Exploration of Appetite Regulation in Yangtze Sturgeon (Acipenser dabryanus) During Weaning
Abstract
:1. Introduction
2. Results
2.1. Growth Performance
2.2. Illumina Sequencing and De Novo Transcriptome Assembly
2.3. Unigene Annotation
2.4. Filtration and Annotation of Differentially Expressed Genes
2.5. Transcript Validation by qPCR
2.6. Cloning and Sequence Analysis of Appetite Factors of Yangtze Sturgeon
2.7. Effects of Weaning on the mRNA Expression of Appetite Factors in Yangtze Sturgeon
3. Discussion
4. Material and Methods
4.1. Experimental Fish and Animal Welfare
4.2. Experimental Design
4.3. RNA-Seq
4.4. Cloning and Sequence Analysis of POMC, CART, NPY and AgRP
4.5. qPCR
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, N.; Thompson, S. The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ. 2018, 652, 851–861. [Google Scholar] [CrossRef]
- Divya, K.R.; Akbarali, I.; Sureshkumar, S.; Tv, S. Improvement of nutritional quality of live feed for aquaculture: An overview. Aquac. Res. 2020, 51, 1–17. [Google Scholar]
- Infante, J.Z.; Cahu, C.L. Ontogeny of the Gastrointestinal Tract of Marine Fish Larvae. Comp. Biochem. Physiol. Part C 2001, 130, 477–487. [Google Scholar]
- Callan, C.; Jordaan, A.; Kling, L.J. Reducing Artemia use in the culture of Atlantic cod (Gadus morhua). Aquaculture 2003, 219, 585–595. [Google Scholar] [CrossRef]
- Vadstein, O.; Bergh, O.; Gatesoupe, F.; Galindo-Villegas, J.; Bossier, P. Microbiology and immunology of fish larvae. Rev. Aquac. 2013, 5, S1–S25. [Google Scholar] [CrossRef]
- Hamre, K.; Srivastava, A.; Rnnestad, I.; Mangor-Jensen, A.; Stoss, J. Several micronutrients in the Rotifer brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquac. Nutr. 2010, 14, 51–60. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, X.; Lei Yang, Y.; Han, D. Effects of different weaning strategies on survival and growth in Chinese longsnout catfish (Leiocassis longirostris Günther) larvae. Aquaculture 2012, 364, 13–18. [Google Scholar] [CrossRef]
- Abolfathi, M.; Hajimoradloo, A.; Ghorbani, R.; Zamani, A. Compensatory growth in juvenile roach Rutilus caspicus: Effect of starvation and re-feeding on growth and digestive surface area. J. Fish Biol. 2012, 81, 1880–1890. [Google Scholar] [CrossRef]
- Bonaldo, A.; Parma, L.; Bacliani, A.; Serratore, P.; Gatta, P.P. Very early weaning of common sole (Solea solea L.) larvae by means of different feeding regimes and three commercial microdiets: Influence on performances, metamorphosis development and tank hygiene. Aquaculture 2011, 321, 237–244. [Google Scholar] [CrossRef]
- Liu, L.; Luo, M.; Chen, F.; Tan, W.; Zhang, J.; Li, X. Study of the Compensatory Growth Following Starvation of Juvenile Golden Pompano Trachinotus ovatus. Anim. Feed. Sci. 2015, 7, 178. [Google Scholar]
- Torfi, M.; Bahabadi, M.N.; Morshedi, V.; Azodi, M.; Gisbert, E. Weaning strategies affect larval performance in yellowfin seabream (Acanthopagrus latus). Aquaculture 2021, 539, 736673. [Google Scholar]
- Childs, D.S.; Jatoi, A. A hunger for hunger: A review of palliative therapies for cancer- associated anorexia. Ann. Palliat. Med. 2018, 7, 508. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, L.J.; Volkoff, H. The comparative endocrinology of feeding in fish: Insights and challenges. Gen. Comp. Endocrinol. 2012, 176, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Andermann, M.L.; Lowell, B.B. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017, 95, 757–778. [Google Scholar] [CrossRef]
- Zanchi, D.; Depoorter, A.; Egloff, L.; Haller, S.; Mahlmann, L.; Lang, U.E.; Drewe, J.; Beglinger, C.; Schmidt, A.; Borgwardt, S. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neuroence Biobehav. Rev. 2017, 80, 457–475. [Google Scholar] [CrossRef]
- Harrold, J.A.; Dovey, T.M.; Blundell, J.E.; Halford, J. CNS regulation of appetite. Neuropharmacology 2012, 63, 3–17. [Google Scholar] [CrossRef]
- Choi, J.S. Effects of Maternal and Post-Weaning High-Fat Diet on Leptin Resistance and Hypothalamic Appetite Genes in Sprague Dawley Rat Offspring. Clin. Nutr. Res. 2018, 7, 276. [Google Scholar] [CrossRef]
- Peng, J.; Dou, Y.Q.; Liang, H.; He, S.; Liang, X.F.; Shi, L.J. Social Learning of Acquiring Novel Feeding Habit in Mandarin Fish (Siniperca chuatsi). Int. J. Mol. Sci. 2019, 20, 4399. [Google Scholar] [CrossRef]
- Soengas, J.L.; Cerdá-Reverter, J.M.; Delgado, M.J. Central regulation of food intake in fish: An evolutionary perspective. J. Mol. Endocrinol. 2018, 60, R171–R199. [Google Scholar] [CrossRef]
- Bertucci, J.I.; Blanco, A.M.; Sundarrajan, L.; Rajeswari, J.J.; Velasco, C.; Unniappan, S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front. Endocrinol. 2019, 10, 83. [Google Scholar] [CrossRef]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Wei, Q.W.; Du, H.; Wang, C.Y.; Zhang, H. Initial evaluation of the release programme for Dabry’s sturgeon (Acipenser dabryanus Duméril, 1868) in the upper Yangtze River. J. Appl. Ichthyol. 2014, 30, 1423–1427. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Q.W.; Du, H.; Li, L.X. Present status and risk for extinction of the Dabry’s sturgeon (Acipenser dabryanus) in the Yangtze River watershed: A concern for intensified rehabilitation needs. J. Appl. Ichthyol. 2011, 27, 181–185. [Google Scholar] [CrossRef]
- Hao, J.; Liu, Q.; Zhang, X.; Wu, Y.B.; Zhu, J.Y.; Qi, J.W.; Tang, N.; Wang, S.Y.; Wang, H.; Chen, D.F.; et al. The evidence of apelin has the bidirectional effects on feeding regulation in Siberian sturgeon (Acipenser baerii). Peptides 2017, 94, 78–85. [Google Scholar] [CrossRef]
- Tang, N.; Hao, J.; Zhang, X.; Wu, Y.B.; Wang, S.Y.; Qi, J.W.; Tian, Z.Z.; Wang, B.; Chen, H.; Chen, D.F.; et al. Characterization, tissue distribution of apela and periprandial, fasting and refeeding changes of apela mRNA in Siberian sturgeon Acipenser baerii. J. Fish Biol. 2018, 93, 609–615. [Google Scholar] [CrossRef]
- Qi, J.; Xu, S.; Wang, M.; Chen, H.; Li, Z. Changes in CRF system transcript levels in relation to feeding condition in Acipenser dabryanus. Peptides 2020, 128, 170309. [Google Scholar] [CrossRef]
- Tang, N.; Liu, Y.; Tian, Z.; Xu, S.; Wang, M.; Chen, H.; Wang, B.; Li, Y.; Wang, Y.; Yang, S.; et al. Characterization, tissue distribution of resistin gene and the effect of fasting and refeeding on resistin mRNA expression in Siberian sturgeon (Acipenser baerii). J. Fish Biol. 2020, 97, 508–514. [Google Scholar] [CrossRef]
- Tian, Z.; Xu, S.; Wang, M.; Li, Y.; Chen, H.; Tang, N.; Wang, B.; Zhang, X.; Li, Z. Identification, tissue distribution, periprandial expression, and anorexigenic effect of spexin in Siberian sturgeon, Acipenser baeri. Fish Physiol. Biochem. 2020, 46, 2073–2084. [Google Scholar] [CrossRef]
- Chen, H.; Wang, B.; Zhou, B.; Qi, J.; Li, Z. Characterization, phylogeny, and responses of leptin to different nutritional states in critically endangered Yangtze sturgeon (Acipenser dabryanus). Aquaculture 2020, 525, 735296. [Google Scholar] [CrossRef]
- Zhao, L.L.; He, K.; Luo, J.; Sun, J.L.; Liao, L.; Tang, X.H.; Liu, Q.; Yang, S. Co-Modulation of Liver Genes and Intestinal Microbiome of Largemouth Bass Larvae (Micropterus salmoides) During Weaning. Front. Microbiol. 2020, 11, 1332. [Google Scholar] [CrossRef]
- Duan, X.D.; Chen, D.W.; Zheng, P.; Tian, G.; Wang, J.P.; Mao, X.B.; Yu, J.; He, J.; Li, B.; Huang, Z.Q.; et al. Effects of dietary mannan oligosaccharide supplementation on performance and immune response of sows and their offspring. Anim. Feed Sci. Technol. 2016, 218, 17–25. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, Q.; Lv, M.; Wu, Z.; Xie, Z.; Han, X.; Wang, Y. Chitosan-Zn Chelate Increases Antioxidant Enzyme Activity and Improves Immune Function in Weaned Piglets. Biol. Trace Elem. Res. 2014, 158, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Bussiere, F.I.; Tridon, A.; Zimowska, W.; Mazur, A.; Rayssiguier, Y. Increase in complement component C3 is an early response to experimental magnesium deficiency in rats. Life Sci. 2003, 73, 499–507. [Google Scholar] [CrossRef]
- Hsieh, Y.S.; Chen, P.N.; Yu, C.H.; Kuo, D.Y. Central dopamine action modulates neuropeptide-controlled appetite via the hypothalamic PI3K/NF-kappa B-dependent mechanism. Genes Brain Behav. 2014, 13, 784–793. [Google Scholar] [CrossRef]
- Chu, S.-C.; Chen, P.-N.; Hsieh, Y.-S.; Yu, C.-H.; Lin, M.-H.; Lin, Y.-H.; Kuo, D.-Y. Involvement of hypothalamic PI3K-STAT3 signalling in regulating appetite suppression mediated by amphetamine. Br. J. Pharmacol. 2014, 171, 3223–3233. [Google Scholar] [CrossRef]
- Tang, N.; Li, Y.; Li, Y.; Liu, Y.; Zhang, S.; Xu, S.; Wang, M.; Wang, B.; Chen, H.; Zhang, X.; et al. Molecular cloning, expression and appetite regulation function of adiponectin in Siberian sturgeon (Acipenser baerii). Int. J. Biol. Macromol. 2022, 214, 360–369. [Google Scholar] [CrossRef]
- Sternson, S.M.; Atasoy, D. Agouti-Related Protein Neuron Circuits That Regulate Appetite. Neuroendocrinology 2014, 100, 95–102. [Google Scholar] [CrossRef]
- Valen, R.; Jordal, A.; Murashita, K.; Rnnestad, I. Postprandial effects on appetite-related neuropeptide expression in the brain of Atlantic salmon, Salmo salar. Gen. Comp. Endocrinol. 2011, 171, 359–366. [Google Scholar] [CrossRef]
- Konner, A.; Hess, S.; Tovar, S.; Mesaros, A.; Sánchez-Lasheras, C.; Evers, N.; Verhagen, L.W.; Brunneke, H.; Kleinridders, A.; Hampel, B. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 2011, 13, 720–728. [Google Scholar] [CrossRef]
- Cerdá-Reverter, J.; Schith, H.B.; Peter, R.E. The central melanocortin system regulates food intake in goldfish. Regul. Pept. 2003, 115, 101–113. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Peterson, B.C.; Waldbieser, G.C. Association of cocaine- and amphetamine-regulated transcript (CART) messenger RNA level, food intake, and growth in channel catfish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 151, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, E.; Volkoff, H. Cloning, distribution and effects of season and nutritional status on the expression of neuropeptide Y (NPY), cocaine and amphetamine regulated transcript (CART) and cholecystokinin (CCK) in winter flounder (Pseudopleuronectes americanus). Horm. Behav. 2009, 56, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Volkoff, H.; Peter, R.E. Characterization of two forms of cocaine- and amphetamine-regulated transcript (CART) peptide precursors in goldfish: Molecular cloning and distribution, modulation of expression by nutritional status, and interactions with leptin. Endocrinology 2006, 142, 5076–5088. [Google Scholar] [CrossRef] [PubMed]
- Atsuchi, K.; Asakawa, A.; Ushikai, M.; Ataka, K.; Tsai, M.; Koyama, K.; Sato, Y.; Kato, I.; Fujimiya, M.; Inui, A. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport 2010, 21, 1008–1011. [Google Scholar] [CrossRef]
- Stengel, A.; Goebel-Stengel, M.; Wang, L.; Kato, I.; Mori, M.; Taché, Y. Nesfatin-1 30–59 but not the N- and C-terminal fragments, nesfatin-1 1–29 and nesfatin-1 60–82 injected intracerebroventricularly decreases dark phase food intake by increasing inter-meal intervals in mice. Peptides 2012, 142, 143–148. [Google Scholar] [CrossRef]
- Gonzalez, R.; Kerbel, B.; Chun, A.; Unniappan, S. Molecular, Cellular and Physiological Evidences for the Anorexigenic Actions of Nesfatin-1 in Goldfish. PLoS ONE 2010, 5, e15201. [Google Scholar] [CrossRef]
- Aldegunde, M.; Mancebo, M. Effects of neuropeptide Y on food intake and brain biogenic amines in the rainbow trout (Oncorhynchus mykiss). Peptides 2006, 27, 719–727. [Google Scholar] [CrossRef]
- Sundstrm, G.; Larsson, T.A.; Brenner, S.; Venkatesh, B.; Dan, L. Evolution of the neuropeptide Y family: New genes by chromosome duplications in early vertebrates and in teleost fishes. Gen. Comp. Endocrinol. 2008, 155, 705–716. [Google Scholar] [CrossRef]
- Yuan, D.; Gao, Y.; Zhang, X.; Wang, B.; Li, Z. NPY and NPY receptors in the central control of feeding and interactions with CART and MC4R in Siberian sturgeon. Gen. Comp. Endocrinol. 2019, 284, 113239. [Google Scholar] [CrossRef]
- Ruud, L.E.; Pereira, M.; Solis, A.; Fenselau, H.; Brüning, J. NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons. Nat. Commun. 2020, 11, 442. [Google Scholar] [CrossRef]
- Subhedar, N.; Gaikwad, A.; Biju, K.C.; Saha, S. Role of neuropeptide Y (NPY) in the regulation of reproduction: Study based on catfish model. Fish Physiol. Biochem. 2005, 31, 167. [Google Scholar] [CrossRef]
- Day, D.E.; Keen-Rhinehart, E.; Bartness, T.J. Role of NPY and its receptor subtypes in foraging, food hoarding, and food intake by Siberian hamsters. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2005, 289, R29–R36. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.B.; Yuan, D.Y.; Wang, T.; Zhou, C.W.; Lin, F.J.; Chen, H.; Wu, H.W.; Yang, S.Y.; Wang, Y.; Liu, J. Characterization, tissue distribution and regulation of agouti-related protein (AgRP) in a cyprinid fish (Schizothorax prenanti). Gene 2013, 527, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Inyoung, J.; Eunmi, K.; Hwan-Ki, S.; Dong-Won, L.; Jae, S. mRNA expression and metabolic regulation of npy and agrp1/2 in the zebrafish brain. Neurosci. Lett. Int. Multidiscip. J. Devoted Rapid Publ. Basic Res. Brain Sci. 2018, 668, 73–79. [Google Scholar]
- Otero-Rodino, C.; Rocha, A.; Álvarez-Otero, R.; Ceinos, R.M.; López-Patino, M.; Míguez, J.; Cerdá-Reverter, J.; Soengas, J.L. Glucosensing capacity of rainbow trout telencephalon. J. Neuroendocrinol. 2018, 30, e12583. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Gao, Y.; Tang, N.; Qi, J.; Wu, Y.; Hao, J.; Wang, S.; Chen, D.; Li, Z. One evidence of cocaine- and amphetamine-regulated transcript (CART) has the bidirectional effects on appetite in Siberian sturgeon (Acipenser baerii). Fish Physiol. Biochem. 2017, 44, 411–422. [Google Scholar] [CrossRef]
- Krashes, M.; Shah, B.; Koda, S.; Lowell, B. Rapid Versus Delayed Stimulation of Feeding by the Endogenously Released AgRP Neuron Mediators GABA, NPY, and AgRP. Cell Metab. 2013, 18, 588–595. [Google Scholar] [CrossRef]
- Ollmann, M.M.; Wilson, B.D.; Yang, Y.K.; Kerns, J.A.; Chen, Y.; Gantz, I.; Barsh, G.S. Antagonism of Central Melanocortin Receptors In Vitro and In Vivo by Agouti-Related Protein. Science 1997, 278, 135–138. [Google Scholar] [CrossRef]
- Atasoy, D.; Betley, J.N.; Su, H.H.; Sternson, S.M. Deconstruction of a neural circuit for hunger. Nature 2012, 488, 172–177. [Google Scholar] [CrossRef]
- Guo, H.; Xin, Y.; Wang, S.; Zhang, X.; Ren, Y.; Qiao, B.; Li, H.; Wu, J.; Hao, X.; Xu, L.; et al. Hypothalamic POMC neuron-specific knockout of MC4R affects insulin sensitivity by regulating Kir2.1. Mol. Med. 2024, 30, 34. [Google Scholar] [CrossRef]
- Alan, C.; Koh, E.; Jer-Ming, C.; Sydney, B.; Samuel, A.; Byrappa, V. Fugu Genome Analysis Provides Evidence for a Whole-Genome Duplication Early During the Evolution of Ray-Finned Fishes. Mol. Biol. Evol. 2004, 21, 1146–1151. [Google Scholar]
- Glasauer, S.M.K.; Neuhauss, S.C.F. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genom. 2014, 289, 1045–1060. [Google Scholar] [CrossRef] [PubMed]
- Vandepoele, K.; Vos, W.D.; Taylor, J.S.; Meyer, A.; Peer, Y. Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc. Natl. Acad. Sci. USA 2004, 101, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.J.; Carroll, J.A.; Matteri, R.L.; Touchette, K.J.; Allee, G.L. Effects of weaning and weaning weight on neuroendocrine regulators of feed intake in pigs. J. Anim. Sci. 2007, 85, 2133–2139. [Google Scholar] [CrossRef]
- Long, Z.; Chen, H.; Wang, B.; Wu, Y.; Tang, N.; Qi, J.; Wang, S.; Chen, D.; Zhou, B.; Li, Z. Cloning and Expression Stability of Reference Genes β-actin, GAPDH and EF1-α in Acipenser dabryanus. J. Agric. Biotechnol. 2018, 26, 1846–1855. [Google Scholar]
- Jq, A.; Ni, T.A.; Yw, A.; Hu, C.A.; Sw, A.; Bw, A.; Sx, A.; Mei, W.A.; Xin, Z.; Dc, A. The transcripts of CRF and CRF receptors under fasting stress in Dabry’s sturgeon (Acipenser dabryanus dumeril). Gen. Comp. Endocrinol. 2019, 280, 200–208. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D.L. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence | Applications |
---|---|---|
POMC-F | GGACCTCACCGCAGAATC | cDNA cloning |
POMC-R | TAAACAAGGGCTTTGGCAG | |
CART-F | ATTCCCGACTGTGGTTGAGA | |
CART-R | ACAGTCACACAACTTGCCGAT | |
NPY-F | ATTACCTCCTAAAGATGCGTT | |
NPY-R | CACTACATCAATCTTATCACGC | |
AgRP-F | GCTGGACAAGACCCAAGAT | |
AgRP-R | CAGTAGCAGATGGCATTGAA | |
POMC-qF | AGCACCACCCTTAGCGTTCT | qPCR |
POMC-qR | ACCTCTTGTCATCCCGCCT | |
CART-qF | CGACTGTGGTTGAGAGCCG | |
CART-qR | GACAGTCACACAACTTGCCGAT | |
NPY-qF | GCTGGCTACCGTGGCTTTC | |
NPY-qR | GACTGGACCTCTTCCCATACCT | |
AgRP-qF | AGGCTGTGCGTCTCAGTGTC | |
AgRP-qR | GAATCGGAAGTCCTGTATCGG | |
NUCB2-qF | TGGAGACAGACCAGCATTTCAG | |
NUCB2-qR PYY-qF PYY-qR MC4R-qF MC4R-qR JUNB-qF JUNB-qR AKT-qF AKT-qR | GGCTCCGTAACCTGTTCACTTC AGGCAGAGGTATGGCAAGCG GGAGGGTCAGGAGACGGGAT ATGAAGAGAATCGCAGTCCT GGTGGAGAAAGAATGGTGC ACTCGTTTCTCTCTGCTTATGGC GCTCGTTCAAGTTCAGGCTCA CTGATGGCTCTTTCATAGGCTAC TGTTTGGCTTTGGTCGTTCT | |
β-actin-F | CTGTTTCAGCCATCCTTCTTG | Reference genes |
β-actin-R | TTGATTTTCATTGTGCTCGGT | |
EF1-α-F | ATGTTCACAATGGCAGCGTC | |
EF1-α-R | AAGATTGACCGTCGTTCCG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Tang, N.; Chen, S.; Zhang, X.; Chen, D.; Li, Z.; Zhou, B. Exploration of Appetite Regulation in Yangtze Sturgeon (Acipenser dabryanus) During Weaning. Int. J. Mol. Sci. 2025, 26, 950. https://doi.org/10.3390/ijms26030950
Wang B, Tang N, Chen S, Zhang X, Chen D, Li Z, Zhou B. Exploration of Appetite Regulation in Yangtze Sturgeon (Acipenser dabryanus) During Weaning. International Journal of Molecular Sciences. 2025; 26(3):950. https://doi.org/10.3390/ijms26030950
Chicago/Turabian StyleWang, Bin, Ni Tang, Shuhuang Chen, Xin Zhang, Defang Chen, Zhiqiong Li, and Bo Zhou. 2025. "Exploration of Appetite Regulation in Yangtze Sturgeon (Acipenser dabryanus) During Weaning" International Journal of Molecular Sciences 26, no. 3: 950. https://doi.org/10.3390/ijms26030950
APA StyleWang, B., Tang, N., Chen, S., Zhang, X., Chen, D., Li, Z., & Zhou, B. (2025). Exploration of Appetite Regulation in Yangtze Sturgeon (Acipenser dabryanus) During Weaning. International Journal of Molecular Sciences, 26(3), 950. https://doi.org/10.3390/ijms26030950