Antiviral Activity of Water–Alcoholic Extract of Cistus incanus L.
Abstract
:1. Introduction
2. Results
2.1. UHPLC-HRMS/MS Qualitative Analysis
2.2. HPLC-PDA/MS Quantitative Analysis
2.3. Cytotoxicity Assay
2.4. MTT-Based Colorimetric Assay for Detection of Viral Replication Inhibition (Antiviral Assay)
2.5. Effect on the Infectivity of Extracellular Virions (Virucidal Assay)
3. Discussion
4. Materials and Methods
4.1. General Procedures and Chemicals
4.2. Plant Material
4.3. Extraction Procedure
4.4. UHPLC-HRMS/MS Qualitative Analysis
4.5. HPLC-PDA/MS Quantitative Analysis
4.6. Cell and Viruses
4.7. Cytotoxicity Assay
4.8. MTT-Based Colorimetric Assay for Detection of Viral Replication Inhibition (Antiviral Assay)
4.9. Effect on the Infectivity of Extracellular Virions (Virucidal Assay)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arslan, M.; Xu, B.; Gamal El-Din, M. Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies. Sci. Total Environ. 2020, 743, 140709. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tan, L.; Wang, X.; Liu, W.; Lu, Y.; Cheng, L.; Sun, Z. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. Int. J. Infect. Dis. 2020, 94, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Patel, S.K.; Pathak, M.; Yatoo, M.I.; Tiwari, R.; Malik, Y.S.; Singh, R.; Sah, R.; Rabaan, A.A.; Bonilla-Aldana, D.K.; et al. An update on SARS-CoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies. Travel Med. Infect. Dis. 2020, 37, 101755. [Google Scholar] [CrossRef]
- Ye, Z.W.; Yuan, S.; Yuen, K.S.; Fung, S.Y.; Chan, C.P.; Jin, D.Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020, 16, 1686–1697. [Google Scholar] [CrossRef]
- Ahmed, S.; Zengin, G.; Selvi, S.; Ak, G.; Cziáky, Z.; Jekő, J.; Rodrigues, M.J.; Custodio, L.; Venanzoni, R.; Flores, G.A.; et al. Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques. Pathogens 2024, 13, 795. [Google Scholar] [CrossRef]
- Wald, A.; Corey, L. Persistence in the population: Epidemiology, transmission. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P.S., Roizman, B., Whitley, R., Yamanishi, K., Eds.; Cambridge University Press: Cambridge, UK, 2007; Chapter 36. Available online: https://www.ncbi.nlm.nih.gov/books/NBK47447/ (accessed on 2 October 2024).
- Roncati, L.; Sweidan, E.; Tchawa, C.; Gianotti, G.; Di Massa, G.; Siciliano, F.; Paolini, A. SARS-CoV-2 Induced Herpes Virus Reactivations and Related Implications in Oncohematology: When Lymphocytopenia Sets in and Immunosurveillance Drops Out. Microorganisms 2023, 11, 2223. [Google Scholar] [CrossRef]
- Fukuda, K.; Limmathurotsakul, D.; Okeke, I.N.; Shetty, N.; van Doorn, R.; Feasey, N.A.; Chiara, F.; Zoubiane, G.; Jinks, T.; Parkhill, J.; et al. Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC): Supporting the transition from strategy to action [version 2; referees: 3 approved]. Wellcome Open Res. 2018, 3, 59. [Google Scholar] [CrossRef]
- Bachar, S.C.; Mazumder, K.; Bachar, R.; Aktar, A.; Al Mahtab, M. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front. Pharmacol. 2021, 12, 732891. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Ekiert, H. In vitro shoot cultures of pink rock-rose (Cistus × incanus L.) as a potential source of phenolic compounds. Acta Soc. Bot. Pol. 2017, 86, 3563. [Google Scholar] [CrossRef]
- Riehle, P.; Vollmer, M.; Rohn, S. Phenolic Compounds in Cistus incanus Herbal Infusions—Antioxidant Capacity and Thermal Stability During the Brewing Process. Food Res. Int. 2013, 53, 891–899. [Google Scholar] [CrossRef]
- Kuchta, A.; Konopacka, A.; Waleron, K.; Viapiana, A.; Wesołowski, M.; Dąbkowski, K.; Ćwiklińska, A.; Mickiewicz, A.; Śledzińska, A.; Wieczorek, E.; et al. The effect of Cistus incanus L. herbal tea supplementation on oxidative stress markers and lipid profile in healthy adults. Cardiol. J. 2021, 28, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Cacak-Pietrzak, G.; Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Biernacka, B. Cistus incanus L. as an Innovative Functional Additive to Wheat Bread. Foods 2019, 8, 349. [Google Scholar] [CrossRef]
- Mansoor, K.A.; Matalka, K.Z.; Qa’dan, F.S.; Awad, R.; Schmidt, M. Two new proanthocyanidin trimers isolated from Cistus incanus L. demonstrate potent anti-inflammatory activity and selectivity to cyclooxygenase isoenzymes inhibition. Nat. Prod. Res. 2015, 30, 1919–1926. [Google Scholar] [CrossRef]
- D’Ambrosio, M.; Bigagli, E.; Cinci, L.; Gori, A.; Brunetti, C.; Ferrini, F.; Luceri, C. Ethyl acetate extract from Cistus × incanus L. leaves enriched in myricetin and quercetin derivatives, inhibits inflammatory mediators and activates Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 macrophages. Z. für Naturforsch. C 2021, 75, 79–86. [Google Scholar] [CrossRef]
- Gori, A.; Ferrini, F.; Marzano, M.C.; Tattini, M.; Centritto, M.; Baratto, M.C.; Pogni, R.; Brunetti, C. Characterisation and Antioxidant Activity of Crude Extract and Polyphenolic Rich Fractions from Cistus incanus Leaves. Int. J. Mol. Sci. 2016, 17, 1344. [Google Scholar] [CrossRef]
- Chinou, I.; Demetzos, C.; Harvala, C.; Roussakis, C.; Verbist, J.F. Cytotoxic and antibacterial labdane-type diterpenes from the aerial parts of Cistus incanus L. subsp. creticus. Planta Med. 1994, 60, 34–36. [Google Scholar] [CrossRef]
- Bouamama, H.; Villard, J.; Benharref, A.; Jana, M. Antibacterial and antifungal activities of Cistus incanus L. and C. monspeliensis extract leaves. Therapie 2000, 54, 731–733. [Google Scholar] [PubMed]
- Wittpahl, G.; Kölling-Speer, I.; Basche, S.; Herrmann, E.; Hannig, M.; Speer, K.; Hannig, C. The polyphenolic composition of Cistus incanus L. herbal tea and its antibacterial and anti-adherent activity against Streptococcus mutans. Planta Med. 2015, 81, 1727–1735. [Google Scholar] [CrossRef]
- Feng, J.; Leone, J.; Schweig, S.; Zhang, Y. Evaluation of natural and botanical medicines for activity against growing and non-growing forms of B. burgdorferi. Front. Med. 2020, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, C.; Hrincius, E.R.; Korte, V.; Mazur, I.; Droebner, K.; Poetter, A.; Dreschers, S.; Schmolke, M.; Planz, O.; Ludwig, S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antivir. Res. 2007, 76, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Droebner, K.; Ehrhardt, C.; Poetter, A.; Ludwig, S.; Planz, O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antivir. Res. 2007, 76, 1–10. [Google Scholar] [CrossRef]
- Kalus, U.; Grigorov, A.; Kadecki, O.; Jansen, J.P.; Kiesewetter, H.; Radtke, H. Cistus incanus L. (CYSTUS052) for treating patients with infection of the upper respiratory tract: A prospective, randomised, placebo-controlled clinical study. Antivir. Res. 2009, 84, 267–271. [Google Scholar] [CrossRef]
- Rebensburg, S.; Helfer, M.; Schneider, M.; Koppensteiner, H.; Eberle, J.; Schindler, M.; Gürtler, L.; Brack-Werner, R. Potent in vitro antiviral activity of Cistus incanus L. extract against HIV and Filoviruses targets viral envelope proteins. Sci. Rep. 2016, 6, 20394. [Google Scholar] [CrossRef]
- Agostoni, C.; Bresson, J.L.; Fairweather-Tait, S.; Flynn, A.; Golly, I.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; et al. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) claiming maintenance of normal blood glucose concentrations (ID 1987, 2091, 2135, 2179, 2335, 2461, 2642, 3145, 3230, 3244, 3258, 3291, 3345, 3375, 3408, 3438, 3457, 3471, 3528, 3534, 3540, 3554, 3557, 3583, 3625, 3628, 3730, 3782, 3851, 3971, 4034, 4043) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1490. [Google Scholar] [CrossRef]
- De Filippis, A.; D’Amelia, V.; Folliero, V.; Zannella, C.; Franci, G.; Galdiero, M. Cistus incanus: A Natural Source of Antimicrobial Metabolites. Nat. Prod. Res. 2024, 38, 2335353. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Kukula-Koch, W.; Hoian, U.; Czop, M.; Strzępek-Gomółka, M.; Antosiewicz, B. Characterization of Cistus × incanus L. and Cistus ladanifer L. Extracts as Potential Multifunctional Antioxidant Ingredients for Skin Protecting Cosmetics. Antioxidants 2020, 9, 202. [Google Scholar] [CrossRef]
- Saracini, E.; Tattini, M.; Traversi, M.L.; Vincieri, F.F.; Pinelli, P. Simultaneous LC-DAD and LC-MS Determination of Ellagitannins, Flavonoid Glycosides, and Acyl-Glycosyl Flavonoids in Cistus salvifolius L. Leaves. Chromatographia 2005, 62, 245–249. [Google Scholar] [CrossRef]
- Bernacka, K.; Bednarska, K.; Starzec, A.; Mazurek, S.; Fecka, I. Antioxidant and Antiglycation Effects of Cistus × incanus Water Infusion, Its Phenolic Components, and Respective Metabolites. Molecules 2022, 27, 2432. [Google Scholar] [CrossRef]
- Fecka, I.; Włodarczyk, M.; Starzec, A. Isolation and Structure Elucidation of Cistusin: A New Ellagitannin from Cistus × incanus L. Leaves. Ind. Crops Prod. 2020, 158, 112971. [Google Scholar] [CrossRef]
- Aničić, N.; Patelou, E.; Papanikolaou, A.; Kanioura, A.; Valdesturli, C.; Arapitsas, P.; Skorić, M.; Dragićević, M.; Gašić, U.; Koukounaras, A.; et al. Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Dep Comparative Metabolite and Gene Expression Analyses in Combination With Gene Characterization Revealed the Patterns of Flavonoid Accumulation During Cistus creticus subsp. creticus Fruit Development. Front. Plant Sci. 2021, 12, 619634. [Google Scholar] [CrossRef] [PubMed]
- Vonthron-Sénécheau, C.; Weniger, B.; Ouattara, M.; Bi, F.T.; Kamenan, A.; Lobstein, A.; Brun, R.; Anton, R. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J. Ethnopharmacol. 2003, 87, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Dubey, N.; Sharma, M.; Kharkwal, H.; Bajpai, R.; Srivastava, R. Boosting the Human Antiviral Response in Conjunction with Natural Plant Products. Front. Nat. Prod. 2025, 3, 1470639. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Fernández-Arroyo, S.; Saura, D.; Guillén, E.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Micol, V. Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem. Toxicol. 2010, 48, 2273–2282. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Szeremeta, D.; Knaś, M.; Długosz, E.; Ott, P.G.; Kowalska, T.; Sajewicz, M. Antibacterial potential of the Cistus incanus L. phenolics as studied with use of thin-layer chromatography combined with direct bioautography and in situ hydrolysis. J. Chromatogr. A 2018, 1534, 170–178. [Google Scholar] [CrossRef]
- Traeder, J.-M. Cistus × incanus L. Pandalis and Its Broad Antiviral Properties. J. Dis. Med. Plants 2021, 7, 109–118. [Google Scholar] [CrossRef]
- Çelik, S.K.; Üstün, E. Molecular Docking Analysis of Some Bioactive Molecules of Cistus incanus Against SARS CoV-2. Karadeniz Fen Bilim. Derg. 2021, 11, 522–532. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Frankowski, R. Cistus incanus: A Promising Herbal Tea Rich in Bioactive Compounds: LC–MS/MS Determination of Catechins, Flavonols, Phenolic Acids, and Alkaloids—A Comparison with Camellia sinensis, Rooibos, and Hoan Ngoc Herbal Tea. J. Food Compos. Anal. 2018, 73, 10–18. [Google Scholar] [CrossRef]
- Behl, T.; Rocchetti, G.; Chadha, S.; Zengin, G.; Bungau, S.; Kumar, A.; Mehta, V.; Uddin, M.S.; Khullar, G.; Setia, D.; et al. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals 2021, 14, 381. [Google Scholar] [CrossRef]
- Yarmolinsky, L.; Huleihel, M.; Zaccai, M.; Ben-Shabat, S. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia 2012, 83, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem. 2014, 25, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Shishkova, K.; Sirakova, B.; Shishkov, S.; Stoilova, E.; Mladenov, H.; Sirakov, I. A Comparative Analysis of Molecular Biological Methods for the Detection of SARS-CoV-2 and Testing the In Vitro Infectivity of the Virus. Microorganisms 2024, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Bracci, N.; Pan, H.C.; Lehman, C.; Kehn-Hall, K.; Lin, S.C. Improved plaque assay for human coronaviruses 229E and OC43. PeerJ 2020, 8, e10639. [Google Scholar] [CrossRef] [PubMed]
- Hinkov, A.; Tsvetkov, V.; Shkondrov, A.; Krasteva, I.; Shishkov, S.; Shishkova, K. Effect of a Total Extract and Saponins from Astragalus glycyphyllos L. on Human Coronavirus Replication In Vitro. Int. J. Mol. Sci. 2023, 24, 16525. [Google Scholar] [CrossRef]
- Shkondrov, A.; Hinkov, A.; Cvetkov, V.; Shishkova, K.; Todorov, D.; Shishkov, S.; Stambolov, I.; Yoncheva, K.; Krasteva, I. Astragalus glycyphyllos L.: Antiviral Activity and Tablet Dosage Formulation of a Standardized Dry Extract. Biotechnol. Biotechnol. Equip. 2023, 37, 2221752. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sudo, K.; Konno, K.; Yokota, T.; Shigeta, S. A sensitive assay system screening antiviral compounds against herpes simplex virus type 1 and type 2. J. Virol. Methods 1994, 49, 169–178. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
No. | Rt, Min | MF | Exp. Mass, [M−H]− | Calc. Mass, [M−H]− | Δ Mass, ppm | MS/MS Product Ions [m/z] | Tentative Assignment | Identification |
---|---|---|---|---|---|---|---|---|
1 | 0.94 | C7H12O6 | 191.0556 | 191.0561 | −2.74 | 173, 111, 127, 85, 71 | Quinic acid | Std |
2 | 1.16 | C6H8O7 | 191.0193 | 191.0197 | −1.98 | 111, 173, 147, 129 | Citric acid | [7] |
3 | 1.19 | C7H6O5 | 169.0137 | 169.0143 | −3.40 | 125, 107, 97, 81, 69, 53 | Gallic acid | Std |
4 | 1.37 | C15H14O7 | 305.0675 | 305.0667 | 2.82 | 261, 219, 179, 167, 137, 125, 109 | Epigallocatechin | [28,29] |
5 | 1.38 | C24H14O15 | 541.0279 (1083.0623) | 541.0260 | 3.51 | 781, 601, 301, 275 | Punicalagin isomer I | [30,31,32] |
6 | 1.66 | C24H14O15 | 541.0279 (1083.0623) | 541.0260 | 3.51 | 781, 451, 301, 275, 229 | Punicalagin isomer II | [30,31,32] |
7 | 1.83 | C12H14O8 | 285.0625 | 285.0616 | 3.19 | 165, 153, 145, 108 | Uralenneoside | [18,29] |
8 | 2.26 | C15H14O6 | 289.0727 | 289.0718 | 3.22 | 245, 203, 179, 109, 96 | Catechin | Std |
9 | 2.68 | C8H7O5 | 183.0294 | 183.0288 | 3.47 | 168, 156, 141, 124, 111, 99 | Methylgallate | [13] |
10 | 5.72 | C21H20O13 | 479.0848 | 479.0831 | 3.54 | 316, 287, 271, 243, 179, 155, 125 | Myricetin-3-O-glucoside (Isomyricitrin) | [31,33] |
11 | 7.26 | C14H6O8 | 301.0000 | 300.9984 | 5.16 | 283, 257, 229, 193, 185, 149, 117 | Ellagic acid | Std |
12 | 7.36 | C20H18O12 | 449.0741 | 449.0726 | 3.45 | 316, 287, 271, 179, 151 | Myricetin-3-O-pentoside | [29,33] |
13 | 7.74 | C21H20O12 | 463.0898 | 463.0820 | 3.42 | 316, 287, 271, 178, 151 | Myricetin-3-O-rhamnoside (myricitrin) | [28,29] |
14 | 8.07 | C21H20O12 | 463.0899 | 463.0882 | 3.68 | 300, 271, 255, 316, 243, 211, 199 | Quercetin-3-O-glucoside (hyperoside) | Std |
15 | 9.54 | C20H18O11 | 433.0789 | 433.0776 | 3.04 | 300, 271, 255, 243, 211, 151 | Quercetin-3-O-arabinoside (guajaverin) | Std |
16 | 10.68 | C21H19O11 | 447.0947 | 447.0933 | 3.23 | 300, 283, 271, 255, 243, 199, 178 | Quercetin-3-O-rhamnoside (quercitrin) | Std |
17 | 17.20 | C30H26O13 | 593.1321 | 593.1301 | 3.40 | 457, 344, 285, 255, 227, 211, 183 | Kaempferol-3-O-(6″-O-coumaroyl)-glucoside (tiliroside) | [31] |
No | Rt, Min | Exp. Mass, [M−H]− | Tentative Assignment | mg/g DE |
---|---|---|---|---|
1 | 4.23 | 191 | Quinic acid | 0.51 a |
2 | 5.22 | 191 | Citric acid | 0.51 a |
3 | 7.39 | 169 | Gallic acid | 3.09 a |
4 | 10.23 | 305 | Epigallocatechin | 0.48 a |
5 | 10.88 | 541 | Punicalagin isomer I | 4.11 a |
6 | 13.47 | 541 | Punicalagin isomer II | 7.26 a |
7 | 13.53 | 285 | Uralenneoside | Tr |
8 | 15.61 | 289 | Catechin | 0.57 a |
9 | 16.78 | 183 | Methylgallate | 0.58 a |
10 | 21.29 | 479 | Myricetin-3-O-glucoside (Isomyricitrin) | 7.70 b |
11 | 24.19 | 300 | Ellagic acid | Tr |
12 | 23.50 | 449 | Myricetin-3-O-pentoside | 3.03 b |
13 | 24.22 | 463 | Myricetin-3-O-rhamnoside (myricitrin) | 17.54 b |
14 | 24.60 | 463 | Quercetin-3-O-glucoside (hyperoside) | 3.41 b |
15 | 26.80 | 433 | Quercetin-3-O-arabinoside (guajaverin) | 1.92 b |
16 | 28.11 | 447 | Quercetin-3-O-rhamnoside (quercitrin) | 3.24 b |
17 | 36.04 | 593 | Kaempferol-3-O-(6″-O-coumaroyl)-glucoside (Tiliroside) | 1.59 b |
Concentration (mg/mL) | 4 | 3 | 2 | 1.5 | 1 | 0.75 | 0.5 |
---|---|---|---|---|---|---|---|
Cell viability (%) (cytotoxicity) a,b | 22.815 (±2.184) | 22.335 (±2.043) | 52.39 (±1.428) | 66.915 (±11.165) | 84.785 (±7.99) | 100 (±0) | 100 (±0) |
Type of Test Sample | Cell Viability (Cytotoxicity) | Cell Protection (Antiviral Activity) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test Sample Added Simultaneously with Inoculation of Cell Monolayer | Test Sample Added 1 h After Inoculation of Cell Monolayer | |||||||||||||
SvHA1 (F) | SvHA2 (DD) | SvHA1 (F) | SvHA2 (DD) | |||||||||||
MTC a (mg/mL) | CC50 a,b (mg/mL) | Cell Protection (%), When the Extracts Are Added in MTC a | EC50 a,b (mg/mL) | SI c | Cell Protection (%), When the Extracts Are Added in MTC a | EC50 a,b (mg/mL) | SI c | Cell Protection (%), When the Extracts Are Added in MTC a | EC50 a,b (mg/mL) | SI c | Cell Protection (%), When the Extracts Are Added in MTC a | EC50 a,b (mg/mL) | SI c | |
Water–alcoholic extract (C. incanus L.) | 0.75 | 2.079 (±1.32) | 98.7 (±4.053) | 0.190 (±1.034) | 10.94 | 100 | 0.177 (±0.068) | 11.74 | 95.51 (±4.412) | 0.309 (±2.051) | 6.72 | 96.60 (±3.170) | 0.410 (±1.310) | 5.070 |
ACV | 0.030 | 0.536 (±0.014) | 90.56 (±0.296) | 0.00099 (±1.048) | 541.41 | 4.65 (±2.875) | n.d. d | n.d. d | 90.715 (±7.035) | 0.00097 (±2.0037) | 552.57 | 1.635 (±1.930) | n.d. d | n.d. d |
Type of Test Sample | Cell Viability (Cytotoxicity) | Cell Protection (Antiviral Activity) | ||||||
---|---|---|---|---|---|---|---|---|
Test Sample Added Simultaneously with Inoculation of Cell Monolayer | Test Sample Added 1.5 h After Inoculation of Cell Monolayer | |||||||
MTC a (mg/mL) | CC50 a,b (mg/mL) | Cell Protection (%), When the Extracts Are Added in MTC a | EC50 a,b (mg/mL) | SI c | Cell Protection (%), When the Extracts Are Added in MTC a | EC50 a,b (mg/mL) | SI c | |
Water–alcoholic extract (C. incanus L.) | 0.75 | 2.079 (±1.32) | 96.825 (±4.49) | 0.283 (±2.84) | 7.34 | 100 | 0.321 (±1.18) | 6.47 |
Time Interval (minutes) | SvHA1 (F) | SvHA2 (DD) | HCoV 229E | ||||||
---|---|---|---|---|---|---|---|---|---|
Titer of Control Virus a | Titer of Treated Virus a | Δlg a | Titer of Control Virus a | Titer of Treated Virus a | Δlg a | Titer of Control Virus a | Titer of Treated Virus a | Δlg a | |
5 | 6.67 | 5.00 | 1.67 | 6.33 | 4.67 | 1.66 | 6.33 | 3.67 | 2.66 |
15 | 6.50 | 3.67 | 2.83 | 6.33 | 4.00 | 2.33 | 6.33 | 3.50 | 2.83 |
30 | 6.50 | 3.67 | 2.83 | 5.50 | 2.23 | 3.27 | 6.00 | 3.33 | 2.67 |
60 | 6.33 | 2.50 | 3.83 | 5.50 | 2.00 | 3.50 | 6.00 | 3.50 | 2.50 |
120 | 6.67 | 3.23 | 3.44 | 5.50 | 1.67 | 3.83 | 6.00 | 3.50 | 2.50 |
240 | 6.50 | 2.75 | 3.75 | 5.50 | 1.83 | 3.67 | 6.50 | 4.00 | 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, P.; Hinkov, A.; Gerasimova, V.; Staleva, P.; Kamenova-Nacheva, M.; Alipieva, K.; Shivachev, D.; Shishkov, S.; Shishkova, K. Antiviral Activity of Water–Alcoholic Extract of Cistus incanus L. Int. J. Mol. Sci. 2025, 26, 947. https://doi.org/10.3390/ijms26030947
Angelova P, Hinkov A, Gerasimova V, Staleva P, Kamenova-Nacheva M, Alipieva K, Shivachev D, Shishkov S, Shishkova K. Antiviral Activity of Water–Alcoholic Extract of Cistus incanus L. International Journal of Molecular Sciences. 2025; 26(3):947. https://doi.org/10.3390/ijms26030947
Chicago/Turabian StyleAngelova, Petya, Anton Hinkov, Vanya Gerasimova, Plamena Staleva, Mariana Kamenova-Nacheva, Kalina Alipieva, Dimitar Shivachev, Stoyan Shishkov, and Kalina Shishkova. 2025. "Antiviral Activity of Water–Alcoholic Extract of Cistus incanus L." International Journal of Molecular Sciences 26, no. 3: 947. https://doi.org/10.3390/ijms26030947
APA StyleAngelova, P., Hinkov, A., Gerasimova, V., Staleva, P., Kamenova-Nacheva, M., Alipieva, K., Shivachev, D., Shishkov, S., & Shishkova, K. (2025). Antiviral Activity of Water–Alcoholic Extract of Cistus incanus L. International Journal of Molecular Sciences, 26(3), 947. https://doi.org/10.3390/ijms26030947