Molecular Characterization of Anion Exchanger 2 in Litopenaeus vannamei and Its Role in Nitrite Stress
Abstract
:1. Introduction
2. Results
2.1. AE2 Gene Sequence Analysis
2.2. Tissue Expression of AE2 Gene and Expression Analysis After Nitrite Stress
2.3. In Situ Hybridization
2.4. Nitrite Stress Experiments After Small Interfering (siRNA) Interference
2.5. Microscopic Observation of Gill Organization
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. RNA Extraction and cDNA Synthesis
4.3. Full-Length cDNA Cloning of the AE2 Gene from L. vannamei
4.4. Sequence Analysis of AE2 Gene
4.5. Tissue Expression Analysis of AE2 Gene
4.6. In Situ Hybridization
4.7. siRNA Interference
4.8. Nitrite Stress Following AE2 Silencing by RNAi
4.9. Determination of Nitrite Content in Hemolymph and Enzyme Activity in Gill Tissue
4.10. Determination of Expression Levels of Immune and Anti-Oxidative Stress-Related Genes
4.11. Microscopic Observation of Gill Tissue
4.12. Data Statistics and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.D.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of penaeid shrimp culture: An applied review of advances in production systems, nutrition and breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef]
- Huang, W.T.; Yin, H.; Yang, Y.Y.; Jin, L.Z.; Lu, G.N.; Dang, Z. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota. Sci. Total Environ. 2021, 778, 146264. [Google Scholar] [CrossRef]
- Tseng, I.T.; Chen, J.C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish Shellfish Immunol. 2004, 17, 325–333. [Google Scholar] [CrossRef]
- Chen, J.C.; Cheng, S.Y. Changes of oxyhemocyanin and protein levels in the hemolymph of Penaeus japonicus exposed to ambient nitrite. Aquat. Toxicol. 1995, 33, 215–226. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Chen, J.C. Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid–base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate. Aquat. Toxicol. 2002, 61, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.F.; Zhang, J.S.; Wang, Y.; Liu, Q.S.; Xiong, D.L. Nitrite stress disrupts the structural integrity and induces oxidative stress response in the intestines of Pacific white shrimp. J. Exp. Zool. Part A-Ecol. Integr. Physiol. 2018, 329, 43–50. [Google Scholar] [CrossRef]
- Fregoso-López, M.G.; Morales-Covarrubias, M.S.; Franco-Nava, M.A.; Ramírez-Rochín, J.; Fierro-Sañudo, J.F.; Ponce-Palafox, J.T.; Páez-Osuna, F. Histological alterations in gills of shrimp Litopenaeus vannamei in low-salinity waters under different stocking densities: Potential relationship with nitrogen compounds. Aquac. Res. 2017, 48, 5854–5863. [Google Scholar] [CrossRef]
- Han, S.; Wang, B.; Wang, M.; Liu, Q.; Zhao, W.; Wang, L. Effects of ammonia and nitrite accumulation on the survival and growth performance of white shrimp. ISJ-Invertebr. Surviv. J. 2017, 14, 221–232. [Google Scholar]
- Wang, L.; Li, X.L.; Lu, K.L.; Song, K.; Wang, G.D.; Zhang, C.X. Dietary hydroxyl methionine selenium supplementation enhances growth performance, antioxidant ability and nitrite tolerance of Litopenaeus vannamei. Aquaculture 2021, 537, 736513. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, Q.Y.; Du, J.H.; Zhu, W.L.; Li, Q.Y.; Chen, X.L.; Chen, X.H.; Liu, H.; Zhou, X.Y.; Zhao, Y.Z.; et al. Integrated analysis of physiological, transcriptomic and metabolomic responses and tolerance mechanism of nitrite exposure in Litopenaeus vannamei. Sci. Total Environ. 2020, 711, 134416. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.X.; Xie, J.; Yu, Q.R.; Xu, C.; Zhou, L.; Qin, J.G.; Chen, L.Q.; Li, E.C. Toxic effect of chronic nitrite exposure on growth and health in Pacific white shrimp Litopenaeus vannamei. Aquaculture 2020, 529, 735664. [Google Scholar] [CrossRef]
- Kir, M.; Kumlu, M. Acute toxicity of ammonia to Penaeus semisulcatus postlarvae in relation to salinity. J. World Aquac. Soc. 2006, 37, 231–235. [Google Scholar] [CrossRef]
- Valencia-Castañeda, G.; Frías-Espericueta, M.G.; Vanegas-Pérez, R.C.; Chávez-Sánchez, M.C.; Páez-Osuna, F. Toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei juveniles in low-salinity water in single and ternary exposure experiments and their environmental implications. Environ. Toxicol. Pharmacol. 2019, 70, 103193. [Google Scholar] [CrossRef] [PubMed]
- Jensen, F.B. Nitrite disrupts multiple physiological functions in aquatic animals. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2003, 135, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.K.; Kerr, N.; Chernova, M.N.; Alper, S.L.; Vaughan-Jones, R.D. Acute pH-dependent regulation of AE2-mediated anion exchange involves discrete local surfaces of the NH2-terminal cytoplasmic domain. J. Biol. Chem. 2004, 279, 52664–52676. [Google Scholar] [CrossRef] [PubMed]
- Reithmeier, R.A.F.; Casey, J.R.; Kalli, A.C.; Sansom, M.S.P.; Alguel, Y.; Iwata, S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BBA-Biomembr. 2016, 1858, 1507–1532. [Google Scholar] [CrossRef]
- Alper, S.L. Molecular physiology of SLC4 anion exchangers. Exp. Physiol. 2006, 91, 153–161. [Google Scholar] [CrossRef]
- Zare, S.; Greenaway, P. The Effect of Moulting and Sodium Depletion on Sodium Transport and the Activities of Na+K+-ATPase, and V-ATPase in the Freshwater Crayfish Cherax destructor (Crustacea: Parastacidae). Comp. Biochem. Phys. A 1998, 119, 739–745. [Google Scholar] [CrossRef]
- Gao, M.H.; Ma, L.B.; Ge, L.A.; Mei, C.S.; Xu, H.T.; Chen, W. Nitrite uptake mechanism and the influencing factors of accumulation in aquatic animals. South China Fish. Sci. 2008, 4, 73–79. [Google Scholar]
- Zhang, D.C.; Kiyatkin, A.; Bolin, J.T.; Low, P.S. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 2000, 96, 2925–2933. [Google Scholar] [CrossRef] [PubMed]
- Khosrowabadi, E.; Rivinoja, A.; Risteli, M.; Tuomisto, A.; Salo, T.; Mäkinen, M.J.; Kellokumpu, S. SLC4A2 anion exchanger promotes tumour cell malignancy via enhancing net acid efflux across golgi membranes. Cell. Mol. Life Sci. 2021, 78, 6283–6304. [Google Scholar] [CrossRef] [PubMed]
- Cordat, E.; Reithmeier, R.A.F. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. Curr. Top. Membr. 2014, 73, 1–67. [Google Scholar]
- Rossmann, H.; Bachmann, O.; Wang, Z.; Shull, G.E.; Obermaier, B.; Stuart-Tilley, A.; Alper, S.L.; Seidler, U. Differential expression and regulation of AE2 anion exchanger subtypes in rabbit parietal and mucous cells. J. Physiol. 2001, 534, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Chipperfield, A.R.; Harper, A.A. Chloride in smooth muscle. Prog. Biophys. Mol. Biol. 2000, 74, 175–221. [Google Scholar] [CrossRef] [PubMed]
- Bulley, S.; Jaggar, J.H. Cl− channels in smooth muscle cells. Pflug. Arch. 2014, 466, 861–872. [Google Scholar] [CrossRef]
- Wang, P.; Lai, Q.F.; Mo, Z.L.; Zhou, K.; Lin, T.T.; Wang, H. Differential expressions of genes related to HCO3− secretion in the intestine of Gymnocypris przewalskiii during saline-alkaline water transfer. Mar. Fish. 2015, 37, 341–348. [Google Scholar]
- Jaffer, Y.D.; Bhat, I.A.; Mir, I.N.; Bhat, R.A.H.; Sidiq, M.J.; Jana, P. Adaptation of cultured decapod crustaceans to changing salinities: Physiological responses, molecular mechanisms and disease implications. Rev. Aquac. 2024, 16, 1520–1543. [Google Scholar] [CrossRef]
- Allen, G.J.P.; Quijada-Rodriguez, A.R.; Wilson, J.M.; Weihrauch, D. The role of the antennal glands and gills in acid-base regulation and ammonia excretion of a marine osmoconforming brachyuran. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2024, 292, 111619. [Google Scholar] [CrossRef]
- Dolomatov, S.I.; Zukow, W.; Novikov, N.Y.; Muszkieta, R.; Bulatowicz, I.; Dzierzanowski, M.; Kazmierczak, U.; Strojek, K. The regulation of osmotic and ionic balance in fish reproduction and in the early stages of ontogeny. Russ. J. Mar. Biol. 2012, 38, 365–374. [Google Scholar] [CrossRef]
- Rathmayer, M.; Siebers, D. Ionic balance in the freshwater-adapted Chinese crab, Eriocheir sinensis. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 2001, 171, 271–281. [Google Scholar] [CrossRef]
- Li, X.N.; Dai, X.L. Characterization and functional analysis of Litopenaeus vannamei Na+/K+/2Cl− cotransporter 1 under nitrite stress. Comp. Biochem. Physiol. Part A 2024, 298, 111749. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; Turner, M.J.; Saint-Criq, V.; Garnett, J.; Haq, I.J.; Brodlie, M.; Gray, M.A. CK2 is a key regulator of SLC4A2-mediated Cl−/HCO3− exchange in human airway epithelia. Pflügers Arch. Eur. J. Physiol. 2017, 469, 1073–1091. [Google Scholar] [CrossRef]
- Hong, Y.H.; Huang, Y.; Yan, G.W.; Pan, C.; Zhang, J.L. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate. Fish Shellfish Immunol. 2019, 86, 840–845. [Google Scholar] [CrossRef]
- Chand, R.K.; Sahoo, R.K. Effect of nitrite on the immune response of freshwater prawn Macrobrachium malcolmsonii and its susceptibility to Aeromonas hydrophila. Aquaculture 2006, 258, 150–156. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.H.; Chen, J.C. Effect of nitrite on interaction between the giant freshwater prawn Macrobrachium rosenbergii and its pathogen Lactococcus garvieae. Dis. Aquat. Org. 2002, 50, 189–197. [Google Scholar] [CrossRef]
- Lopes, P.A.; Pinheiro, T.; Santos, M.C.; Mathias, M.D.; Collares-Pereira, M.J.; Viegas-Crespo, A.M. Response of antioxidant enzymes in freshwater fish populations (Leuciscus alburnoides complex) to inorganic pollutants exposure. Sci. Total Environ. 2001, 280, 153–163. [Google Scholar] [CrossRef]
- Zhang, T.T.; Ma, P.; Yin, X.Y.; Yang, D.Y.; Li, D.P.; Tang, R. Acute nitrite exposure induces dysfunction and oxidative damage in grass carp isolated hemocytes. J. Aquat. Anim. Health 2022, 34, 58–68. [Google Scholar] [CrossRef]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.H.; Li, F.H.; Wen, R.; Xiang, J.H. Analysis on the expression and function of syndecan in the Pacific white shrimp Litopenaeus vannamei. Dev. Comp. Immunol. 2015, 51, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Li, C.P.; Wang, F.; Aweya, J.J.; Yao, D.F.; Zheng, Z.; Huang, H.; Li, S.K.; Zhang, Y.L. Trypsin of Litopenaeus vannamei is required for the generation of hemocyanin-derived peptides. Dev. Comp. Immunol. 2018, 79, 95–104. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′-3′) | Purpose |
---|---|---|
AE2-1 | F: GGGTCAAGCCAGCGAAGA | Sequence verification |
R: CCCAGCGGTTAGCCACAT | ||
AE2-2 | F: GGAGGATGTAGAGGATGTGGC | |
R: CGGACAGGTAGAGCGGGTAG | ||
AE2-3 | F: GCTACCCGCTCTACCTGTCC | |
R: GTCAATGTATGTCGGCAAATC | ||
AE2-5-outer | TCTGAGCTGAGACTCCGTGA | 5′RACE |
AE2-5-inner | ACATCAGTTGCCGAGGACAG | |
AE2-3-outer | GACAAACAGCCATGATTCAGTGT | 3′RACE |
AE2-3-inner | GGGAGATTGATTGTTTTGCTGC | |
AE2-RT | F: CGGCTCGGAAATTGCATCTG | RT-qPCR |
R: GCTTGTCGGTGTAGGTGTCA | ||
AE2- ISH-sense | F: TAATACGACTCACTATAGGGCGGCTCGGAAATTGCATCTG | In situ hybridization |
R: GCTTGTCGGTGTAGGTGTCA | ||
AE2- ISH-antisense | F: CGGCTCGGAAATTGCATCTG | |
R: TAATACGACTCACTATAGGGGCTTGTCGGTGTAGGTGTCA | ||
SiRNA-G1 | F: AUGAAUCUUCUCGUAAGAATT | RNA interference |
R: UUCUUACGAGAAGAUUCAUTT | ||
SiRNA-G2 | F: AAGAAGUCAUAUGAUCAUATT | |
R: UAUGAUCAUAUGACUUCUUTT | ||
SiRNA-G3 | F: GCGAGUUAGUGCCGUCAUUTT | |
R: AAUGACGGCACUAACUCGCTT | ||
SiRNA-negative control | F: UUCUCCGAACGUGUCACGUTT | |
R: ACGUGACACGUUCGGAGAATT | ||
Acid phosphatase XM_027370834.1 | F: CTCGGATAATGCTCGTGTCG | |
R: TGCTGAATCTTGCTCTGTAGTTG | ||
Alkaline phosphatase XM_027360250.1 | F: GAACCGCAATGCTGTAGAAG | |
R: CGCTGTAGGTCTTGATGAGTG | ||
Superoxide dismutase XM_027383584.1 | F: GACACGACCATTAGCCTGTACGAC | |
R: GTTGCCAGTAGCGAGTGAACCTTC | ||
Na+/K+/2Cl− PQ073211 | TGGACGGAGGTCTCAATG | |
CCAGAAGTCAAGCCTACAA | ||
β-actin XM_027364954.1 | F: GCCCTGTTCCAGCCCTCATT | |
R: ACGGATGTCCACGTCGCACT |
Method of Prediction | Applications |
---|---|
BLAST (https://www.ncbi.nlm.gov/blast (accessed on 15 July 2024)) | Comparing amino acid sequence homology |
ORF finder (http://www.ncbi.nlm.nih.gov/orffinder/ (accessed on 15 July 2024)) | Predicting the open reading frame (ORF) position of the gene |
Expasy-ProtParam (http://web.expasy.org/protparam/ (accessed on 15 July 2024)) | Predicting the relative molecular weight and isoelectric point of the protein |
SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP/ (accessed on 15 July 2024)) | Predicting signal peptides |
SMART (http://smart.embl-heidelberg.de/ (accessed on 15 July 2024)) | Predicting and identifying functional structural domains. |
TMHMM SerVer.2.0 (http://www.cbs.dtu.dk/services/TMHMM/ (accessed on 15 July 2024)) | Predicting transmembrane structures |
DNAMAN | Perform multiple comparisons of amino acid sequences |
MEGA 7.0 | Constructing a phylogenetic tree |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Dai, X. Molecular Characterization of Anion Exchanger 2 in Litopenaeus vannamei and Its Role in Nitrite Stress. Int. J. Mol. Sci. 2025, 26, 964. https://doi.org/10.3390/ijms26030964
Li X, Dai X. Molecular Characterization of Anion Exchanger 2 in Litopenaeus vannamei and Its Role in Nitrite Stress. International Journal of Molecular Sciences. 2025; 26(3):964. https://doi.org/10.3390/ijms26030964
Chicago/Turabian StyleLi, Xuenan, and Xilin Dai. 2025. "Molecular Characterization of Anion Exchanger 2 in Litopenaeus vannamei and Its Role in Nitrite Stress" International Journal of Molecular Sciences 26, no. 3: 964. https://doi.org/10.3390/ijms26030964
APA StyleLi, X., & Dai, X. (2025). Molecular Characterization of Anion Exchanger 2 in Litopenaeus vannamei and Its Role in Nitrite Stress. International Journal of Molecular Sciences, 26(3), 964. https://doi.org/10.3390/ijms26030964