Solvent Effects on the Indirect Spin–Spin Coupling Constants of Benzene: The DFT-PCM Approach
Abstract
:1 Introduction
2 Theory
3 Computational details
4 Results
Coupling | DFT/B3LYP | Exp. Jeqa | MCSCF | DFT/B3LYPb |
This work | Ref. [23] | Ref. [42] | Ref. [23] | |
1J(H13C) | 164.636 | 153.8 | 176.7 | 166.3 |
2J(H13C) | 1.798 | 1.4 | -7.4 | 2.0 |
3J(H13C) | 7.877 | 7.0 | 11.7 | 8.0 |
4J(H13C) | -1.329 | -1.0 | -1.3 | -1.2 |
3J(HH) | 8.571 | 7.0 | 8.7 | |
4J(HH) | 0.962 | 1.2 | 1.3 | |
5J(HH) | 0.661 | 0.6 | 0.8 | |
1J(13C13C) | 59.244 | 56.1 | 70.9 | 60.0 |
2J(13C13C) | -1.768 | -1.7 | -5.0 | -1.8 |
3J(13C13C) | 10.822 | 9.4 | 19.1 | 11.2 |
Solvent | Unrelaxed geometry | Relaxed geometry | Experiment (Ref. [44]) |
Gas | -0.426 | -0.583/-0.534 | -0.927 |
C6D12 | 0.000 | 0.000 | 0.000 |
CS2 | 0.135 | 0.182/0.165 | 0.215 |
Pyridine-d5 | 0.661 | 0.896/0.836 | 0.725 |
Acetone-d6 | 0.734 | 1.043/0.938 | 0.818 |
Solvent | 2J(H13C) | 3J(H13C) | 4J(H13C) | |||
Unrelaxed | Relaxed | Unrelaxed | Relaxed | Unrelaxed | Relaxed | |
Gas-phase | -0.072 | -0.089 | 0.019 | 0.020 | -0.010 | -0.004 |
CS2 | 0.084 | 0.103 | -0.022 | -0.023 | 0.011 | 0.005 |
0.001 | -0.016 | 0.011 | ||||
Pyridine-d5 | 0.156 | 0.180 | -0.042 | -0.043 | 0.021 | 0.011 |
0.077 | -0.039 | 0.015 | ||||
Acetone-d6 | 0.166 | 0.204 | -0.044 | -0.048 | 0.022 | 0.010 |
0.095 | -0.031 | 0.007 |
Solvent | 1J(13C13C) | 2J(13C13C) | 3J(13C13C) | |||
Unrelaxed | Relaxed | Unrelaxed | Relaxed | Unrelaxed | Relaxed | |
C6D12 | -0.550 | -0.565 | 0.000 | -0.015 | -0.029 | -0.037 |
CS2 | -0.638 | -0.653 | -0.001 | -0.017 | -0.034 | -0.042 |
Pyridine-d5 | -1.223 | -1.266 | 0.002 | -0.025 | -0.067 | -0.082 |
Acetone-d6 | -1.304 | -1.346 | 0.002 | -0.031 | -0.071 | -0.090 |
Solvent | 3J(HH) | 4J(HH) | 5J(HH) | |||
Unrelaxed | Relaxed | Unrelaxed | Relaxed | Unrelaxed | Relaxed | |
Gas-phase | -0.022 | -0.002 | -0.004 | -0.006 | -0.002 | -0.006 |
CS2 | 0.026 | 0.003 | 0.004 | 0.007 | 0.003 | 0.006 |
-0.022 | 0.004 | -0.009 | ||||
Pyridine-d5 | 0.049 | 0.008 | 0.008 | 0.014 | 0.005 | 0.011 |
-0.021 | 0.013 | -0.003 | ||||
Acetone-d6 | 0.052 | 0.002 | 0.008 | 0.015 | 0.005 | 0.013 |
-0.009 | 0.006 | 0.005 |
5 Summary
Acknowledgment
References
- Ramsey, N. F. Electron coupled interactions between nuclear spins in molecules. Phys. Rev. 1953, 91, 303–307. [Google Scholar] [CrossRef]
- Enevoldsen, T.; Oddershede, J.; Sauer, S. P. A. Correlated calculations of indirect nuclear spin–spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD). Theor. Chim. Acta 1998, 100, 275–284. [Google Scholar] [CrossRef]
- Geertsen, J.; Oddershede, J.; Scuseria, G. E. Spin–spin coupling constants of CO and N2. J. Chem. Phys. 1987, 87, 2138–2142. [Google Scholar] [CrossRef]
- Helgaker, T.; Jaszuński, M.; Ruud, K. Ab initio methods for the calculation of NMR shielding constants and indirect spin–spin coupling constants. Chem. Rev. 1999, 99, 293–352. [Google Scholar] [CrossRef] [PubMed]
- Helgaker, T.; Jaszuński, M.; Ruud, K.; Górska, A. Basis set dependence of nuclear spin–spin coupling constants. Theor. Chim. Acta 1998, 99, 175–182. [Google Scholar] [CrossRef]
- Provasi, P. F.; Aucar, G. A.; Sauer, S. P. A. The effect of lone pairs and electronegativity on the indirect nuclear spin–spin coupling constants in CH2X (X=CH2, NH, O, S): Ab initio calculations using optimized contracted basis sets. J. Chem. Phys. 2001, 115, 1324–1334. [Google Scholar] [CrossRef]
- Barszczewicz, A.; Helgaker, T.; Jaszuński, M.; Jørgensen, P.; Ruud, K. NMR shielding constants and spin–spin coupling constants in HCN, HNC, CH3CN, and CH3NC molecules. J. Magn. Reson. A 1995, 114, 212–218. [Google Scholar] [CrossRef]
- Jaszuński, M.; Helgaker, T.; Ruud, K. Ab initio studies of the [AX]2 spin system of cis- and trans-N2F2. Magn. Reson. Chem. 1996, 34, 646–649. [Google Scholar] [CrossRef]
- Casanueva, J.; San Fabián, J.; Díez, E.; Esteban, A. L. NMR spin–spin coupling constants in water molecule: equilibrium and rovibrational values. J. Mol. Struct. 2001, 565, 449–454. [Google Scholar] [CrossRef]
- Lounila, J.; Vaara, J.; Hiltunen, Y.; Pulkkinen, A.; Jokisaari, J.; Ala-Korpela, M.; Ruud, K. Secondary isotope effects on the 13C and 77Se nuclear shielding in carbon diselenide. J. Chem. Phys. 1997, 107, 1350–1361. [Google Scholar] [CrossRef] [Green Version]
- Vahtras, O.; Ågren, H.; Jørgensen, P.; Jensen, H. J. Aa.; Padkjær, S. B.; Helgaker, T. Indirect nuclear spin–spin coupling constants from multiconfigurational linear response theory. J. Chem. Phys. 1992, 96, 6120–6125. [Google Scholar] [CrossRef]
- Auer, A. A.; Gauss, J. Triple excitation effects in coupled-cluster calculations of indirect spin–spin coupling constants. J. Chem. Phys. 2001, 115, 1619–1622. [Google Scholar] [CrossRef]
- Del Bene, J. E.; Bartlett, R. J. N-N spin–spin coupling constants [2hJ(15N15N)] across N-H···N hydrogen bonds in neutral complexes: To what extent does the bonding at the nitrogens influence 2hJ(NN)? J. Am. Chem. Soc. 2000, 122, 10480–10481. [Google Scholar] [CrossRef]
- Perera, S. A.; Nooijen, M.; Bartlett, R. J. Electron correlation effects on the theoretical calculation of nuclear magnetic resonance spin–spin coupling constants. J. Chem. Phys. 1996, 104, 3290–3305. [Google Scholar] [CrossRef]
- Wigglesworth, R. D.; Raynes, W. T.; Sauer, S. P. A.; Oddershede, J. The calculation and analysis of isotope effects on the nuclear spin–spin coupling constants of methane at various temperatures. Mol. Phys. 1997, 92, 77–88. [Google Scholar] [CrossRef]
- Helgaker, T.; Watson, M.; Handy, N. C. Analytical calculation of nuclear magnetic resonance indirect spin–spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J. Chem. Phys. 2000, 113, 9402–9409. [Google Scholar] [CrossRef]
- Malkina, O. L.; Salahub, D. R.; Malkin, V. G. Nuclear magnetic resonance spin–spin coupling constants from density functional theory: Problems and results. J. Chem. Phys. 1996, 105, 8793–8800. [Google Scholar] [CrossRef]
- Khandogin, J.; Ziegler, T. A density functional study of nuclear magnetic resonance spin–spin coupling constants in transition-metal systems. Spectrochim. Acta A 1999, 55, 607–624. [Google Scholar] [CrossRef]
- Peralta, J. E.; Barone, V.; de Azua, M. C. R.; Contreras, R. H. Finite perturbation theory-density functional theory calculation of the spin-dipolar contribution to NMR spin–spin coupling constants. Mol. Phys. 2001, 99, 655–661. [Google Scholar] [CrossRef]
- Sychrovsky, V.; Grafenstein, J.; Cremer, D. Nuclear magnetic resonance spin–spin coupling constants from coupled perturbed density functional theory. J. Chem. Phys. 2000, 113, 3530–3547. [Google Scholar] [CrossRef] [Green Version]
- Astrand, P.-O.; Ruud, K.; Mikkelsen, K. V.; Helgaker, T. Rotational averaging of magnetic properties of the hydrogen fluoride molecule. J. Chem. Phys. 1999, 110, 9463–9468. [Google Scholar]
- Wigglesworth, R. D.; Raynes, W. T.; Sauer, S. P. A.; Oddershede, J. Calculated spin–spin coupling surfaces in the water molecule; prediction and analysis of J(O,H), J(O,D) and J(H,D) in water isotopomeres. Mol. Phys. 1998, 94, 851–862. [Google Scholar] [CrossRef]
- Ruden, T. A.; Lutnæs, O. B.; Helgaker, T.; Ruud, K. Vibrational corrections to indirect nuclear spin–spin coupling constants calculated by density-functional theory. J. Chem. Phys. submitted.
- Wilczek, M.; Kozminski, W.; Jackowski, K. 15N, 13C and 1H nuclear magnetic shielding and spin–spin coupling constants of 1-13C, 15N-enriched acetonitrile in gaseous mixtures with SF6 and CO2. Chem. Phys. Lett. 2002, 358, 263–270. [Google Scholar] [CrossRef]
- Ando, I.; Webb, G. A. Some quantum chemical aspects of solvent effcts on NMR parameters. Org. Magn. Reson. 1981, 15, 111–130. [Google Scholar] [CrossRef]
- Astrand, P.-O.; Mikkelsen, K. V.; Jørgensen, P.; Ruud, K.; Helgaker, T. The solvent effects on the shieldings and spin–spin couplings of H2Se. J. Chem. Phys. 1998, 108, 2528–2537. [Google Scholar] [CrossRef]
- Mikkelsen, K. V.; Ruud, K.; Helgaker, T. Solvent effects on the NMR parameters of H2S and HCN. J. Comput. Chem. 1999, 20, 1281–1291. [Google Scholar] [CrossRef]
- Pecul, M.; Sadlej, J. Solvent effects on NMR spectrum of acetylene calculated by ab initio methods. Chem. Phys. 1998, 234, 111–119. [Google Scholar] [CrossRef]
- Pecul, M.; Sadlej, J. The nuclear spin–spin coupling constants in methanol and methylamine: geometry and solvent effects. Chem. Phys. 2000, 255, 137–148. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16, 1449–1458. [Google Scholar] [CrossRef]
- Mennucci, B.; Cancés, E.; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B 1997, 101, 10506–10517. [Google Scholar] [CrossRef]
- Cammi, R.; Frediani, L.; Mennucci, B.; Tomasi, J.; Ruud, K.; Mikkelsen, K. V. A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J. Chem. Phys. 2002, 117, 13–26. [Google Scholar] [CrossRef]
- Mennucci, B.; Tomasi, J.; Frediani, L.; Cammi, R.; Ruud, K. In preparation.
- Olsen, J.; Jørgensen, P. Linear and nonlinear response functions for an exact state and for an MCSCF state. J. Chem. Phys. 1985, 82, 3235–3264. [Google Scholar] [CrossRef]
- Matsuoka, D.; Aoyama, T. Molecular integral of diamagnetic contribution to nuclear spin–spin coupling constant. J. Chem. Phys. 1980, 73, 5718–5720. [Google Scholar] [CrossRef]
- Huzinaga, S. Approximate atomic functions. Technical report, University of Alberta, Ed-monton, 1971. [Google Scholar]
- van Wüllen, C. Die Berechnung magnetischer Eigenschaften unter Berücksichtung der Elek-tronkorrelation: Die Multikonfigurations-Verallgemeinerung der IGLO-Methode. PhD thesis, Ruhr-Universität Bochum, 1992. [Google Scholar]
- Cammi, R.; Frediani, L.; Ruud, K.; Mennucci, B.; Tomasi, J. In preparation.
- Frediani, L.; Pomelli, C. S.; Cammi, R.; Ruud, K.; Tomasi, J. In preparation.
- Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P.; Olsen, J.; Ruud, K.; Ågren, H.; Auer, A. A.; Bak, K. L.; Bakken, V.; Christiansen, O.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Enevoldsen, T.; Fernandez, B.; Hättig, C.; Hald, K.; Halkier, A.; Heiberg, H.; Hettema, H.; Jonsson, D.; Kirpekar, S.; Kobayashi, R.; Koch, H.; Mikkelsen, K. V.; Norman, P.; Packer, M. J.; Pedersen, T. B.; Ruden, T. A.; Sanchez, A.; Saue, T.; Sauer, S. P. A.; Schimmelpfennig, B.; Sylvester-Hvid, K.O.; Taylor, P. R.; Vahtras, O. Dalton, an ab initio electronic structure program, Release 1.2. 2001. See http://www.kjemi.uio.no/software/dalton/dalton.html.
- Kaski, J.; Vaara, J.; Jokisaari, J. 13C-13C spin–spin coupling tensors in benzene as determined experimentally by liquid crystal NMR and theoretically by ab initio calculations. J. Am. Chem. Soc. 1996, 118, 8879–8886. [Google Scholar] [CrossRef]
- Schaefer, T.; Bernard, G. M.; Hruska, F. E. An estimate of the spin–spin coupling constant, 1J(1H,13C), in gaseous benzene. Can. J. Chem. 1996, 74, 1524–1525. [Google Scholar] [CrossRef]
- Laatikainen, R.; Ratilainen, J.; Sebastian, R.; Santa, H. NMR study of aromatic-aromatic interactions for benzene and some other fundamental aromatic systems using alignment of aromatics in strong magnetic field. J. Am. Chem. Soc. 1995, 117, 11006–11010. [Google Scholar] [CrossRef]
- Cappelli, C.; Corni, S.; Mennucci, B.; Cammi, R.; Tomasi, J. Vibrational circular dichroism within the polarizable continuum model: a theoretical evidence of conformation effects and hydrogen bonding for (s)-(-)-3-butyn-2-ol in CCl4 solution. J. Phys. Chem. B, submitted.
- Jaszuński, M.; Ruud, K.; Helgaker, T. Mol. Phys. accepted.
© 2003 by MDPI, Basel, Switzerland. Reproduction for noncommercial purposes permitted.
Share and Cite
Ruud, K.; Frediani, L.; Cammi, R.; Mennucci, B. Solvent Effects on the Indirect Spin–Spin Coupling Constants of Benzene: The DFT-PCM Approach. Int. J. Mol. Sci. 2003, 4, 119-134. https://doi.org/10.3390/i4030119
Ruud K, Frediani L, Cammi R, Mennucci B. Solvent Effects on the Indirect Spin–Spin Coupling Constants of Benzene: The DFT-PCM Approach. International Journal of Molecular Sciences. 2003; 4(3):119-134. https://doi.org/10.3390/i4030119
Chicago/Turabian StyleRuud, Kenneth, Luca Frediani, Roberto Cammi, and Benedetta Mennucci. 2003. "Solvent Effects on the Indirect Spin–Spin Coupling Constants of Benzene: The DFT-PCM Approach" International Journal of Molecular Sciences 4, no. 3: 119-134. https://doi.org/10.3390/i4030119
APA StyleRuud, K., Frediani, L., Cammi, R., & Mennucci, B. (2003). Solvent Effects on the Indirect Spin–Spin Coupling Constants of Benzene: The DFT-PCM Approach. International Journal of Molecular Sciences, 4(3), 119-134. https://doi.org/10.3390/i4030119