Evaluate the Long-term Efficacy, Safety and Tolerability in Patients with Active Lupus Nephritis. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT05232864 (accessed on 16 January 2025).
- Koller-Smith, L.; Oakley, S. Secukinumab-induced systemic lupus erythematosus occurring in a patient with ankylosing spondylitis. Rheumatology 2022, 61, e146–e147. [Google Scholar] [CrossRef] [PubMed]
- Kaler, J.; Kaeley, G.S. Secukinumab-induced lupus erythematosus: A case report and literature review. J. Clin. Rheumatol. 2021, 27, S753–S754. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Mackensen, A.; Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 2023, 402, 2034–2044. [Google Scholar] [CrossRef]
- Schett, G.; Müller, F.; Taubmann, J.; Mackensen, A.; Wang, W.; Furie, R.A.; Gold, R.; Haghikia, A.; Merkel, P.A.; Caricchio, R.; et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 2024, 20, 531–544. [Google Scholar] [CrossRef]
- Mougiakakos, D.; Krönke, G.; Völkl, S.; Kretschmann, S.; Aigner, M.; Kharboutli, S.; Böltz, S.; Manger, B.; Mackensen, A.; Schett, G. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 2021, 385, 567–569. [Google Scholar] [CrossRef]
- Mackensen, A.; Müller, F.; Mougiakakos, D.; Böltz, S.; Wilhelm, A.; Aigner, M.; Völkl, S.; Simon, D.; Kleyer, A.; Munoz, L.; et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 2022, 28, 2124–2132. [Google Scholar] [CrossRef]
- Müller, F.; Taubmann, J.; Bucci, L.; Wilhelm, A.; Bergmann, C.; Völkl, S.; Aigner, M.; Rothe, T.; Minopoulou, I.; Tur, C.; et al. CD19 CAR T-cell therapy in autoimmune disease—A case series with follow-up. N. Engl. J. Med. 2024, 390, 687–700. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; Zhang, W.; Zhang, H.; DeStefano, V.M.; Wada, M.; Pinz, K.; Deener, G.; Shah, D.; Hagag, N.; et al. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: A phase 1 open-label clinical trial. Ann. Rheum. Dis. 2024, 83, 1304–1314. [Google Scholar] [CrossRef]
- Hagen, M.; Bucci, L.; Böltz, S.; Nöthling, D.M.; Rothe, T.; Anoshkin, K.; Raimondo, M.G.; Tur, C.; Wirsching, A.; Wacker, J.; et al. BCMA-targeted T-cell-engager therapy for autoimmune disease. N. Engl. J. Med. 2024, 391, 867–869. [Google Scholar] [CrossRef]
- Alexander, T.; Krönke, J.; Cheng, Q.; Keller, U.; Krönke, G. Teclistamab-induced remission in refractory systemic lupus erythematosus. N. Engl. J. Med. 2024, 391, 864–866. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.C.; Granger, K.; Hill, H.; Karabinos, A.; Davis, J.A. Elranatamab vs. teclistamab: Battle of the BCMA bispecifics in relapsed/refractory multiple myeloma. Expert Rev. Hematol. 2024, 17, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Bucci, L.; Hagen, M.; Rothe, T.; Raimondo, M.G.; Fagni, F.; Tur, C.; Wirsching, A.; Wacker, J.; Wilhelm, A.; Auger, J.P.; et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 2024, 30, 1593–1601. [Google Scholar] [CrossRef]
- A Study of CLN-978, a Subcutaneously Administered CD19-Directed T Cell Engager, in Subjects With Systemic Lupus Erythematosus. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT06613360 (accessed on 16 December 2024).
- Meetze, K.; Mehta, N.K.; Li, B.; Michaelson, J.S.; Baeuerle, P.A. CLN-978, a novel half-life extended CD19/CD3/HSA-specific T cell-engaging antibody construct with potent activity against B-cell malignancies with low CD19 expression. J. Immunother. Cancer 2023, 11, e007398. [Google Scholar] [CrossRef]
- Fasano, S.; Milone, A.; Nicoletti, G.F.; Isenberg, D.A.; Ciccia, F. Precision medicine in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2023, 19, 331–342. [Google Scholar] [CrossRef]
- Hom, G.; Graham, R.R.; Modrek, B.; Taylor, K.E.; Ortmann, W.; Garnier, S.; Lee, A.T.; Chung, S.A.; Ferreira, R.C.; Pant, P.V.; et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 2008, 358, 900–909. [Google Scholar] [CrossRef]
- Kozyrev, S.V.; Abelson, A.K.; Wojcik, J.; Zaghlool, A.; Linga Reddy, M.V.; Sanchez, E.; Gunnarsson, I.; Svenungsson, E.; Sturfelt, G.; Jönsen, A.; et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 2008, 40, 211–216. [Google Scholar] [CrossRef]
- Yasutomo, K.; Horiuchi, T.; Kagami, S.; Tsukamoto, H.; Hashimura, C.; Urushihara, M.; Kuroda, Y. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 2001, 28, 313–314. [Google Scholar] [CrossRef]
- Al-Mayouf, S.M.; Sunker, A.; Abdwani, R.; Abrawi, S.A.; Almurshedi, F.; Alhashmi, N.; Al Sonbul, A.; Sewairi, W.; Qari, A.; Abdallah, E.; et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 2011, 43, 1186–1188. [Google Scholar] [CrossRef]
- Chung, S.A.; Brown, E.E.; Williams, A.H.; Ramos, P.S.; Berthier, C.C.; Bhangale, T.; Alarcon-Riquelme, M.E.; Behrens, T.W.; Criswell, L.A.; Graham, D.C.; et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J. Am. Soc. Nephrol. 2014, 25, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Feusi, E.; Sun, L.; Sibalic, A.; Beck-Schimmer, B.; Oertli, B.; Wüthrich, R.P. Enhanced Hyaluronan Synthesis in the MRL-Faslpr Kidney: Role of Cytokines. Nephron 1999, 83, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Järvinen, T.M.; Hellquist, A.; Koskenmies, S.; Einarsdottir, E.; Panelius, J.; Hasan, T.; Julkunen, H.; Padyukov, L.; Kvarnström, M.; Wahren-Herlenius, M.; et al. Polymorphisms of the ITGAM gene confer higher risk of discoid cutaneous than of systemic lupus erythematosus. PLoS ONE 2010, 5, e14212. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E.; Chung, S.A.; Graham, R.R.; Ortmann, W.A.; Lee, A.T.; Langefeld, C.D.; Jacob, C.O.; Kamboh, M.I.; Alarcón-Riquelme, M.E.; Tsao, B.P.; et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 2011, 7, e1001311. [Google Scholar] [CrossRef]
- Ho, R.C.; Ong, H.; Thiaghu, C.; Lu, Y.; Ho, C.S.; Zhang, M.W. Genetic variants that are associated with neuropsychiatric systemic lupus erythematosus. J. Rheumatol. 2016, 43, 541–551. [Google Scholar] [CrossRef]
- Perez, R.K.; Gordon, M.G.; Subramaniam, M.; Kim, M.C.; Hartoularos, G.C.; Targ, S.; Sun, Y.; Ogorodnikov, A.; Bueno, R.; Lu, A.; et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 2022, 376, eabf1970. [Google Scholar] [CrossRef]
- Adams, D.E.; Shao, W.H. Epigenetic alterations in immune cells of systemic lupus erythematosus and therapeutic implications. Cells 2022, 11, 506. [Google Scholar] [CrossRef]
- Perez-Hernandez, J.; Forner, M.J.; Pinto, C.; Chaves, F.J.; Cortes, R.; Redon, J. Increased urinary exosomal MicroRNAs in patients with systemic lupus erythematosus. PLoS ONE 2015, 10, e0138618. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Pan, B.; Li, Y.; Liu, A.; Li, X. Increased expression of hub gene CXCL10 in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Exp. Ther. Med. 2019, 18, 4067–4075. [Google Scholar] [CrossRef]
- Narumi, S.; Takeuchi, T.; Kobayashi, Y.; Konishi, K. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine 2000, 12, 1561–1565. [Google Scholar] [CrossRef]
- Capecchi, R.; Puxeddu, I.; Pratesi, F.; Migliorini, P. New biomarkers in SLE: From bench to bedside. Rheumatology 2020, 59, v12–v18. [Google Scholar] [CrossRef] [PubMed]
- Fragoso-Loyo, H.; Richaud-Patin, Y.; Orozco-Narváez, A.; Dávila-Maldonado, L.; Atisha-Fregoso, Y.; Llorente, L.; Sánchez-Guerrero, J. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007, 56, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, L.L.; van Roon, J.A.G.; Mertens, J.S.; Wienke, J.; Lopes, A.P.; de Jager, W.; Rossato, M.; Pandit, A.; Wichers, C.G.K.; van Wijk, F.; et al. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 2018, 77, 1810–1814. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.J.; Karrar, S.; Rainbow, D.B.; Pinder, C.L.; Clarke, P.; Rubio García, A.; Al-Assar, O.; Burling, K.; Morris, S.; Stratton, R.; et al. The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Res. Ther. 2018, 20, 152. [Google Scholar] [CrossRef]
- Zollars, E.; Bienkowska, J.; Czerkowicz, J.; Allaire, N.; Ranger, A.M.; Magder, L.; Petri, M. BAFF (B cell activating factor) transcript level in peripheral blood of patients with SLE is associated with same-day disease activity as well as global activity over the next year. Lupus Sci. Med. 2015, 2, e000063. [Google Scholar] [CrossRef]
- Lee, Y.H.; Song, G.G. Urinary MCP-1 as a biomarker for lupus nephritis: A meta-analysis. Z. Rheumatol. 2017, 76, 357–363. [Google Scholar] [CrossRef]
- Xuejing, Z.; Jiazhen, T.; Jun, L.; Xiangqing, X.; Shuguang, Y.; Fuyou, L. Urinary TWEAK level as a marker of lupus nephritis activity in 46 cases. J. Biomed. Biotechnol. 2012, 2012, 359647. [Google Scholar] [CrossRef]
- Rubinstein, T.; Pitashny, M.; Levine, B.; Schwartz, N.; Schwartzman, J.; Weinstein, E.; Pego-Reigosa, J.M.; Lu, T.Y.; Isenberg, D.; Rahman, A.; et al. Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis. Rheumatology 2010, 49, 960–971. [Google Scholar] [CrossRef]
- Sawada, T.; Kurano, M.; Shirai, H.; Iwasaki, Y.; Tahara, K.; Hayashi, H.; Igarashi, K.; Fujio, K.; Aoki, J.; Yatomi, Y. Serum phosphatidylserine-specific phospholipase A1 as a novel biomarker for monitoring systemic lupus erythematosus disease activity. Int. J. Rheum. Dis. 2019, 22, 2059–2066. [Google Scholar] [CrossRef]
- Nakano, M.; Ota, M.; Takeshima, Y.; Iwasaki, Y.; Hatano, H.; Nagafuchi, Y.; Itamiya, T.; Maeda, J.; Yoshida, R.; Yamada, S.; et al. Distinct transcriptome architectures underlying lupus establishment and exacerbation. Cell 2022, 185, 3375–3389.e21. [Google Scholar] [CrossRef]
- Robinson, G.A.; Peng, J.; Dönnes, P.; Coelewij, L.; Naja, M.; Radziszewska, A.; Wincup, C.; Peckham, H.; Isenberg, D.A.; Ioannou, Y.; et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: Patient stratification using a machine-learning approach. Lancet Rheumatol. 2020, 2, e485–e496. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Nagafuchi, Y.; Hatano, H.; Ishigaki, K.; Terao, C.; Takeshima, Y.; Yanaoka, H.; Kobayashi, S.; Okubo, M.; Shirai, H.; et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 2021, 184, 3006–3021.e17. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saegusa, K.; Tsuchida, Y.; Komai, T.; Tsuchiya, H.; Fujio, K. Advances in Targeted Therapy for Systemic Lupus Erythematosus: Current Treatments and Novel Approaches. Int. J. Mol. Sci. 2025, 26, 929. https://doi.org/10.3390/ijms26030929
Saegusa K, Tsuchida Y, Komai T, Tsuchiya H, Fujio K. Advances in Targeted Therapy for Systemic Lupus Erythematosus: Current Treatments and Novel Approaches. International Journal of Molecular Sciences. 2025; 26(3):929. https://doi.org/10.3390/ijms26030929
Chicago/Turabian StyleSaegusa, Kazusa, Yumi Tsuchida, Toshihiko Komai, Haruka Tsuchiya, and Keishi Fujio. 2025. "Advances in Targeted Therapy for Systemic Lupus Erythematosus: Current Treatments and Novel Approaches" International Journal of Molecular Sciences 26, no. 3: 929. https://doi.org/10.3390/ijms26030929
APA StyleSaegusa, K., Tsuchida, Y., Komai, T., Tsuchiya, H., & Fujio, K. (2025). Advances in Targeted Therapy for Systemic Lupus Erythematosus: Current Treatments and Novel Approaches. International Journal of Molecular Sciences, 26(3), 929. https://doi.org/10.3390/ijms26030929