Disruption of Extracellular Signal-Regulated Kinase Partially Mediates Neonatal Isoflurane Anesthesia-Induced Changes in Dendritic Spines and Cognitive Function in Juvenile Mice
Abstract
:1. Introduction
2. Results
2.1. Pizotifen Activated ERK Pathway in Neonatal Isoflurane- or PDZ2WT Peptide-Exposed Mice
2.2. Neonatal Isoflurane Exposure Caused Decrease in CREB Phosphorylation Prevented by Pizotifen Injection
2.3. Isoflurane or PDZ2WT Peptide-Induced Loss in Novel Object Recognition Memory in 5-Week-Old Male and Female Mice
2.4. Treatment with Pizotifen Prevented Isoflurane or PDZ2WT Peptide-Induced Loss in Novel Object Recognition Memory in 5-Week-Old Mice
2.5. Neonatal Isoflurane or Wild-Type PDZ2 Peptide-Induced Loss in Mushroom Spine Density in 7-Week-Old Male- and Female-Sex Mice
2.6. Pizotifen Prevented Neonatal Isoflurane or PDZ2WT Peptide-Induced Loss in Mushroom Spine Density in 7-Week-Old Male and Female Mice
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Animals
4.3. Western Blotting
4.4. Novel Object Recognition
4.5. Golgi Staining, Microscopy, and Spine Reconstruction
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ing, C.; Vutskits, L. Unanswered questions of anesthesia neurotoxicity in the developing brain. Curr. Opin. Anaesthesiol. 2023, 36, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.; Feng, Y.; Yu, S.; Xu, C.; Chen, J.; Wang, T.; Xiao, W. General anesthesia in children and long-term neurodevelopmental deficits: A systematic review. Front. Mol. Neurosci. 2022, 15, 972025. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.C.; Murphy, K.L.; Baxter, M.G. Visual recognition memory is impaired in rhesus monkeys repeatedly exposed to sevoflurane in infancy. Br. J. Anaesth. 2017, 119, 517–523. [Google Scholar] [CrossRef]
- Andropoulos, D.B.; Ahmad, H.B.; Haq, T.; Brady, K.; Stayer, S.A.; Meador, M.R.; Hunter, J.V.; Rivera, C.; Voigt, R.G.; Turcich, M.; et al. The association between brain injury, perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes after neonatal cardiac surgery: A retrospective cohort study. Paediatr. Anaesth. 2014, 24, 266–274. [Google Scholar] [CrossRef]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Part 2: Potential Alternatives to the Use of Animals in Preclinical Trials. JACC Basic. Transl. Sci. 2020, 5, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.; Gaspar, A.; Knight, A.; Vicente, L. Ethical and Scientific Pitfalls Concerning Laboratory Research with Non-Human Primates, and Possible Solutions. Animals 2018, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Useinovic, N.; Jevtovic-Todorovic, V. Controversies in anesthesia-induced developmental neurotoxicity. Best. Pract. Res. Clin. Anaesthesiol. 2023, 37, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Solt, K.; Forman, S.A. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr. Opin. Anaesthesiol. 2007, 20, 300–306. [Google Scholar] [CrossRef]
- Campagna, J.A.; Miller, K.W.; Forman, S.A. Mechanisms of actions of inhaled anesthetics. N. Engl. J. Med. 2003, 348, 2110–2124. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, U.; Antkowiak, B. Molecular and neuronal substrates for general anaesthetics. Nat. Rev. Neurosci. 2004, 5, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, H.C., Jr.; Akabas, M.H.; Goldstein, P.A.; Trudell, J.R.; Orser, B.A.; Harrison, N.L. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol. Sci. 2005, 26, 503–510. [Google Scholar] [CrossRef]
- Tao, F.; Chen, Q.; Sato, Y.; Skinner, J.; Tang, P.; Johns, R.A. Inhalational anesthetics disrupt postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 domain protein interactions critical to action of several excitatory receptor channels related to anesthesia. Anesthesiology 2015, 122, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Schaefer, M.L.; Krall, C.; Johns, R.A. Isoflurane Disrupts Postsynaptic Density-95 Protein Interactions Causing Neuronal Synapse Loss and Cognitive Impairment in Juvenile Mice via Canonical NO-mediated Protein Kinase-G Signaling. Anesthesiology 2022, 137, 212–231. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Tao, Y.X.; He, F.; Zhang, M.; Levine, C.F.; Mao, P.; Tao, F.; Chou, C.L.; Sadegh-Nasseri, S.; Johns, R.A. Synaptic PDZ domain-mediated protein interactions are disrupted by inhalational anesthetics. J. Biol. Chem. 2003, 278, 36669–36675. [Google Scholar] [CrossRef]
- Tao, F.; Johns, R.A. Effect of disrupting N-methyl-d-aspartate receptor-postsynaptic density protein-95 interactions on the threshold for halothane anesthesia in mice. Anesthesiology 2008, 108, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Dore, K.; Labrecque, S.; Tardif, C.; De Koninck, P. FRET-FLIM investigation of PSD95-NMDA receptor interaction in dendritic spines; control by calpain, CaMKII and Src family kinase. PLoS ONE 2014, 9, e112170. [Google Scholar] [CrossRef]
- Schaefer, M.L.; Wang, M.; Perez, P.J.; Coca Peralta, W.; Xu, J.; Johns, R.A. Nitric Oxide Donor Prevents Neonatal Isoflurane-induced Impairments in Synaptic Plasticity and Memory. Anesthesiology 2019, 130, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Ping, J.; Schafe, G.E. The NO-cGMP-PKG signaling pathway coordinately regulates ERK and ERK-driven gene expression at pre- and postsynaptic sites following LTP-inducing stimulation of thalamo-amygdala synapses. Neural Plast. 2010, 2010, 540940. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhang, Y.; Zhang, J.; Wang, H.; Ren, B. ERK in learning and memory: A review of recent research. Int. J. Mol. Sci. 2010, 11, 222–232. [Google Scholar] [CrossRef]
- Schaefer, M.L.; Perez, P.J.; Wang, M.; Gray, C.; Krall, C.; Sun, X.; Hunter, E.; Skinner, J.; Johns, R.A. Neonatal Isoflurane Anesthesia or Disruption of Postsynaptic Density-95 Protein Interactions Change Dendritic Spine Densities and Cognitive Function in Juvenile Mice. Anesthesiology 2020, 133, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.F.; Iadecola, C. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J. Neurosci. 2011, 31, 6947–6955. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Mao, L. The ERK Pathway: Molecular Mechanisms and Treatment of Depression. Mol. Neurobiol. 2019, 56, 6197–6205. [Google Scholar] [CrossRef]
- Giovannini, M.G. The role of the extracellular signal-regulated kinase pathway in memory encoding. Rev. Neurosci. 2006, 17, 619–634. [Google Scholar] [CrossRef]
- Tang, S.; Yasuda, R. Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity. Neuron 2017, 93, 1315–1324 e1313. [Google Scholar] [CrossRef] [PubMed]
- Ojea Ramos, S.; Feld, M.; Fustinana, M.S. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front. Mol. Neurosci. 2022, 15, 988790. [Google Scholar] [CrossRef]
- Languille, S.; Davis, S.; Richer, P.; Alcacer, C.; Laroche, S.; Hars, B. Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis. Eur. J. Neurosci. 2009, 30, 1923–1930. [Google Scholar] [CrossRef]
- Sweatt, J.D. The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 2001, 76, 1–10. [Google Scholar] [CrossRef]
- Takamura, H.; Ichisaka, S.; Watanabe, K.; Toigawa, M.; Hata, Y. Effects of anesthesia on immunohistochemical detection of phosphorylated extracellular signal-regulated kinase in cerebral cortex. J. Neurosci. Methods 2008, 170, 300–304. [Google Scholar] [CrossRef]
- Yufune, S.; Satoh, Y.; Takamatsu, I.; Ohta, H.; Kobayashi, Y.; Takaenoki, Y.; Pages, G.; Pouyssegur, J.; Endo, S.; Kazama, T. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice. Sci. Rep. 2015, 5, 10252. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Ham, J.; Hetman, M.; Poser, S.; Yan, C.; Xia, Z. Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J. Neurosci. 2001, 21, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Agnati, L.F.; Franzen, O.; Ferre, S.; Leo, G.; Franco, R.; Fuxe, K. Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: Focus on motor learning in the basal ganglia. J. Neural Transm. Suppl. 2003, 10, 1–28. [Google Scholar] [CrossRef]
- Kelly, A.; Laroche, S.; Davis, S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J. Neurosci. 2003, 23, 5354–5360. [Google Scholar] [CrossRef]
- Thiels, E.; Klann, E. Extracellular signal-regulated kinase, synaptic plasticity, and memory. Rev. Neurosci. 2001, 12, 327–345. [Google Scholar] [CrossRef]
- Sarantos, M.R.; Papanikolaou, T.; Ellerby, L.M.; Hughes, R.E. Pizotifen Activates ERK and Provides Neuroprotection in vitro and in vivo in Models of Huntington’s Disease. J. Huntingtons Dis. 2012, 1, 195–210. [Google Scholar] [CrossRef]
- Brandt, N.; Loffler, T.; Fester, L.; Rune, G.M. Sex-specific features of spine densities in the hippocampus. Sci. Rep. 2020, 10, 11405. [Google Scholar] [CrossRef] [PubMed]
- Shors, T.J.; Chua, C.; Falduto, J. Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J. Neurosci. 2001, 21, 6292–6297. [Google Scholar] [CrossRef]
- Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 2004, 14, 311–317. [Google Scholar] [CrossRef]
- Medina, J.H.; Viola, H. ERK1/2: A Key Cellular Component for the Formation, Retrieval, Reconsolidation and Persistence of Memory. Front. Mol. Neurosci. 2018, 11, 361. [Google Scholar] [CrossRef]
- Krawczyk, M.C.; Millan, J.; Blake, M.G.; Feld, M.; Boccia, M.M. Relevance of ERK1/2 Post-retrieval Participation on Memory Processes: Insights in Their Particular Role on Reconsolidation and Persistence of Memories. Front. Mol. Neurosci. 2019, 12, 95. [Google Scholar] [CrossRef]
- Wang, H.; Ma, G.; Min, J.; Li, J.; Shan, W.; Zuo, Z. Inhibition of ERK/CREB signaling contributes to postoperative learning and memory dysfunction in neonatal rats. J. Mol. Med. 2023, 101, 265–278. [Google Scholar] [CrossRef]
- Clark, R.E.; Zola, S.M.; Squire, L.R. Impaired recognition memory in rats after damage to the hippocampus. J. Neurosci. 2000, 20, 8853–8860. [Google Scholar] [CrossRef]
- Baker, K.B.; Kim, J.J. Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn. Mem. 2002, 9, 58–65. [Google Scholar] [CrossRef]
- Reger, M.L.; Hovda, D.A.; Giza, C.C. Ontogeny of Rat Recognition Memory measured by the novel object recognition task. Dev. Psychobiol. 2009, 51, 672–678. [Google Scholar] [CrossRef]
- Risher, W.C.; Ustunkaya, T.; Singh Alvarado, J.; Eroglu, C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS ONE 2014, 9, e107591. [Google Scholar] [CrossRef]
- Fiala, J.C. Reconstruct: A free editor for serial section microscopy. J. Microsc. 2005, 218, 52–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, S.; Bochkova, J.; Mohamed, M.K.; Schaefer, M.L.; Zhou, A.; Skinner, J.; Johns, R.A. Disruption of Extracellular Signal-Regulated Kinase Partially Mediates Neonatal Isoflurane Anesthesia-Induced Changes in Dendritic Spines and Cognitive Function in Juvenile Mice. Int. J. Mol. Sci. 2025, 26, 981. https://doi.org/10.3390/ijms26030981
Agarwal S, Bochkova J, Mohamed MK, Schaefer ML, Zhou A, Skinner J, Johns RA. Disruption of Extracellular Signal-Regulated Kinase Partially Mediates Neonatal Isoflurane Anesthesia-Induced Changes in Dendritic Spines and Cognitive Function in Juvenile Mice. International Journal of Molecular Sciences. 2025; 26(3):981. https://doi.org/10.3390/ijms26030981
Chicago/Turabian StyleAgarwal, Swati, Jacqueline Bochkova, Mazen K. Mohamed, Michele L. Schaefer, Annika Zhou, John Skinner, and Roger A. Johns. 2025. "Disruption of Extracellular Signal-Regulated Kinase Partially Mediates Neonatal Isoflurane Anesthesia-Induced Changes in Dendritic Spines and Cognitive Function in Juvenile Mice" International Journal of Molecular Sciences 26, no. 3: 981. https://doi.org/10.3390/ijms26030981
APA StyleAgarwal, S., Bochkova, J., Mohamed, M. K., Schaefer, M. L., Zhou, A., Skinner, J., & Johns, R. A. (2025). Disruption of Extracellular Signal-Regulated Kinase Partially Mediates Neonatal Isoflurane Anesthesia-Induced Changes in Dendritic Spines and Cognitive Function in Juvenile Mice. International Journal of Molecular Sciences, 26(3), 981. https://doi.org/10.3390/ijms26030981