Prodrugs in Oncology: Bioactivation and Impact on Therapeutic Efficacy and Toxicity
Abstract
:1. Introduction
2. Alkylating Chemotherapeutic Prodrugs
2.1. Cyclophosphamide (CPA)
2.1.1. Clinical Significance
2.1.2. Mechanism of Bioactivation
2.1.3. Off-Target Toxicity
2.2. Dacarbazine
2.2.1. Clinical Significance
2.2.2. Mechanism of Bioactivation
2.2.3. Off-Target Toxicity
2.3. Duocarmycin
2.3.1. Clinical Significance
2.3.2. Mechanism of Bioactivation
2.3.3. Off-Target Toxicity
2.4. Other Alkylating Prodrugs
3. Non-Alkylating Prodrugs
3.1. 5-Fluorouracil
3.1.1. Clinical Significance
Non-Alkylating Prodrug | Target Cancer | Bioactivation Mechanism | Off Target Toxicity |
---|---|---|---|
5-Fluorouracil | Adenocarcinomas and head and neck cancer [124,125,126] | Orotate phosphoribosyltransferase, uridine kinase, uridine phosphorylase, thymidine phosphorylase, and thymidine kinase | Angina, myocardial infarction, heart failure, encephalopathy, seizures, coma, and peripheral nerve damage [127,128,129] |
Irinotecan | Metastatic colorectal cancers, ovarian cancer, and small-cell lung cancer [130,131,132,133] | Carboxylesterases | Diarrhea, lacrimation, salivation, visual disturbances, and neutropenia [134,135,136] |
Romidepsin | Cutaneous T-cell lymphoma, peripheral T-cell lymphoma, and prostate cancer [137,138,139,140] | Disulfide bond reduction | ST/T wave flattening, ST depression, ST inversion, QTc prolongation, and electrolyte imbalance [141,142,143] |
PRO962 | Epidermoid carcinoma | pH < 7.0 | Skin changes, weakness, and diarrhea [144,145] |
3.1.2. Mechanism of Bioactivation
3.1.3. Off-Target Toxicity
3.2. Irinotecan
3.2.1. Clinical Significance
3.2.2. Mechanism of Bioactivation
3.2.3. Off-Target Toxicity
3.3. Romidepsin
3.3.1. Clinical Significance
3.3.2. Mechanism of Bioactivation
3.3.3. Off-Target Toxicity
3.4. Other Non-Alkylating Prodrugs
4. Antibody-Drug Conjugates (ADCs)
4.1. Clinical Significance
4.2. Mechanisms of Action
4.3. Off-Target Toxicity
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stella, V.J. Prodrugs: Some Thoughts and Current Issues. J. Pharm. Sci. 2010, 99, 4755–4765. [Google Scholar] [CrossRef] [PubMed]
- International Union of Pure and Applied Chemistry. Available online: https://iupac.org/ (accessed on 23 October 2023).
- Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022, 50, D1398–D1407. [Google Scholar] [CrossRef] [PubMed]
- Karnofsky, D.A. The nitrogen mustards and their application in neoplastic diseases. N. Y. State J. Med. 1947, 47, 992. [Google Scholar] [PubMed]
- Arnold, H.; Bourseaux, F. Synthese und Abbau cytostatisch wirksamer cyclischer N-Phosphamidester des Bis-(β-chloräthyl)-amins. Angew. Chem. 1958, 70, 539–544. [Google Scholar] [CrossRef]
- Brock, N.; Hohorst, H.J. On the activation of cyclophosphamide in vivo and in vitro. Arzneimittelforschung 1963, 13, 1021–1031. [Google Scholar]
- Cohen, J.L.; Jao, J.Y. Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat. J. Pharmacol. Exp. Ther. 1970, 174, 206–210. [Google Scholar]
- Shealy, Y.F.; Krauth, C.A.; Montgomery, J.A. Imidazoles. I. Coupling Reactions of 5-Diazoimidazole-4-carboxamide1,2. J. Org. Chem. 1962, 27, 2150–2154. [Google Scholar] [CrossRef]
- Heidelberger, C.; Chaudhuri, N.K.; Danneberg, P.; Mooren, D.; Griesbach, L.; Duschinsky, R.; Schnitzer, R.J.; Pleven, E.; Scheiner, J. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 1957, 179, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca Acuminata. Am. Chem. Soc. 1966, 88, 3888–3890. [Google Scholar] [CrossRef]
- Cao, Y.; Ge, X.; Zhu, X.; Han, Y.; Wang, P.; Akakuru, O.U.; Wu, A.; Li, J. Transformable Neuropeptide Prodrug with Tumor Microenvironment Responsiveness for Tumor Growth and Metastasis Inhibition of Triple-Negative Breast Cancer. Adv. Sci. 2023, 10, e2300545. [Google Scholar] [CrossRef]
- Shan, L.; Zhuo, X.; Zhang, F.; Dai, Y.; Zhu, G.; Yung, B.C.; Fan, W.; Zhai, K.; Jacobson, O.; Kiesewetter, D.O.; et al. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy. Theranostics 2018, 8, 2018–2030. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kim, E.-J.; Shi, H.; Lee, J.Y.; Chung, B.G.; Kim, J.S. Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. Biomaterials 2018, 155, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Najjar, A.; Karaman, R. The prodrug approach in the era of drug design. Expert Opin. Drug Deliv. 2019, 16, 1–5. [Google Scholar] [CrossRef]
- Lin, F.; Chen, L.; Zhang, H.; Ngai, W.S.C.; Zeng, X.; Lin, J.; Chen, P.R. Bioorthogonal Prodrug–Antibody Conjugates for On-Target and On-Demand Chemotherapy. CCS Chem. 2019, 1, 226–236. [Google Scholar] [CrossRef]
- Sasso, J.M.; Tenchov, R.; Bird, R.; Iyer, K.A.; Ralhan, K.; Rodriguez, Y.; Zhou, Q.A. THE EVOLVING LANDSCAPE of Antibody–Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug. Chem. 2023, 34, 1951–2000. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F. DNA damaging drugs. In Molecular Therapies of Cancer; Springer: Cham, Switzerland, 2014; pp. 9–112. [Google Scholar]
- Cancer medicine. In Holland-Frei Cancer Medicine; Donald, W., Kufe, M., Raphael, E., Pollock, M., Ralph, R., Weichselbaum, M., Robert, C., Bast, J., Ted, S., Gansler, M., et al., Eds.; BC Decker: Hamilton, ON, Canada, 2003. [Google Scholar]
- Sladek, N.E. Metabolism of oxazaphosphorines. Pharmacol. Ther. 1988, 37, 301–355. [Google Scholar] [CrossRef]
- Povirk, L.F.; Shuker, D.E. DNA damage and mutagenesis induced by nitrogen mustards. Mutat. Res. 1994, 318, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Crombie, J.; LaCasce, A. The treatment of Burkitt lymphoma in adults. Blood 2021, 137, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, S.; Lv, S.; Liu, X.; Li, W.; Song, Y.; Rong, D.; Zheng, P.; Huang, H.; Zheng, H. Combined oral low-dose cyclophosphamide endocrine therapy may improve clinical response among patients with metastatic breast cancer via Tregs in TLSS. Sci. Rep. 2024, 14, 13432. [Google Scholar] [CrossRef]
- Li, Z.; Ren, L. Study on Effects of Cyclophosphamide Combined with Vinorelbine in Advanced Small Cell Lung Cancer and Anteroposterior Changes in MRI. Contrast Media Mol. Imaging 2022, 2022, 3104879. [Google Scholar] [CrossRef]
- Bolaños-Meade, J.; Hamadani, M.; Wu, J.; Al Malki, M.M.; Martens, M.J.; Runaas, L.; Elmariah, H.; Rezvani, A.R.; Gooptu, M.; Larkin, K.T.; et al. Post-Transplantation Cyclophosphamide-Based Graft-Versus-Host Disease Prophylaxis. N. Engl. J. Med. 2023, 388, 2338–2348. [Google Scholar] [CrossRef]
- Michot, J.-M.; Annereau, M.; Danu, A.; Legoupil, C.; Bertin, L.; Chahine, C.; Achab, N.; Antosikova, A.; Cerutti, A.; Rossignol, J.; et al. High-dose cyclophosphamide for hard-to-treat patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma, a phase II result. Eur. J. Haematol. 2020, 104, 281–290. [Google Scholar] [CrossRef]
- Thanh Nga E Doan, M.; City of Hope Medical Center. Dose-Reduced Docetaxel with Cyclophosphamide for the Treatment of Vulnerable Older Women with Stage I-III HER2 Negative Breast Cancer, the Dorothy Trial; National Library of Medicine: Bethesda, MD, USA, 2024.
- Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019, 218, 112–131. [Google Scholar] [CrossRef] [PubMed]
- Boussios, S.; Pentheroudakis, G.; Katsanos, K.; Pavlidis, N. Systemic treatment-induced gastrointestinal toxicity: Incidence, clinical presentation and management. Ann. Gastroenterol. 2012, 25, 106–118. [Google Scholar] [PubMed]
- Chen, J.; Jin, Y.; Li, C.; Li, Z. Symptomatic hyponatremia induced by low-dose cyclophosphamide in patient with systemic lupus erythematosus: A case report. Medicine 2020, 99, e22498. [Google Scholar] [CrossRef]
- Noh, E.M.; Kim, J.M.; Lee, H.Y.; Song, H.K.; Joung, S.O.; Yang, H.J.; Kim, M.J.; Kim, K.S.; Lee, Y.R. Immuno-enhancement effects of Platycodon grandiflorum extracts in splenocytes and a cyclophosphamide-induced immunosuppressed rat model. BMC Complement. Altern. Med. 2019, 19, 322. [Google Scholar] [CrossRef] [PubMed]
- Bajetta, E.; Rimassa, L.; Carnaghi, C.; Seregni, E.; Ferrari, L.; Di Bartolomeo, M.; Regalia, E.; Cassata, A.; Procopio, G.; Mariani, L. 5-Fluorouracil, dacarbazine, and epirubicin in the treatment of patients with neuroendocrine tumors. Cancer 1998, 83, 372–378. [Google Scholar] [CrossRef]
- Bedikian, A.Y.; Millward, M.; Pehamberger, H.; Conry, R.; Gore, M.; Trefzer, U.; Pavlick, A.C.; DeConti, R.; Hersh, E.M.; Hersey, P.; et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The Oblimersen Melanoma Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 4738–4745. [Google Scholar] [CrossRef]
- Behringer, K.; Goergen, H.; Hitz, F.; Zijlstra, J.M.; Greil, R.; Markova, J.; Sasse, S.; Fuchs, M.; Topp, M.S.; Soekler, M.; et al. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin’s lymphoma (GHSG HD13): An open-label, randomised, non-inferiority trial. Lancet 2015, 385, 1418–1427. [Google Scholar] [CrossRef]
- Jiang, G.; Li, R.H.; Sun, C.; Liu, Y.Q.; Zheng, J.N. Dacarbazine combined targeted therapy versus dacarbazine alone in patients with malignant melanoma: A meta-analysis. PLoS ONE 2014, 9, e111920. [Google Scholar] [CrossRef]
- Patel, N.; Neupane, R.; Balaji, S.; Tiwari, A.K.; Ray, S.D.; Wexler, P. Dacarbazine. In Encyclopedia of Toxicology, 4th ed.; Academic Press: Cambridge, MA, USA, 2024; p. 7. [Google Scholar]
- National Institute of Diabetes and Digestive and Kidney Diseases. Clinical and Research Information on Drug-Induced Liver Injury. LiverTox Sinusoidal Obstruction Syndrome (Veno-Occlusive Disease); National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2019.
- Paschke, R.; Heine, M.; Braun, S.; Usadel, K.H. Mechanisms of hepatotoxicity caused by dacarbazine in rats. J. Cancer Res. Clin. Oncol. 1993, 119, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Travica, S.; Pors, K.; Loadman, P.M.; Shnyder, S.D.; Johansson, I.; Alandas, M.N.; Sheldrake, H.M.; Mkrtchian, S.; Patterson, L.H.; Ingelman-Sundberg, M. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 2952–2961. [Google Scholar] [CrossRef] [PubMed]
- Karlgren, M.; Gomez, A.; Stark, K.; Svärd, J.; Rodriguez-Antona, C.; Oliw, E.; Bernal, M.L.; Ramón y Cajal, S.; Johansson, I.; Ingelman-Sundberg, M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun. 2006, 341, 451–458. [Google Scholar] [CrossRef]
- Escrivá-de-Romaní, S.; Saura, C. The change of paradigm in the treatment of HER2-positive breast cancer with the development of new generation antibody-drug conjugates. Cancer Drug Resist. 2023, 6, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Scribner, J.A.; Brown, J.G.; Son, T.; Chiechi, M.; Li, P.; Sharma, S.; Li, H.; De Costa, A.; Li, Y.; Chen, Y.; et al. Preclinical development of MGC018, a Duocarmycin-based Antibody-drug Conjugate Targeting B7-H3 for Solid Cancer. Mol. Cancer Ther. 2020, 19, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Jäger, S.; Könning, D.; Rasche, N.; Hart, F.; Sensbach, J.; Krug, C.; Raab-Westphal, S.; Richter, K.; Unverzagt, C.; Hecht, S.; et al. Generation and Characterization of Iduronidase-Cleavable ADCS. Bioconjug. Chem. 2023, 34, 2221–2233. [Google Scholar] [CrossRef] [PubMed]
- Brenner, A.J.; Floyd, J.; Fichtel, L.; Michalek, J.; Kanakia, K.P.; Huang, S.; Reardon, D.; Wen, P.Y.; Lee, E.Q. Phase 2 trial of hypoxia activated evofosfamide (TH302) for treatment of recurrent bevacizumab-refractory glioblastoma. Sci. Rep. 2021, 11, 2306. [Google Scholar] [CrossRef] [PubMed]
- Laubach, J.P.; Liu, C.J.; Raje, N.S.; Yee, A.J.; Armand, P.; Schlossman, R.L.; Rosenblatt, J.; Hedlund, J.; Martin, M.; Reynolds, C.; et al. A Phase I/II Study of Evofosfamide, a Hypoxia-Activated Prodrug with or without Bortezomib in Subjects with Relapsed/Refractory Multiple Myeloma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Society, A.C. Key Statistics for Non-Hodgkin Lymphoma. Available online: https://www.cancer.org/cancer/types/non-hodgkin-lymphoma/about/key-statistics.html (accessed on 2 August 2024).
- Magrath, I.; Adde, M.; Shad, A.; Venzon, D.; Seibel, N.; Gootenberg, J.; Neely, J.; Arndt, C.; Nieder, M.; Jaffe, E.; et al. Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1996, 14, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Burkitt, D. Long-term remissions following one and two-dose chemotherapy for african lymphoma. Cancer 1967, 20, 756–759. [Google Scholar] [CrossRef]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef]
- Shankland, K.R.; Armitage, J.O.; Hancock, B.W. Non-Hodgkin lymphoma. Lancet 2012, 380, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Piechotta, V.; Jakob, T.; Langer, P.; Monsef, I.; Scheid, C.; Estcourt, L.J.; Ocheni, S.; Theurich, S.; Kuhr, K.; Scheckel, B.; et al. Multiple drug combinations of bortezomib, lenalidomide, and thalidomide for first-line treatment in adults with transplant-ineligible multiple myeloma: A network meta-analysis. Cochrane Database Syst. Rev. 2019, 2019, CD013487. [Google Scholar] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Rivell, G.L.; Brunson, C.Y.; Milligan, L.; Stuart, R.K.; Costa, L.J. Effectiveness and safety of high-dose cyclophosphamide as salvage therapy for high-risk multiple myeloma and plasma cell leukemia refractory to new biological agents. Am. J. Hematol. 2011, 86, 699–701. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.A.; Tam, C.S.; O’Brien, S.M.; Wierda, W.G.; Stingo, F.; Plunkett, W.; Smith, S.C.; Kantarjian, H.M.; Freireich, E.J.; Keating, M.J. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in ighv-mutated chronic lymphocytic leukemia. Blood 2016, 127, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Society, A.C. Key Statistics for Breast Cancer. Available online: https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html (accessed on 2 August 2024).
- Mieog, J.S.; van der Hage, J.A.; van de Velde, C.J. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst. Rev. 2007, 2007, Cd005002. [Google Scholar]
- Lopez, A. Differences Between Adjuvant and Neoadjuvant Treatment. Available online: https://www.medsir.org/post/differences-between-adjuvant-and-neoadjuvant-treatment (accessed on 2 August 2024).
- Yussof, I.; Mohd Tahir, N.A.; Hatah, E.; Mohamed Shah, N. Factors influencing five-year adherence to adjuvant endocrine therapy in breast cancer patients: A systematic review. Breast 2022, 62, 22–35. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Fang, F.; Varnum, C.; Eriksson, M.; Hall, P.; Czene, K. Predictors of Discontinuation of Adjuvant Hormone Therapy in Patients with Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2262–2269. [Google Scholar] [CrossRef]
- Padinharayil, H.; Varghese, J.; John, M.C.; Rajanikant, G.K.; Wilson, C.M.; Al-Yozbaki, M.; Renu, K.; Dewanjee, S.; Sanyal, R.; Dey, A.; et al. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis. 2023, 10, 960–989. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Brummaier, T.; Pohanka, E.; Studnicka-Benke, A.; Pieringer, H. Using cyclophosphamide in inflammatory rheumatic diseases. Eur. J. Intern. Med. 2013, 24, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Panduro, M.; Benoist, C.; Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 2016, 34, 609–633. [Google Scholar] [CrossRef] [PubMed]
- Shan, F.; Somasundaram, A.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022, 8, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Huijts, C.M.; Lougheed, S.M.; Bodalal, Z.; van Herpen, C.M.; Hamberg, P.; Tascilar, M.; Haanen, J.B.; Verheul, H.M.; de Gruijl, T.D.; van der Vliet, H.J. The effect of everolimus and low-dose cyclophosphamide on immune cell subsets in patients with metastatic renal cell carcinoma: Results from a phase I clinical trial. Cancer Immunol. Immunother. 2019, 68, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Lin, J.T.; Goss, K.A.; He, Y.A.; Halpert, J.R.; Waxman, D.J. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: Identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol. Pharmacol. 2004, 65, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Struck, R.F.; Kari, P.; Kalin, J.; Montgomery, J.A.; Marinello, A.J.; Love, J.; Bansal, S.K.; Gurtoo, H.L. Metabolism of cyclophosphamide by purified cytochrome P-450 from microsomes of phenobarbital-treated rats. Biochem. Biophys. Res. Commun. 1984, 120, 390–396. [Google Scholar] [CrossRef]
- Clarke, L.; Waxman, D.J. Oxidative Metabolism of Cyclophosphamide: Identification of the Hepatic Monooxygenase Catalysts of Drug Activation1. Cancer Res. 1989, 49, 2344–2350. [Google Scholar] [PubMed]
- Roy, P.; Yu, L.J.; Crespi, C.L.; Waxman, D.J. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on c-DNA expressed activites and liver microsoma P-450 profiles. Drug Metab. Dispos. 1999, 27, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Roy, P.; Waxman, D.J. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000, 59, 961–972. [Google Scholar] [CrossRef]
- Sandhu, H.; Maddock, H. Molecular basis of cancer-therapy-induced cardiotoxicity: Introducing microRNA biomarkers for early assessment of subclinical myocardial injury. Clin. Sci. 2014, 126, 377–400. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Huang, F.; Zhang, R.; Dong, L.; Jia, X.; Liu, L.; Yi, Y.; Zhang, M. Longan pulp polysaccharides relieve intestinal injury in vivo and in vitro by promoting tight junction expression. Carbohydr. Polym. 2020, 229, 115475. [Google Scholar] [CrossRef] [PubMed]
- Bieber, J.M.; Sanman, L.E.; Sun, X.; Hammerlindl, H.; Bao, F.; Roth, M.A.; Koleske, M.L.; Huang, L.; Aweeka, F.; Wu, L.F.; et al. Differential toxicity to murine small and large intestinal epithelium induced by oncology drugs. Commun. Biol. 2022, 5, 99. [Google Scholar] [CrossRef]
- Fritz, A.; Busch, D.; Lapczuk, J.; Ostrowski, M.; Drozdzik, M.; Oswald, S. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis. Basic Clin. Pharmacol. Toxicol. 2019, 124, 245–255. [Google Scholar] [CrossRef]
- Clermont, V.; Grangeon, A.; Barama, A.; Turgeon, J.; Lallier, M.; Malaise, J.; Michaud, V. Activity and mRNA expression levels of selected cytochromes p450 in various sections of the human small intestine. Br. J. Clin. Pharmacol. 2019, 85, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Antonios, K.; Shaheen, A.; Dutta, P.; Fine, M. Acute Liver Injury Caused by Cyclophosphamide in a Patient with Factor VIII Deficiency: A Rare Presentation. Cureus 2024, 16, e55717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, T.; Liu, C.; Shan, X.; Xu, Z.; Hong, H.; Lin, H.; Chen, J.; Sun, H. Cyclophosphamide induced physiological and biochemical changes in mice with an emphasis on sensitivity analysis. Ecotoxicol. Environ. Saf. 2021, 211, 111889. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, X.; Yi, R.; Li, G.; Sun, P.; Qian, Y.; Zhao, X. Immunomodulatory Effect of Tremella Polysaccharides Against Cyclophosphamide-Induced Immunosuppression in Mice. Molecules 2018, 23, 239. [Google Scholar] [CrossRef]
- Liu, H.; Yan, Y.; Zhang, F.; Wu, Q. The Immuno-Enhancement Effects of Tubiechong (Eupolyphaga sinensis) Lyophilized Powder in Cyclophosphamide-Induced Immunosuppressed Mice. Immunol. Investig. 2019, 48, 844–859. [Google Scholar] [CrossRef] [PubMed]
- Online, D. Dacarbazine. Available online: https://go.drugbank.com/drugs/DB00851 (accessed on 3 October 2024).
- Serrone, L.; Zeuli, M.; Sega, F.M.; Cognetti, F. Dacarbazine-based chemotherapy for metastatic melanoma: Thirty-year experience overview. J. Exp. Clin. Cancer Res. CR 2000, 19, 21–34. [Google Scholar] [PubMed]
- Torka, P.; Przespolewski, E.; Evens, A.M. Treatment Strategies for Advanced Classical Hodgkin Lymphoma in the Times of Dacarbazine Shortage. JCO Oncol. Pract. 2022, 18, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Marynick, S.P.; Fagadau, W.R.; Duncan, L.A. Malignant glucagonoma syndrome: Response to chemotherapy. Ann. Intern. Med. 1980, 93, 453–454. [Google Scholar] [CrossRef]
- Wu, P.; He, D.; Chang, H.; Zhang, X. Epidemiologic trends of and factors associated with overall survival in patients with neuroendocrine tumors over the last two decades in the USA. Endocr. Connect. 2023, 12, e230331. [Google Scholar] [CrossRef]
- Sultana, Q.; Kar, J.; Verma, A.; Sanghvi, S.; Kaka, N.; Patel, N.; Sethi, Y.; Chopra, H.; Kamal, M.A.; Greig, N.H. A Comprehensive Review on Neuroendocrine Neoplasms: Presentation, Pathophysiology and Management. J. Clin. Med. 2023, 12, 5138. [Google Scholar] [CrossRef]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Cutsem, E.V.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; Vries, E.G.E.d.; et al. Everolimus for Advanced Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Mueller, D.; Krug, S.; Majumder, M.; Rinke, A.; Gress, T.M. Low dose DTIC is effective and safe in pretreated patients with well differentiated neuroendocrine tumors. BMC Cancer 2016, 16, 645. [Google Scholar] [CrossRef] [PubMed]
- Krug, S.; Kegel, T.; Gress, T.M.; Rinke, A.; Apostolidis, L.; Jann, H.; Konig, A.; Horsch, D.; Schrader, J.; Ettrich, T.J.; et al. Ramucirumab in combination with dacarbazine in patients with progressive well-differentiated metastatic pancreatic neuroendocrine tumors (RamuNET): Study protocol for a multicenter single-arm trial. BMC Cancer 2021, 21, 1206. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.H.; Yi, S.Y.; Lee, H.R.; Lee, S.I.; Lim, D.H.; Kim, J.H.; Park, K.W.; Lee, J. Dacarbazine-based chemotherapy as first-line treatment in noncutaneous metastatic melanoma: Multicenter, retrospective analysis in asia. Melanoma Res. 2011, 21, 223–227. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M.J. Cancer statistics, 2007. CA A Cancer J. Clin. 2007, 57, 43–66. [Google Scholar] [CrossRef]
- Eggermont, A.M.; Kirkwood, J.M. Re-evaluating the role of dacarbazine in metastatic melanoma: What have we learned in 30 years? Eur. J. Cancer 2004, 40, 1825–1836. [Google Scholar] [CrossRef] [PubMed]
- Middleton, M.R.; Grob, J.J.; Aaronson, N.; Fierlbeck, G.; Tilgen, W.; Seiter, S.; Gore, M.; Aamdal, S.; Cebon, J.; Coates, A.; et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 158–166. [Google Scholar] [CrossRef]
- Querfeld, C.; Rosen, S.T.; Guitart, J.; Rademaker, A.; Pezen, D.S.; Dolan, M.E.; Baron, J.; Yarosh, D.B.; Foss, F.; Kuzel, T.M. Multicenter phase II trial of temozolomide in mycosis fungoides/sezary syndrome: Correlation with O6-methylguanine-DNA methyltransferase and mismatch repair proteins. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 5748–5754. [Google Scholar] [CrossRef]
- Plummer, E.R.; Middleton, M.R.; Jones, C.; Olsen, A.; Hickson, I.; McHugh, P.; Margison, G.P.; McGown, G.; Thorncroft, M.; Watson, A.J.; et al. Temozolomide Pharmacodynamics in Patients with Metastatic Melanoma: DNA Damage and Activity of Repair Enzymes O6-Alkylguanine Alkyltransferase and Poly(ADP-Ribose) Polymerase-1. Clin. Cancer Res. 2005, 11, 3402–3409. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.F.; Sosman, J.A.; Gonzalez, R.; Hodi, F.S.; Linette, G.P.; Richards, J.; Jakub, J.W.; Beeram, M.; Tarantolo, S.; Agarwala, S.; et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: A report from the 11715 Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 2178–2185. [Google Scholar] [CrossRef] [PubMed]
- Society, A.C. Chemotherapy for Hodgkin Lymphoma. Available online: https://www.cancer.org/cancer/types/hodgkin-lymphoma/treating/chemotherapy.html (accessed on 3 October 2024).
- Santarsieri, A.; Mitchell, E.; Sturgess, K.; Brice, P.; Menne, T.F.; Osborne, W.; Creasey, T.; Ardeshna, K.M.; Behan, S.; Bhuller, K.; et al. Replacing procarbazine with dacarbazine in escalated beacopp dramatically reduces the post treatment haematopoietic stem and progenitor cell mutational burden in hodgkin lymphoma patients with no apparent loss of clinical efficacy. Blood 2022, 140 (Suppl. S1), 1761–1764. [Google Scholar] [CrossRef]
- Bröckelmann, P.J.; Bühnen, I.; Meissner, J.; Trautmann-Grill, K.; Herhaus, P.; Halbsguth, T.V.; Schaub, V.; Kerkhoff, A.; Mathas, S.; Bormann, M.; et al. Nivolumab and Doxorubicin, Vinblastine, and Dacarbazine in Early-Stage Unfavorable Hodgkin Lymphoma: Final Analysis of the Randomized German Hodgkin Study Group Phase II NIVAHL Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 1193–1199. [Google Scholar] [CrossRef]
- Lee, H.; Flinn, I.W.; Melear, J.; Ramchandren, R.; Friedman, J.; Burke, J.M.; Linhares, Y.; Raval, M.; Chintapatla, R.; Feldman, T.A.; et al. P1089: Brentuximab Vedotin, Nivolumab, Doxorubicin, and Dacarbazine (AN+AD) for Advanced Stage Classic Hodgkin Lymphoma: Preliminary Safety and Efficacy Results from the Phase 2 Study (sgn35 027 Part B). HemaSphere 2022, 6, 979–980. [Google Scholar] [CrossRef]
- Hill, D.L. Microsomal metabolism of triazenylimidazoles. Cancer Res. 1975, 35 Pt 1, 3106–3110. [Google Scholar]
- Skibba, J.L.; Beal, D.D.; Ramirez, G.; Bryan, G.T. N-demethylation the antineoplastic agent4(5)-(3,3-dimethyl-1-triazeno)imidazole-5(4)-carboxamide by rats and man. Cancer Res. 1970, 30, 147–150. [Google Scholar]
- Reid, J.M.; Kuffel, M.J.; Miller, J.K.; Rios, R.; Ames, M.M. Metabolic Activation of Dacarbazine by Human Cytochromes P450: The Role of CYP1A1, CYP1A2, and CYP2E11. Clin. Cancer Res. 1999, 5, 2192–2197. [Google Scholar]
- Kim, S.; Kim, H.; Jo, D.H.; Kim, J.H.; Kim, S.R.; Kang, D.; Hwang, D.; Chung, J. Bispecific anti-mPDGFRβ x cotinine scFv-C(κ)-scFv fusion protein and cotinine-duocarmycin can form antibody-drug conjugate-like complexes that exert cytotoxicity against mPDGFRβ expressing cells. Methods 2019, 154, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.C.; Satam, V.; Lee, M. A short Review on the Synthetic Strategies of Duocarmycin Analogs That Are Powerful DNA Alkylating Agents. Anti-Cancer Agents Med. Chem. 2015, 15, 616–630. [Google Scholar] [CrossRef]
- Jukes, Z.; Morais, G.R.; Loadman, P.M.; Pors, K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov. Today 2021, 26, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, B.K.; Crampton, S.L.; Adams, E.G. Cell Cycle Effects of CC-1065. Cancer Res. 1983, 43, 4227–4232. [Google Scholar]
- Neil, G.L.; Clarke, G.L.; Mcgovren, J.P. Antitumor activity and acute toxicity of CC-1065 (NSC-298223) in the mouse. Proc. Am. Assoc. Cancer 1981, 22, 244. [Google Scholar]
- Pors, K.; Loadman, P.M.; Shnyder, S.D.; Sutherland, M.; Sheldrake, H.M.; Guino, M.; Kiakos, K.; Hartley, J.A.; Searcey, M.; Patterson, L.H. Modification of the duocarmycin pharmacophore enables CYP1A1 targeting for biological activity. Chem. Commun. 2011, 47, 12062–12064. [Google Scholar] [CrossRef]
- Karlgren, M.; Ingelman-Sundberg, M. Tumour-specific expression of CYP2W1: Its potential as a drug target in cancer therapy. Expert Opin. Ther. Targets 2007, 11, 61–67. [Google Scholar] [CrossRef]
- Chen, W.A.; Williams, T.G.; So, L.; Drew, N.; Fang, J.; Ochoa, P.; Nguyen, N.; Jawhar, Y.; Otiji, J.; Duerksen-Hughes, P.J.; et al. Duocarmycin SA Reduces Proliferation and Increases Apoptosis in Acute Myeloid Leukemia Cells In Vitro. Int. J. Mol. Sci. 2024, 25, 4342. [Google Scholar] [CrossRef]
- Kim, J.H.; Sherman, M.E.; Curriero, F.C.; Guengerich, F.P.; Strickland, P.T.; Sutter, T.R. Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers. Toxicol. Appl. Pharmacol. 2004, 199, 210–219. [Google Scholar] [CrossRef]
- Androutsopoulos, V.P.; Spyrou, I.; Ploumidis, A.; Papalampros, A.E.; Kyriakakis, M.; Delakas, D.; Spandidos, D.A.; Tsatsakis, A.M. Expression profile of CYP1A1 and CYP1B1 enzymes in colon and bladder tumors. PLoS ONE 2013, 8, e82487. [Google Scholar] [CrossRef]
- Bart, A.G.; Morais, G.; Vangala, V.R.; Loadman, P.M.; Pors, K.; Scott, E.E. Cytochrome P450 binding and Bioactivation of Tumor-targeted Duocarmycin Agents. Drug Metab. Dispos. Biol. Fate Chem. 2022, 50, 49–57. [Google Scholar] [CrossRef]
- Smith, J.A.; Bifulco, G.; Case, D.A.; Boger, D.L.; Gomez-Paloma, L.; Chazin, W.J. The structural basis for in situ activation of DNA alkylation by duocarmycin SA. J. Mol. Biol. 2000, 300, 1195–1204. [Google Scholar] [CrossRef]
- Puyo, S.; Montaudon, D.; Pourquier, P. From old alkylating agents to new minor groove binders. Crit. Rev. Oncol. 2014, 89, 43–61. [Google Scholar] [CrossRef]
- Weiss, G.J.; Infante, J.R.; Chiorean, E.G.; Borad, M.J.; Bendell, J.C.; Molina, J.R.; Tibes, R.; Ramanathan, R.K.; Lewandowski, K.; Jones, S.F.; et al. Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 2997–3004. [Google Scholar] [CrossRef]
- Hall, M.; Hambley, T. Platinum(IV) antitumour compounds: Their bioinorganic chemistry. Coord. Chem. Rev. 2002, 232, 49–67. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Wang, D.B.; Song, X.Q.; Wu, Y.G.; Chen, Q.; Zhao, C.L.; Li, J.Y.; Cheng, S.H.; Xu, J.Y. Chlorambucil-conjugated platinum(IV) prodrugs to treat triple-negative breast cancer in vitro and in vivo. Eur. J. Med. Chem. 2018, 157, 1292–1299. [Google Scholar] [CrossRef]
- Gabizon, A.; Shmeeda, H.; Tahover, E.; Kornev, G.; Patil, Y.; Amitay, Y.; Ohana, P.; Sapir, E.; Zalipsky, S. Development of Promitil®, a lipidic prodrug of mitomycin c in PEGylated liposomes: From bench to bedside. Adv. Drug Deliv. Rev. 2020, 154–155, 13–26. [Google Scholar] [CrossRef]
- Soren, B.C.; Dasari, J.B.; Ottaviani, A.; Iacovelli, F.; Fiorani, P. Topoisomerase IB: A relaxing enzyme for stressed DNA. Cancer Drug Resist. 2020, 3, 18–25. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Danenberg, P.V.; Gustavsson, B.; Johnston, P.; Lindberg, P.; Moser, R.; Odin, E.; Peters, G.J.; Petrelli, N. Folates as adjuvants to anticancer agents: Chemical rationale and mechanism of action. Crit. Rev. Oncol. 2016, 106, 118–131. [Google Scholar] [CrossRef]
- Tummala, T.; Sevilla Uruchurtu, A.S.; Cruz, A.; Huntington, K.E.; George, A.; Liguori, N.R.; Zhang, L.; Zhou, L.; Abbas, A.E.; Azzoli, C.G.; et al. Preclinical Synergistic Combination Therapy of Lurbinectedin with Irinotecan and 5-Fluorouracil in Pancreatic Cancer. Curr. Oncol. 2023, 30, 9611–9626. [Google Scholar] [CrossRef]
- Cummings, B.J.; Keane, T.J.; Rauth, A.M. Concomitant Radiation and 5-Fluorouracil for Head and Neck Cancer. In Concomitant Continuous Infusion Chemotherapy and Radiation; Rotman, M., Rosenthal, C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 149–159. [Google Scholar]
- Vermorken, J.B.; Remenar, E.; van Herpen, C.; Gorlia, T.; Mesia, R.; Degardin, M.; Stewart, J.S.; Jelic, S.; Betka, J.; Preiss, J.H.; et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med. 2007, 357, 1695–1704. [Google Scholar] [CrossRef]
- Jose, N.; Joel, A.; Selvakumar, R.J.; Ramireddy, J.; John, A.O.; Georgy, J.T.; Singh, A.; Ram, T.S. Diagnosis and management of 5-fluorouracil (5-FU)-induced acute leukoencephalopathy: Lessons learnt from a single-Centre case series. J. Egypt. Natl. Cancer Inst. 2022, 34, 22. [Google Scholar] [CrossRef]
- Ihoriya, H.; Yamamoto, H.; Yamada, T.; Tsukahara, K.; Inoue, K.; Yumoto, T.; Naito, H.; Nakao, A. Hyperammonemic encephalopathy in a patient receiving fluorouracil/oxaliplatin chemotherapy. Clin. Case Rep. 2018, 6, 603–605. [Google Scholar] [CrossRef]
- Was, H.; Borkowska, A.; Bagues, A.; Tu, L.; Liu, J.Y.H.; Lu, Z.; Rudd, J.A.; Nurgali, K.; Abalo, R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front. Pharmacol. 2022, 13, 750507. [Google Scholar] [CrossRef]
- Yamazaki, K.; Nagase, M.; Tamagawa, H.; Ueda, S.; Tamura, T.; Murata, K.; Eguchi Nakajima, T.; Baba, E.; Tsuda, M.; Moriwaki, T.; et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2016, 27, 1539–1546. [Google Scholar] [CrossRef]
- Tate, S.; Nishikimi, K.; Matsuoka, A.; Otsuka, S.; Kato, K.; Takahashi, Y.; Shozu, M. Tailored-dose chemotherapy with gemcitabine and irinotecan in patients with platinum-refractory/resistant ovarian or primary peritoneal cancer: A phase II trial. J. Gynecol. Oncol. 2021, 32, e8. [Google Scholar] [CrossRef]
- Cortesi, L.; Venturelli, M.; Barbieri, E.; Baldessari, C.; Bardasi, C.; Coccia, E.; Baglio, F.; Rimini, M.; Greco, S.; Napolitano, M.; et al. Exceptional response to lurbinectedin and irinotecan in BRCA-mutated platinum-resistant ovarian cancer patient: A case report. Ther. Adv. Chronic Dis. 2022, 13, 20406223211063023. [Google Scholar] [CrossRef]
- Kondo, R.; Watanabe, S.; Shoji, S.; Ichikawa, K.; Abe, T.; Baba, J.; Tanaka, J.; Tsukada, H.; Terada, M.; Sato, K.; et al. A Phase II Study of Irinotecan for Patients with Previously Treated Small-Cell Lung Cancer. Oncology 2018, 94, 223–232. [Google Scholar] [CrossRef]
- Kanbayashi, Y.; Ishikawa, T.; Kanazawa, M.; Nakajima, Y.; Tabuchi, Y.; Kawano, R.; Yoshioka, T.; Yoshida, N.; Hosokawa, T.; Takayama, K.; et al. Predictive factors for the development of irinotecan-related cholinergic syndrome using ordered logistic regression analysis. Med. Oncol. 2018, 35, 82. [Google Scholar] [CrossRef]
- Stein, A.; Voigt, W.; Jordan, K. Chemotherapy-induced diarrhea: Pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2010, 2, 51–63. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Zhan, H.; Yang, B.; Rong, P.; Luo, Y.; Shi, C.; Chen, Y.; Yang, J. Incidence and non-genetic risk factors of irinotecan-induced severe neutropenia in chinese adult inpatients. Medicine 2023, 102, e33005. [Google Scholar] [CrossRef]
- Piekarz, R.L.; Robey, R.W.; Zhan, Z.; Kayastha, G.; Sayah, A.; Abdeldaim, A.H.; Torrico, S.; Bates, S.E. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: Impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood 2004, 103, 4636–4643. [Google Scholar] [CrossRef]
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769–784. [Google Scholar] [CrossRef]
- Iyer, S.P.; Foss, F.F. Romidepsin for the Treatment of Peripheral T-Cell Lymphoma. Oncologist 2015, 20, 1084–1091. [Google Scholar] [CrossRef]
- Ma, W.; Tao, W.; Hara, D.; Shi, J.; Yang, Y.P.; Ford, J.; Daunert, S.; Pollack, A. The Dual Effect of the HDAC Inhibitor Romidepsin on Androgen Receptor Signaling and DNA Damage Repair in Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, e284–e285. [Google Scholar] [CrossRef]
- Stonesifer, C.J.; Khaleel, A.E.; Jean-Louis, G.; Kwinta, B.D.; Amengual, J.E.; Geskin, L.J. Organ-specific toxicity of romidepsin in patients with preexisting cardiovascular disease: A retrospective analysis. Leuk. Lymphoma 2022, 63, 1989–1992. [Google Scholar] [CrossRef]
- Rivers, Z.T.; Oostra, D.R.; Westholder, J.S.; Vercellotti, G.M. Romidepsin-associated cardiac toxicity and ECG changes: A case report and review of the literature. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2018, 24, 56–62. [Google Scholar] [CrossRef]
- Sissung, T.M.; Gardner, E.R.; Piekarz, R.L.; Howden, R.; Chen, X.; Woo, S.; Franke, R.; Clark, J.A.; Miller-DeGraff, L.; Steinberg, S.M.; et al. Impact of ABCB1 allelic variants on QTc interval prolongation. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Płużański, A.; Piórek, A. Side effects of tyrosine kinase inhibitors—Management guidelines. Oncol. Clin. Pract. 2016, 12, 113–118. [Google Scholar]
- Shyam Sunder, S.; Sharma, U.C.; Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management. Signal Transduct. Target. Ther. 2023, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shi, X.; Dong, C.; Liu, R.; Su, L.; Cao, C. 5-fluorouracil suppresses stem cell-like properties by inhibiting p38 in pancreatic cancer cell line PANC-1. Folia Histochem. Cytobiol. 2022, 60, 55–65. [Google Scholar] [CrossRef]
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Kiyota, N.; Tahara, M.; Kadowaki, S.; Fuse, N.; Doi, T.; Minami, H.; Ohtsu, A. Systemic Chemotherapy with Cisplatin Plus 5-FU (PF) for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (R/M SCCHN): Efficacy and Safety of a Lower Dose of PF (80/800) at a Single Institution in Japan. Jpn. J. Clin. Oncol. 2009, 39, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Nirojini, P.S.; Bhuvaneshwari, N.K.; Dharsshini, N.; Bharathi, D.; Velavan, K. Therapeutic Drug Monitoring of 5-Fluorouracil in Head and Neck Cancer Patients: An Interventional Pilot Study. Indian J. Med. Paediatr. Oncol. 2024, 45, 134–141. [Google Scholar] [CrossRef]
- Parker, W.B.; Cheng, Y.C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther. 1990, 48, 381–395. [Google Scholar] [CrossRef]
- Milano, G.; Etienne, M.C. Dihydropyrimidine dehydrogenase (DPD) and clinical pharmacology of 5-fluorouracil (review). Anticancer Res. 1994, 14, 2295–2297. [Google Scholar] [PubMed]
- Kato, H.; Ichinose, Y.; Ohta, M.; Hata, E.; Tsubota, N.; Tada, H.; Watanabe, Y.; Wada, H.; Tsuboi, M.; Hamajima, N.; et al. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N. Engl. J. Med. 2004, 350, 1713–1721. [Google Scholar] [CrossRef]
- Ikeda, K.; Yoshisue, K.; Matsushima, E.; Nagayama, S.; Kobayashi, K.; Tyson, C.A.; Chiba, K.; Kawaguchi, Y. Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 4409–4415. [Google Scholar]
- Komatsu, T.; Yamazaki, H.; Shimada, N.; Nagayama, S.; Kawaguchi, Y.; Nakajima, M.; Yokoi, T. Involvement of microsomal cytochrome P450 and cytosolic thymidine phosphorylase in 5-fluorouracil formation from tegafur in human liver. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2001, 7, 675–681. [Google Scholar]
- Suenaga, M.; Schirripa, M.; Cao, S.; Zhang, W.; Yang, D.; Dadduzio, V.; Salvatore, L.; Borelli, B.; Pietrantonio, F.; Ning, Y.; et al. Potential role of polymorphisms in the transporter genes ENT1 and MATE1/OCT2 in predicting TAS-102 efficacy and toxicity in patients with refractory metastatic colorectal cancer. Eur. J. Cancer 2017, 86, 197–206. [Google Scholar] [CrossRef]
- Fidai, S.S.; Sharma, A.E.; Johnson, D.N.; Segal, J.P.; Lastra, R.R. Dihydropyrimidine dehydrogenase deficiency as a cause of fatal 5-Fluorouracil toxicity. Autops. Case Rep. 2018, 8, e2018049. [Google Scholar] [CrossRef] [PubMed]
- Mathijssen, R.H.; Loos, W.J.; Verweij, J.; Sparreboom, A. Pharmacology of topoisomerase I inhibitors irinotecan (CPT-11) and topotecan. Curr. Cancer Drug Targets 2002, 2, 103–123. [Google Scholar] [CrossRef]
- Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.F.; Desai, S.D.; Li, T.K.; Mao, Y.; Sun, M.; Sim, S.P. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 2000, 922, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Creemers, G.J.; Lund, B.; Verweij, J. Topoisomerase I Inhibitors: Topotecan and irenotecan. Cancer Treat. Rev. 1994, 20, 73–96. [Google Scholar] [CrossRef]
- Kawai, S.; Takeshima, N.; Hayasaka, Y.; Notsu, A.; Yamazaki, M.; Kawabata, T.; Yamazaki, K.; Mori, K.; Yasui, H. Comparison of irinotecan and oxaliplatin as the first-line therapies for metastatic colorectal cancer: A meta-analysis. BMC Cancer 2021, 21, 116. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Morris, V.K.; El Osta, B.; Sorokin, A.V.; Janku, F.; Fu, S.; Overman, M.J.; Piha-Paul, S.; Subbiah, V.; Kee, B.; et al. Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with BRAFV600E Mutation. Cancer Discov. 2016, 6, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Kopetz, S.; Guthrie, K.A.; Morris, V.K.; Lenz, H.J.; Magliocco, A.M.; Maru, D.; Yan, Y.; Lanman, R.; Manyam, G.; Hong, D.S.; et al. Randomized Trial of Irinotecan and Cetuximab with or without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, C.; Basso, M.; Cassano, A.; Quirino, M.; Schinzari, G.; Trigila, N.; Vellone, M.; Giuliante, F.; Nuzzo, G.; Barone, C. Neoadjuvant treatment of unresectable liver disease with irinotecan and 5-fluorouracil plus folinic acid in colorectal cancer patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2004, 15, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Alliance, O.C.R. Ovarian Cancer Statistics. Available online: https://ocrahope.org/for-patients/gynecologic-cancers/ovarian-cancer/ovarian-cancer-statistics/#:~:text=While%20the%2011th%20most%20common,women%20than%20for%20Caucasian%20women (accessed on 3 October 2024).
- Yoshino, K.; Kamiura, S.; Yokoi, T.; Nakae, R.; Fujita, M.; Takemura, M.; Adachi, K.; Wakimoto, A.; Nishizaki, T.; Shiki, Y.; et al. Combination chemotherapy with irinotecan and gemcitabine for taxane/platinum-resistant/refractory ovarian and primary peritoneal cancer: A multicenter phase I/II trial (GOGO-OV 6). Cancer Chemother. Pharmacol. 2017, 80, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Asai, N.; Ohkuni, Y.; Kaneko, N.; Yamaguchi, E.; Kubo, A. Relapsed small cell lung cancer: Treatment options and latest developments. Ther. Adv. Med. Oncol. 2014, 6, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Liposomal Irinotecan: A Review in Metastatic Pancreatic Adenocarcinoma. Drugs 2020, 80, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Spigel, D.R.; Chen, Y.; Jove, M.; Juan-Vidal, O.; Rich, P.; Hayes, T.; Calderón, V.G.; Caro, R.B.; Navarro, A.; et al. Resilient Part 1: A Phase 2 Dose-Exploration and Dose-Expansion Study of Second-Line Liposomal Irinotecan in Adults with Small Cell Lung Cancer. Cancer 2022, 128, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Dowlati, A.; Chen, Y.; Navarro, A.; Yang, J.C.; Stojanovic, G.; Jove, M.; Rich, P.; Andric, Z.G.; Wu, Y.L.; et al. Resilient Part 2: A Randomized, Open-Label Phase III Study of Liposomal Irinotecan versus Topotecan in Adults with Relapsed Small Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, 2317–2326. [Google Scholar] [CrossRef]
- de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin. Pharmacokinet. 2018, 57, 1229–1254. [Google Scholar] [CrossRef]
- Kalra, A.V.; Kim, J.; Klinz, S.G.; Paz, N.; Cain, J.; Drummond, D.C.; Nielsen, U.B.; Fitzgerald, J.B. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion. Cancer Res. 2014, 74, 7003–7013. [Google Scholar] [CrossRef]
- Rivory, L.P.; Bowles, M.R.; Robert, J.; Pond, S.M. Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by Human Liver Carboxylesterase. Biochem. Pharmacol. 1996, 52, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Mathijssen, R.H.; van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2001, 7, 2182–2194. [Google Scholar]
- Wang, D.; Zou, L.; Jin, Q.; Hou, J.; Ge, G.; Yang, L. Human carboxylesterases: A comprehensive review. Acta Pharm. Sin. B 2018, 8, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Humerickhouse, R.; Lohrbach, K.; Li, L.; Bosron, W.F.; Dolan, M.E. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res. 2000, 60, 1189–1192. [Google Scholar]
- Yano, H.; Kayukawa, S.; Iida, S.; Nakagawa, C.; Oguri, T.; Sanda, T.; Ding, J.; Mori, F.; Ito, A.; Ri, M.; et al. Overexpression of carboxylesterase-2 results in enhanced efficacy of topoisomerase I inhibitor, irinotecan (CPT-11), for multiple myeloma. Cancer Sci. 2008, 99, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Morton, C.L.; Wadkins, R.M.; Danks, M.K.; Potter, P.M. The anticancer prodrug CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase. Cancer Res. 1999, 59, 1458–1463. [Google Scholar] [PubMed]
- Cottu, P.H.; Extra, J.M.; Lerebours, F.; Espie, M.; Marty, M. [Clinical activity spectrum of irinotecan]. Bull. Cancer 1998, Spec No, 21–25. [Google Scholar]
- Lokiec, F.; du Sorbier, B.M.; Sanderink, G.J. Irinotecan (CPT-11) metabolites in human bile and urine. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1996, 2, 1943–1949. [Google Scholar]
- Santos, A.; Zanetta, S.; Cresteil, T.; Deroussent, A.; Pein, F.; Raymond, E.; Vernillet, L.; Risse, M.L.; Boige, V.; Gouyette, A.; et al. Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 2012–2020. [Google Scholar]
- Carrato, A. Precision Medicine: UGT1A1 Genotyping to Better Manage Irinotecan-Induced Toxicity. JCO Oncol. Pract. 2022, 18, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Karas, S.; Innocenti, F. All You Need to Know About UGT1A1 Genetic Testing for Patients Treated with Irinotecan: A Practitioner-Friendly Guide. JCO Oncol. Pract. 2022, 18, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Palmirotta, R.; Carella, C.; Silvestris, E.; Cives, M.; Stucci, S.L.; Tucci, M.; Lovero, D.; Silvestris, F. Snps in predicting clinical efficacy and toxicity of chemotherapy: Walking through the quicksand. Oncotarget 2018, 9, 25355–25382. [Google Scholar] [CrossRef]
- Hulshof, E.C.; Deenen, M.J.; Guchelaar, H.J.; Gelderblom, H. Pre-therapeutic UGT1A1 genotyping to reduce the risk of irinotecan-induced severe toxicity: Ready for prime time. Eur. J. Cancer 2020, 141, 9–20. [Google Scholar] [CrossRef]
- Innocenti, F.; Kroetz, D.L.; Schuetz, E.; Dolan, M.E.; Ramírez, J.; Relling, M.; Chen, P.; Das, S.; Rosner, G.L.; Ratain, M.J. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 2604–2614. [Google Scholar] [CrossRef]
- Irisawa, A.; Takeno, M.; Watanabe, K.; Takahashi, H.; Mitsunaga, S.; Ikeda, M. Incidence of and risk factors for severe neutropenia during treatment with the modified FOLFIRINOX therapy in patients with advanced pancreatic cancer. Sci. Rep. 2022, 12, 15574. [Google Scholar] [CrossRef] [PubMed]
- VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot. 2011, 64, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Falchi, L.; Ma, H.; Klein, S.; Lue, J.K.; Montanari, F.; Marchi, E.; Deng, C.; Kim, H.A.; Rada, A.; Jacob, A.T.; et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: A multicenter phase 2 study. Blood 2021, 137, 2161–2170. [Google Scholar] [CrossRef]
- Ruan, J.; Zain, J.; Palmer, B.; Jovanovic, B.; Mi, X.; Swaroop, A.; Winter, J.N.; Gordon, L.I.; Karmali, R.; Moreira, J.; et al. Multicenter phase 2 study of romidepsin plus lenalidomide for previously untreated peripheral T-cell lymphoma. Blood Adv. 2023, 7, 5771–5779. [Google Scholar] [CrossRef]
- Bachy, E.; Camus, V.; Thieblemont, C.; Sibon, D.; Casasnovas, R.O.; Ysebaert, L.; Damaj, G.; Guidez, S.; Pica, G.M.; Kim, W.S.; et al. Romidepsin Plus CHOP Versus CHOP in Patients with Previously Untreated Peripheral T-Cell Lymphoma: Results of the Ro-CHOP Phase III Study (Conducted by LYSA). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 242–251. [Google Scholar] [CrossRef]
- Chiappella, A.; Dodero, A.; Evangelista, A.; Re, A.; Orsucci, L.; Usai, S.V.; Castellino, C.; Stefoni, V.; Pinto, A.; Zanni, M.; et al. Romidepsin-CHOEP followed by high-dose chemotherapy and stem-cell transplantation in untreated Peripheral T-Cell Lymphoma: Results of the PTCL13 phase IB/II study. Leukemia 2023, 37, 433–440. [Google Scholar] [CrossRef]
- Gaillard, S.L.; Zahurak, M.; Sharma, A.; Durham, J.N.; Reiss, K.A.; Sartorius-Mergenthaler, S.; Downs, M.; Anders, N.M.; Ahuja, N.; Rudek, M.A.; et al. A phase 1 trial of the oral DNA methyltransferase inhibitor CC-486 and the histone deacetylase inhibitor romidepsin in advanced solid tumors. Cancer 2019, 125, 2837–2845. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.J.; Byrd, J.; Marcucci, G.; Grever, M.; Chan, K.K. Identification of thiols and glutathione conjugates of depsipeptide FK228 (FR901228), a novel histone protein deacetylase inhibitor, in the blood. Rapid Commun. Mass Spectrom. RCM 2003, 17, 757–766. [Google Scholar] [CrossRef]
- Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.-H.; Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.; et al. FK228 (Depsipeptide) as a Natural Prodrug That Inhibits Class I Histone Deacetylases1. Cancer Res. 2002, 62, 4916–4921. [Google Scholar]
- Lombardi, P.M.; Cole, K.E.; Dowling, D.P.; Christianson, D.W. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol. 2011, 21, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999, 401, 188–193. [Google Scholar] [CrossRef]
- Noonan, A.M.; Eisch, R.A.; Liewehr, D.J.; Sissung, T.M.; Venzon, D.J.; Flagg, T.P.; Haigney, M.C.; Steinberg, S.M.; Figg, W.D.; Piekarz, R.L.; et al. Electrocardiographic studies of romidepsin demonstrate its safety and identify a potential role for K(ATP) channel. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 3095–3104. [Google Scholar] [CrossRef]
- Lee, J.S.; Paull, K.; Alvarez, M.; Hose, C.; Monks, A.; Grever, M.; Fojo, A.T.; Bates, S.E. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 1994, 46, 627–638. [Google Scholar] [PubMed]
- Meissner, K.; Jedlitschky, G.; Meyer zu Schwabedissen, H.; Dazert, P.; Eckel, L.; Vogelgesang, S.; Warzok, R.W.; Böhm, M.; Lehmann, C.; Wendt, M.; et al. Modulation of multidrug resistance P-glycoprotein 1 (ABCB1) expression in human heart by hereditary polymorphisms. Pharmacogenet. Genom. 2004, 14, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Piekarz, R.L.; Frye, R.; Prince, H.M.; Kirschbaum, M.H.; Zain, J.; Allen, S.L.; Jaffe, E.S.; Ling, A.; Turner, M.; Peer, C.J.; et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 2011, 117, 5827–5834. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, S.; Mastrotto, F.; Roverso, M.; Gandin, V.; De Martin, S.; Gabbia, D.; De Franco, M.; Vaccarin, C.; Verona, M.; Chilin, A.; et al. Tyrosine kinase inhibitor prodrug-loaded liposomes for controlled release at tumor microenvironment. J. Control. Release Off. J. Control. Release Soc. 2021, 340, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Timm, A.; Kolesar, J.M. Crizotinib for the treatment of non-small-cell lung cancer. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2013, 70, 943–947. [Google Scholar] [CrossRef]
- Bielec, B.; Poetsch, I.; Ahmed, E.; Heffeter, P.; Keppler, B.K.; Kowol, C.R. Reactive Oxygen Species (ROS)-Sensitive Prodrugs of the Tyrosine Kinase Inhibitor Crizotinib. Molecules 2020, 25, 1149. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.P.; Liao, M.; Huang, X.J.; Wang, Y.T.; Lan, X.C.; Wang, X.Y.; Li, X.T. Design, synthesis and evaluation of a series of potential prodrugs of a Bruton’s tyrosine kinase (BTK) inhibitor. Front. Pharmacol. 2023, 14, 1162216. [Google Scholar] [CrossRef] [PubMed]
- Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody-Drug Conjugates: A Comprehensive Review. Mol. Cancer Res. MCR 2020, 18, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Niu, X.; He, Q.; Liu, M.; Qiao, S.; Qi, R.Q. Development, efficacy and side effects of antibody-drug conjugates for cancer therapy (Review). Mol. Clin. Oncol. 2023, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- Akram, F.; Ali, A.M.; Akhtar, M.T.; Fatima, T.; Shabbir, I.; Ul Haq, I. The journey of antibody-drug conjugates for revolutionizing cancer therapy: A review. Bioorg. Med. Chem. 2025, 117, 118010. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, D.; Liu, S.; Yu, M.; Wu, X.; Wang, H. Application of Pharmacometrics in Advancing the Clinical Research of Antibody-Drug Conjugates: Principles and Modeling Strategies. Clin. Pharmacokinet. 2024, 63, 1373–1387. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Bordeau, B.M.; Balthasar, J.P. Mechanisms of adc toxicity and strategies to increase adc tolerability. Cancers 2023, 15, 713. [Google Scholar] [CrossRef] [PubMed]
- Dokter, W.; Ubink, R.; van der Lee, M.; van der Vleuten, M.; van Achterberg, T.; Jacobs, D.; Loosveld, E.; van den Dobbelsteen, D.; Egging, D.; Mattaar, E.; et al. Preclinical profile of the HER2-targeting ADC SYD983/SYD985: Introduction of a new duocarmycin-based linker-drug platform. Mol. Cancer Ther. 2014, 13, 2618–2629. [Google Scholar] [CrossRef]
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet. Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef]
- Dri, A.; Arpino, G.; Bianchini, G.; Curigliano, G.; Danesi, R.; De Laurentiis, M.; Del Mastro, L.; Fabi, A.; Generali, D.; Gennari, A.; et al. Breaking barriers in triple negative breast cancer (TNBC)—Unleashing the power of antibody-drug conjugates (ADCS). Cancer Treat. Rev. 2024, 123, 102672. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Mathijssen, R.H.; Sparreboom, A.; Verweij, J.; Karlsson, M.O. Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin. Pharmacol. Ther. 2002, 72, 265–275. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Shi, W.; Hu, Y.; Li, X.; Ma, H. A dual-function fluorescent probe for monitoring the degrees of hypoxia in living cells via the imaging of nitroreductase and adenosine triphosphate. Chem. Commun. 2018, 54, 5454–5457. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, D.; Li, J.; Fan, S.; Xie, F.; Zhong, W.; Zhou, X.; Li, S. From prodrug to pro-prodrug: Hypoxia-sensitive antibody-drug conjugates. Signal Transduct. Target. Ther. 2022, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Ducry, L.; Stump, B. Antibody-drug conjugates: Linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 2010, 21, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blattler, W.A.; Lambert, J.M.; Chari, R.V.; Lutz, R.J.; et al. Targeting her2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008, 68, 9280–9290. [Google Scholar] [CrossRef]
- Subbaiah, M.A.M.; Rautio, J.; Meanwell, N.A. Prodrugs as empowering tools in drug discovery and development: Recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem. Soc. Rev. 2024, 53, 2099–2210. [Google Scholar] [CrossRef]
- Wang, D.; Li, L.; Yang, H.; Ferguson, S.S.; Baer, M.R.; Gartenhaus, R.B.; Wang, H. The constitutive androstane receptor is a novel therapeutic target facilitating cyclophosphamide-based treatment of hematopoietic malignancies. Blood 2013, 121, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Hedrich, W.D.; Xiao, J.; Heyward, S.; Zhang, Y.; Zhang, J.; Baer, M.R.; Hassan, H.E.; Wang, H. Activation of the Constitutive Androstane Receptor Increases the Therapeutic Index of CHOP in Lymphoma Treatment. Mol. Cancer Ther. 2016, 15, 392–401. [Google Scholar] [CrossRef]
- Stern, S.; Liang, D.; Li, L.; Kurian, R.; Lynch, C.; Sakamuru, S.; Heyward, S.; Zhang, J.; Kareem, K.A.; Chun, Y.W.; et al. Targeting CAR and Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. JCI Insight 2022, 7, e153868. [Google Scholar] [CrossRef] [PubMed]
- Kurian, R.; Hedrich, W.; Mackowiak, B.; Li, L.; Wang, H. Citco as an Adjuvant Facilitates CHOP-Based Lymphoma Treatment in hCAR-Transgenic Mice. Cells 2020, 9, 2520. [Google Scholar] [CrossRef] [PubMed]
- Springer, C.J.; Niculescu-Duvaz, I. Prodrug-activating systems in suicide gene therapy. J. Clin. Investig. 2000, 105, 1161–1167. [Google Scholar] [CrossRef]
- Kharkar, P.S.; Jadhav, A.L. Gene-Directed Enzyme–Prodrug Therapy (GDEPT) as a Suicide Gene Therapy Modality for Cancer Treatment. In Methods and Principles in Medicinal Chemistry; Bachhav, Y., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022. [Google Scholar]
- Zhang, J.; Kale, V.; Chen, M. Gene-directed enzyme prodrug therapy. AAPS J. 2015, 17, 102–110. [Google Scholar] [CrossRef]
- Huber, B.E.; Austin, E.A.; Richards, C.A.; Davis, S.T.; Good, S.S. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: Significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc. Natl. Acad. Sci. USA 1994, 91, 8302–8306. [Google Scholar] [CrossRef] [PubMed]
Alkylating Prodrug | Target Cancer | Bioactivation Mechanism | Off Target Toxicity |
---|---|---|---|
Cyclophosphamide | Non-Hodgkin lymphoma, breast cancer, small-cell lung cancer, graft-vs.-host disease [21,22,23,24,25,26] | CYP2B6 | Cardiac tissue injury, nausea, vomiting, diarrhea, hemorrhagic cystitis, and weakening of the immune system [27,28,29,30] |
Dacarbazine | Neuroendocrine tumor, malignant melanoma, and Hodgkin lymphoma [31,32,33,34] | CYP1A2 | Hepatotoxicity, leukopenia, thrombocytopenia, drop in blood pressure, and severe acute sinusoidal obstruction syndrome [35,36,37] |
Duocarmycin | Colorectal cancers [38,39] | CYP1A1, CYP2W1 | Hepatotoxicity, myelosuppression, fatigue, conjunctivitis, hyperpigmentation, and erythema [40,41,42] |
Evofosfamide | Glioblastoma [43] | Hypoxia | Thrombocytopenia, hyperpigmentation, and skin ulceration [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurian, R.; Wang, H. Prodrugs in Oncology: Bioactivation and Impact on Therapeutic Efficacy and Toxicity. Int. J. Mol. Sci. 2025, 26, 988. https://doi.org/10.3390/ijms26030988
Kurian R, Wang H. Prodrugs in Oncology: Bioactivation and Impact on Therapeutic Efficacy and Toxicity. International Journal of Molecular Sciences. 2025; 26(3):988. https://doi.org/10.3390/ijms26030988
Chicago/Turabian StyleKurian, Ritika, and Hongbing Wang. 2025. "Prodrugs in Oncology: Bioactivation and Impact on Therapeutic Efficacy and Toxicity" International Journal of Molecular Sciences 26, no. 3: 988. https://doi.org/10.3390/ijms26030988
APA StyleKurian, R., & Wang, H. (2025). Prodrugs in Oncology: Bioactivation and Impact on Therapeutic Efficacy and Toxicity. International Journal of Molecular Sciences, 26(3), 988. https://doi.org/10.3390/ijms26030988