Utility of Magnetic Bead-Based Automated DNA Extraction to Improve Chagas Disease Molecular Diagnosis
Abstract
:1. Introduction
2. Results
2.1. DNA Quality and Sensitivity of T. cruzi satDNA Amplification from DNA Extracted with Silica Column and Magnetic Beads Purification Methods
2.2. T. cruzi satDNA Standard Curve Assessment in Silica Column and Magnetic Beads Purification Methods for Determination of Linearity
2.3. Determination of Limit of Detection (LOD95) for DNA Samples Purified Using Silica Column or Magnetic Beads
2.4. Reproducibility of T. cruzi satDNA Detection in DNA Samples Purified Using Silica Column or Magnetic Beads
2.5. Comparison of DNA Extraction Methods in GEB Samples from Patients with Chronic Chagas Disease
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. DNA Extraction Methods
4.3. T. cruzi Load Quantification by Quantitative Real-Time PCR
4.4. Patient and Blood Samples and Ethics Statement
4.5. Statistical Analysis
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chagas, C. Über eine neue Trypanosomiasis des Menschen. In Archiv für Schiffs und Tropen Hygiene; Generic: Sydney, Australia, 1909; Volume 13, pp. 351–353. [Google Scholar]
- Hochberg, N.S.; Montgomery, S.P. Chagas Disease. Ann. Intern. Med. 2023, 176, ITC17–ITC32. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop. 2010, 115, 14–21. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Chagas Disease. Available online: https://www.cdc.gov/chagas/index.html (accessed on 15 August 2024).
- Abras, A.; Gállego, M.; Llovet, T.; Tebar, S.; Herrero, M.; Berenguer, P.; Ballart, C.; Martí, C.; Muñoz, C. Serological Diagnosis of Chronic Chagas Disease: Is It Time for a Change? J. Clin. Microbiol. 2016, 54, 1566–1572. [Google Scholar] [CrossRef]
- Hernández, C.; Cucunubá, Z.; Flórez, C.; Olivera, M.; Valencia, C.; Zambrano, P.; León, C.; Ramírez, J.D. Molecular Diagnosis of Chagas Disease in Colombia: Parasitic Loads and Discrete Typing Units in Patients from Acute and Chronic Phases. PLoS Negl. Trop. Dis. 2016, 10, e0004997. [Google Scholar] [CrossRef]
- Schijman, A.G. Molecular diagnosis of Trypanosoma cruzi. Acta Trop. 2018, 184, 59–66. [Google Scholar] [CrossRef]
- Schijman, A.G.; Alonso-Padilla, J.; Longhi, S.A.; Picado, A. Parasitological, serological and molecular diagnosis of acute and chronic Chagas disease: From field to laboratory. Mem. Inst. Oswaldo Cruz 2022, 117, e200444. [Google Scholar] [CrossRef]
- Moreira, O.C.; Ramirez, J.D.; Velazquez, E.; Melo, M.F.; Lima-Ferreira, C.; Guhl, F.; Sosa-Estani, S.; Marin-Neto, J.A.; Morillo, C.A.; Britto, C. Towards the establishment of a consensus real-time qPCR to monitor Trypanosoma cruzi parasitemia in patients with chronic Chagas disease cardiomyopathy: A substudy from the BENEFIT trial. Acta Trop. 2013, 125, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.F.; Moreira, O.C.; Tenorio, P.; Lorena, V.; Lorena-Rezende, I.; Junior, W.O.; Gomes, Y.; Britto, C. Usefulness of real time PCR to quantify parasite load in serum samples from chronic Chagas disease patients. Parasit. Vectors 2015, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.C.; Cura, C.I.; da Cruz Moreira, O.; Lages-Silva, E.; Juiz, N.; Velazquez, E.; Ramirez, J.D.; Alberti, A.; Pavia, P.; Flores-Chavez, M.D.; et al. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients. J. Mol. Diagn. 2015, 17, 605–615. [Google Scholar] [CrossRef]
- Pascual-Vázquez, G.; Alonso-Sardón, M.; Rodríguez-Alonso, B.; Pardo-Lledías, J.; Romero Alegría, A.; Fernández-Soto, P.; Muñoz Bellido, J.L.; Muro, A.; Belhassen-García, M. Molecular diagnosis of Chagas disease: A systematic review and meta-analysis. Infect. Dis. Poverty 2023, 12, 95. [Google Scholar] [CrossRef]
- Magalhães, L.M.D.; Gollob, K.J.; Zingales, B.; Dutra, W.O. Pathogen diversity, immunity, and the fate of infections: Lessons learned from Trypanosoma cruzi human-host interactions. Lancet Microbe 2022, 3, e711–e722. [Google Scholar] [CrossRef] [PubMed]
- Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr.; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; et al. Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy. N. Engl. J. Med. 2015, 373, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Mule, S.N.; Costa-Martins, A.G.; Rosa-Fernandes, L.; de Oliveira, G.S.; Rodrigues, C.M.F.; Quina, D.; Rosein, G.E.; Teixeira, M.M.G.; Palmisano, G. PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems-wide mass spectrometry-based quantitative protein profile. Commun. Biol. 2021, 4, 324. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Vega, C.; Urbina, J.A.; Sanz, S.; Pinazo, M.J.; Pinto, J.J.; Gonzalez, V.R.; Rojas, G.; Ortiz, L.; Garcia, W.; Lozano, D.; et al. New chemotherapy regimens and biomarkers for Chagas disease: The rationale and design of the TESEO study, an open-label, randomised, prospective, phase-2 clinical trial in the Plurinational State of Bolivia. BMJ Open 2021, 11, e052897. [Google Scholar] [CrossRef]
- Bosch-Nicolau, P.; Fernández, M.L.; Sulleiro, E.; Villar, J.C.; Perez-Molina, J.A.; Correa-Oliveira, R.; Sosa-Estani, S.; Sánchez-Montalvá, A.; del Carmen Bangher, M.; Moreira, O.C.; et al. Efficacy of three benznidazole dosing strategies for adults living with chronic Chagas disease (MULTIBENZ): An international, randomised, double-blind, phase 2b trial. Lancet Infect. Dis. 2024, 24, 386–394. [Google Scholar] [CrossRef]
- Molina-Morant, D.; Fernandez, M.L.; Bosch-Nicolau, P.; Sulleiro, E.; Bangher, M.; Salvador, F.; Sanchez-Montalva, A.; Ribeiro, A.L.P.; de Paula, A.M.B.; Eloi, S.; et al. Efficacy and safety assessment of different dosage of benznidazol for the treatment of Chagas disease in chronic phase in adults (MULTIBENZ study): Study protocol for a multicenter randomized Phase II non-inferiority clinical trial. Trials 2020, 21, 328. [Google Scholar] [CrossRef]
- Marchiol, A.; Florez Sanchez, A.C.; Caicedo, A.; Segura, M.; Bautista, J.; Ayala Sotelo, M.S.; Herazo, R.; Forsyth, C.; Bohorquez, L.C. Laboratory evaluation of eleven rapid diagnostic tests for serological diagnosis of Chagas disease in Colombia. PLoS Neglected Trop. Dis. 2023, 17, e0011547. [Google Scholar] [CrossRef]
- Moreira, O.C.; Fernandes, A.G.; Gomes, N.; Dos Santos, C.M.; Jacomasso, T.; Costa, A.D.T.; Nascimento, L.O.R.; Hasslocher-Moreno, A.M.; do Brasil, P.; Morello, L.G.; et al. Validation of the NAT Chagas IVD Kit for the Detection and Quantification of Trypanosoma cruzi in Blood Samples of Patients with Chagas Disease. Life 2023, 13, 1236. [Google Scholar] [CrossRef]
- Alonso-Padilla, J.; Gallego, M.; Schijman, A.G.; Gascon, J. Molecular diagnostics for Chagas disease: Up to date and novel methodologies. Expert Rev. Mol. Diagn. 2017, 17, 699–710. [Google Scholar] [CrossRef]
- Piron, M.; Fisa, R.; Casamitjana, N.; Lopez-Chejade, P.; Puig, L.; Verges, M.; Gascon, J.; Gomez i Prat, J.; Portus, M.; Sauleda, S. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop. 2007, 103, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Burd, E.M. Validation of laboratory-developed molecular assays for infectious diseases. Clin. Microbiol. Rev. 2010, 23, 550–576. [Google Scholar] [CrossRef] [PubMed]
- Hagström, L.; Marques, A.L.P.; Nitz, N.; Hecht, M.M. The use of qPCR in human Chagas disease: A systematic review. Expert Rev. Mol. Diagn. 2019, 19, 875–894. [Google Scholar] [CrossRef]
- Silgado, A.; Moure, Z.; de Oliveira, M.T.; Serre-Delcor, N.; Salvador, F.; Oliveira, I.; Molina, I.; Pumarola, T.; Ramírez, J.C.; Sulleiro, E. Comparison of DNA extraction methods and real-time PCR assays for the molecular diagnostics of chronic Chagas disease. Future Microbiol. 2020, 15, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Parrado, R.; Ramirez, J.C.; de la Barra, A.; Alonso-Vega, C.; Juiz, N.; Ortiz, L.; Illanes, D.; Torrico, F.; Gascon, J.; Alves, F.; et al. Usefulness of Serial Blood Sampling and PCR Replicates for Treatment Monitoring of Patients with Chronic Chagas Disease. Antimicrob. Agents Chemother. 2019, 63, e01191-18. [Google Scholar] [CrossRef]
- Burgos, J.M.; Altcheh, J.; Bisio, M.; Duffy, T.; Valadares, H.M.; Seidenstein, M.E.; Piccinali, R.; Freitas, J.M.; Levin, M.J.; Macchi, L.; et al. Direct molecular profiling of minicircle signatures and lineages of Trypanosoma cruzi bloodstream populations causing congenital Chagas disease. Int. J. Parasitol. 2007, 37, 1319–1327. [Google Scholar] [CrossRef]
- Wehrendt, D.P.; Alonso-Padilla, J.; Liu, B.; Rojas Panozo, L.; Rivera Nina, S.; Pinto, L.; Lozano, D.; Picado, A.; Abril, M.; Pinazo, M.J.; et al. Development and Evaluation of a Three-Dimensional Printer—Based DNA Extraction Method Coupled to Loop Mediated Isothermal Amplification for Point-of-Care Diagnosis of Congenital Chagas Disease in Endemic Regions. J. Mol. Diagn. 2021, 23, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-dos-Santos, Í.; Melo, M.F.; de Castro, L.; Hasslocher-Moreno, A.M.; do Brasil, P.E.A.A.; Silvestre de Sousa, A.; Britto, C.; Moreira, O.C. Exploring the parasite load and molecular diversity of Trypanosoma cruzi in patients with chronic Chagas disease from different regions of Brazil. PLoS Neglected Trop. Dis. 2018, 12, e0006939. [Google Scholar] [CrossRef] [PubMed]
- Hasslocher-Moreno, A.M.; Saraiva, R.M.; Brasil, P.; Sangenis, L.H.C.; Xavier, S.S.; Sousa, A.S.; Sperandio-da-Silva, G.M.; Mendes, F.; Costa, A.R.D.; Holanda, M.T.; et al. Temporal changes in the clinical-epidemiological profile of patients with Chagas disease at a referral center in Brazil. Rev. Soc. Bras. Med. Trop. 2021, 54, e00402021. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
Sample | Silica Column a | Magnetic Beads a | ΔCt b | ||
---|---|---|---|---|---|
T. cruzi Quantity (Par. Eq./mL) | Ct Mean (ExoIPC) | Ct Mean (T. cruzi satDNA) | Ct Mean (ExoIPC) | Ct Mean (T. cruzi satDNA) | (CtSC − CtMB) |
104 | 33.57 ± 2.76 | 16.48 ± 0.14 | 38.08 ± 0.41 | 15.17 ± 0.12 | 1.32 |
103 | 30.52 ± 3.15 | 19.70 ± 0.12 | 30.97 ± 0.18 | 18.58 ± 0.16 | 1.12 |
102 | 28.82 ± 0.11 | 23.93 ± 0.28 | 28.02 ± 0.04 | 22.24 ± 0.03 | 1.69 |
101 | 29.02 ± 0.04 | 26.81 ± 0.14 | 28.77 ± 0.02 | 25.95 ± 0.01 | 0.85 |
100 | 29.07 ± 0.20 | 32.05 ± 2.20 | 29.00 ± 0.10 | 27.19 ± 0.27 | 4.87 |
10−1 | 29.12 ± 0.14 | 32.78 ± 3.30 | 29.33 ± 0.34 | 34.51 ± 0.00 | −1.73 |
10−2 | 29.57 ± 0.11 | ND | 29.15 ± 0.12 | ND | - |
10−3 | 28.87 ± 0.08 | ND | 28.97 ± 0.18 | ND | - |
10−4 | 28.61 ± 0.14 | ND | 29.00 ± 0.10 | ND | - |
10−5 | 28.57 ± 0.16 | ND | 28.88 ± 0.07 | ND | - |
10−6 | 28.68 ± 0.13 | ND | 28.96 ± 0.11 | ND | - |
Parameter | Sample Concentration | ||
---|---|---|---|
5.0 Par. Eq./mL | 2.5 Par. Eq./mL | 1.25 Par. Eq./mL | |
Silica column | |||
Positive samples | 33/33 (100%) | 32/33 (96.9%) | 26/33 (78.8%) |
Ct mean (±SD) | 33.04 ± 2.07 | 33.89 ± 1.63 | 35.98 ± 2.04 |
Coefficient of variation (%) | 6.28% | 4.81% | 5.66% |
Magnetic beads | |||
Positive samples | 33/33 (100%) | 33/33 (100%) | 30/33 (90.9%) |
Ct mean (±SD) | 31.45 ± 1.26 | 32.73 ± 1.40 | 34.19 ± 2.20 |
Coefficient of variation (%) | 4.02% | 4.28% | 6.4% |
DNA Extraction | Patient Samples (n = 40) | |||
---|---|---|---|---|
Silica Column | Magnetic Beads | |||
qPCR+ | qPCR− | qPCR+ | qPCR− | |
CD-positive serology (n = 30) | 11 (36.7%) | 19 (63.3%) | 11 (36.7%) | 19 (63.3%) |
CD-negative serology (n = 10) | 0 (0%) | 10 (100%) | 0 (0%) | 10 (100%) |
Total | 11 | 29 | 11 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farani, P.S.G.; Lopez, J.; Faier-Pereira, A.; Hasslocher-Moreno, A.M.; Almeida, I.C.; Moreira, O.C. Utility of Magnetic Bead-Based Automated DNA Extraction to Improve Chagas Disease Molecular Diagnosis. Int. J. Mol. Sci. 2025, 26, 937. https://doi.org/10.3390/ijms26030937
Farani PSG, Lopez J, Faier-Pereira A, Hasslocher-Moreno AM, Almeida IC, Moreira OC. Utility of Magnetic Bead-Based Automated DNA Extraction to Improve Chagas Disease Molecular Diagnosis. International Journal of Molecular Sciences. 2025; 26(3):937. https://doi.org/10.3390/ijms26030937
Chicago/Turabian StyleFarani, Priscila S. G., Jacqueline Lopez, Amanda Faier-Pereira, Alejandro Marcel Hasslocher-Moreno, Igor C. Almeida, and Otacilio C. Moreira. 2025. "Utility of Magnetic Bead-Based Automated DNA Extraction to Improve Chagas Disease Molecular Diagnosis" International Journal of Molecular Sciences 26, no. 3: 937. https://doi.org/10.3390/ijms26030937
APA StyleFarani, P. S. G., Lopez, J., Faier-Pereira, A., Hasslocher-Moreno, A. M., Almeida, I. C., & Moreira, O. C. (2025). Utility of Magnetic Bead-Based Automated DNA Extraction to Improve Chagas Disease Molecular Diagnosis. International Journal of Molecular Sciences, 26(3), 937. https://doi.org/10.3390/ijms26030937