Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO4-
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and geometric properties
3.2. Thermochemical Properties
4. Conclusions
- The presence of NH3 does not enhance the thermochemical stability of HSO4− (H2O)n and ammonia is unlikely involved in the gas-phase hydration of hydrogensulfate ion under the atmospheric conditions.
- The total free energy change associated with the formation of charged (HSO4−) (NH3) (H2O)n is less negative than that associated with the formation of neutral (H2SO4) (NH3) (H2O)n due to the very low affinity of NH3 towards (HSO4−). This leads us to conclude that the assessment of charged clusters in the classical nucleation theory as presumably more stable thermodynamically compared to neutrals is not applicable to pre-nucleation ternary clusters, or generally multicomponent molecular clusters. This is a clear indication that not only quantitative, but also qualitative assessment of the relative thermodynamical stability of atmospheric clusters is impossible without the quantum-chemical treatment.
Acknowledgments
References
- Charlson, RJ; Schwartz, SE; Hales, JM; Cess, RD; Coakley, JA, Jr; Hansen, JE; Hofmann, DJ. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar]
- Kulmala, M. How Particles Nucleate and Grow. Science 2003, 302, 1000–1001. [Google Scholar]
- Berndt, T; Boge, O; Stratmann, F; Heintzenberg, J; Kulmala, M. Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 2005, 307, 698–700. [Google Scholar]
- Hamill, P; Turco, RP; Kiang, CS; Toon, OB; Whitten, RC. An analysis of various nucleation mechanisms for sulfate particles in the stratosphere. J. Aerosol Sci 1982, 13, 561–585. [Google Scholar]
- Noppel, M; Vehkamaki, H; Kulmala, M. An improved model for hydrate formation in sulfuric acid-water nucleation. J. Chem. Phys 2002, 116, 218–228. [Google Scholar]
- Merikanto, J; Napari, I; Vehkamäki, H; Anttila, T; Kulmala, M. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions. J. Geophys. Res 2007, 112. [Google Scholar]
- Yu, F. Effect of ammonia on new particle formation: A kinetic H2SO4-H2O-NH3 nucleation model constrained by laboratory measurements. J. Geophys. Res 2006, 111. [Google Scholar]
- Yu, F; Turco, RP. From molecular clusters to nanoparticles: The role of ambient ionization in tropospheric aerosol formation. Geophys. Res. Lett 2000, 27, 883–887. [Google Scholar]
- Zhang, R; Suh, I; Zhao, J; Zhang, D; Fortner, EC; Tie, X; Molina, LT; Molina, MJ. Atmospheric new particle formation enhanced by organic acids. Science 2004, 304, 1487–1490. [Google Scholar]
- Nadykto, AB; Yu, F. Strong hydrogen bonding between atmospheric nucleation precursors and common organics. Chem. Phys. Lett 2007, 435, 14–18. [Google Scholar]
- Ball, SM; Hanson, DR; Eisele, FL; McMurry, PH. Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors. J. Geophys. Res 1999, 104, 23709–23718. [Google Scholar]
- Diamond, GL; Iribarne, JV; Corr, DJ. Ion-induced nucleation from sulfur dioxide. J. Aerosol. Sci 1985, 16, 43–55. [Google Scholar]
- Kim, TO; Ishida, T; Adachi, M; Okuyama, K; Seinfeld, JH. Nanometer-sized particle formation from NH3/SO2/H2O/Air mixtures by ionizing irradiation. Aerosol. Sci. Tech 1999, 29, 112–125. [Google Scholar]
- Christensen, PS; Wedel, S; Livbjerg, H. The kinetics of the photolytic production of aerosols from SO2 and NH3 in humid air. Chem. Eng. Sci 1994, 49, 4605–4614. [Google Scholar]
- Laakso, L; Gagné, S; Petäjä, T; Hirsikko, A; Aalto, PP; Kulmala, M; Kerminen, V-M. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmos. Chem. Phys 2007, 7, 1333–1345. [Google Scholar]
- Hirsikko, A; Bergman, T; Laakso, L; Dal Maso, M; Riipinen, I; Hõrrak, U; Kulmala, M. Identification and classification of the formation of intermediate ions measured in boreal forest. Atmos. Chem. Phys 2007, 7, 201–210. [Google Scholar]
- Yu, F; Wang, Z; Luo, G; Turco, RP. Ion-mediated nucleation as an important source of tropospheric aerosols. Atmos. Chem. Phys 2008, 8, 2537–2554. [Google Scholar]
- Yu, F; Turco, RP. Case studies of particle formation events observed in boreal forests: Implications for nucleation mechanisms. Atmos. Chem. Phys. Discuss 2008, 8, 5683–5723. [Google Scholar]
- Nadykto, AB; Al Natsheh, A; Yu, F; Mikkelsen, KV; Russkanen, J. Quantum nature of the sign preference in ion-induced nucleation. Phys. Rev. Lett 2006, 98, 125701–125704. [Google Scholar]
- Kurtén, T; Torpo, L; Ding, C-G; Vehkamaki, H; Sundberg, MR; Laasonen, K; Kulmala, M. A density functional study on water-sulfuric acid-ammonia clusters and implications for atmospheric cluster formation. J. Geophys. Res. 2007, 112, D4. [Google Scholar]
- Nadykto, AB; Al Natsheh, A; Yu, F; Mikkelsen, KV; Herb, J. Computational quantum chemistry – A new approach to atmospheric nucleation. Adv. Quantum. Chem 2008, 55, 449–478. [Google Scholar]
- Kurtén, T; Noppel, M; Vehkamaki, H; Salonen, M; Kulmala, M. Quantum chemical studies of hydrate formation of H2SO4 and HSO4. Boreal Env. Res 2007, 12, 431–453. [Google Scholar]
- Ortega, IK; Kurtén, T; Vehkamäki, H; Kulmala, M. The role of ammonia in sulfuric acid ion-induced nucleation. Atmos. Chem. Phys 2008, 8, 2859–2867. [Google Scholar]
- Stewart, JJP. Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comput. Chem. 1991, 12, 320–341. [Google Scholar]
- Perdew, JP; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar]
- Francl, MM; Pietro, WJ; Hehre, WJ; Binkley, JS; Gordon, MS; DeFrees, DJ; Pople, JA. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654. [Google Scholar]
- Natsheh, AA; Nadykto, AB; Mikkelsen, KV; Yu, F; Ruuskanen, J. Sulfuric acid and sulfuric acid hydrates in the gas phase: A DFT investigation. J. Phys. Chem. A 2004, 108, 8914–8929. [Google Scholar]
- Kurtén, T; Sundberg, MR; Vehkamäki, H; Noppel, M; Blomqvist, J; Kulmala, M. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate. J. Phys. Chem. A 2007, 110, 7178–7188. [Google Scholar]
- Tsuzuki, S; Lűthi, HP. Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model. J. Chem. Phys 2001, 114, 394–408. [Google Scholar]
- Nadykto, AB; Du, H; Yu, F. Quantum DFT and DF-DFT study of vibrational spectra of sulfuric acid, sulfuric acid monohydrate, formic acid and its cyclic dimer. Vibr. Spectr 2007, 44, 286–296. [Google Scholar]
- Lewandowski, H; Koglin, E; Meier, RJ. Computational study of the infrared spectrum of acetic acid, its cyclic dimer, and its methyl ester. Vibr. Spec 2005, 39, 15–22. [Google Scholar]
- Muller, A; Losada, M; Leutwyler, S. Ab initio benchmark study of (2-pyridone)2, a strongly bound doubly hydrogen-bonded dimer. J. Phys. Chem. A 2004, 108, 157–165. [Google Scholar]
- Hanson, D; Eisele, F. Measurement of prenucleation molecular clusters in the NH3, H2SO4, H2O system. J. Geophys. Res. 2002, 107, AAC-10–AAC-18. [Google Scholar]
- Froyd, KD; Lovejoy, ER. Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Measurements and ab initio structures of negative ions. J. Phys. Chem A 2003, 107, 9812–9824. [Google Scholar]
- Nadykto, AB; Yu, F; Herb, J. Theoretical analysis of the gas-phase hydration of common atmospheric pre-nucleation (HSO4−)(H2O)n and (H3O+)(H2SO4)(H2O)n cluster ions. Chem. Phys. 2008. [Google Scholar]
- Nadykto, AB; Yu, F; Herb, J. Towards understanding the sign preference in binary atmospheric nucleation. Phys. Chem. Chem. Phys. 2008. [Google Scholar]
R(1,2) | R(1,3) | R(1,4) | R(1,6) | R(3,8) | R(4,5) | R(5,7) | R(6,9) | R(7,8) | R(7,9) | R(7,10) | |
---|---|---|---|---|---|---|---|---|---|---|---|
PW91 | 1.46 | 1.48 | 1.67 | 1.48 | 2.18 | 0.99 | 2.03 | 2.39 | 1.03 | 1.02 | 1.02 |
MP2 | 2.28 | 2.08 | 2.28 | ||||||||
A | A | A | A | A | A | A | A | A | A | A | |
(2,1,3) | (2,1,4) | (3,1,4) | (3,1,6) | (1,3,8) | (4,5,7) | (5,7,9) | (8,7,9) | (9,7,10) | (3,8,7) | (6,9,7) | |
PW91 | 115.17 | 102.57 | 104.56 | 112.56 | 97.81 | 149.58 | 88.95 | 103.15 | 108.55 | 135.63 | 123.15 |
MP2 | 148.90 | 129.30 | 129.20 |
ΔH | ΔS | ΔG | |
---|---|---|---|
(H SO4 − ) (NH3)+H2O ⇔ (HSO4−)( NH3) (H2O) | −15.79 | −35.53 | −5.20 |
−13.07a | −30.00a | −4.23a | |
(H SO4−)(NH3) (H2O) +H2O ⇔ (H SO4−)(NH3) (H2O)2 | −12.39 | −30.97 | −3.16 |
(H SO4−) (NH3) (H2O)2 +H2O ⇔ (H SO4−)(NH3) (H2O)3 | −14.42 | −36.07 | −3.67 |
(H SO4−)(NH3) (H2O)3 +H2O ⇔ (HSO4−)(NH3) (H2O)4 | −10.91 | −29.01 | −2.25 |
(H SO4−)(NH3) (H2O)4 +H2O ⇔ (HSO4−)(NH3) (H2O)5 | −12.70 | −34.17 | −2.51 |
ΔH | ΔS | ΔG | |
---|---|---|---|
(H SO4−) +(NH3) ⇔ (HSO4−) (NH3) | −7.22 | −27.90 | 1.10 |
−9.24a | −32.37a | 0.69a | |
(H SO4−) (H2O)+(NH3) ⇔ (H SO4−) (NH3) (H2O) | −9.44 | −32.41 | 1.12 |
(H SO4−) (H2O)2+(NH3) ⇔ (H SO4−) (NH3) (H2O)2 | −7.24 | −28.94 | 1.39 |
(H SO4−) (H2O)3+(NH3) ⇔ (H SO4−) (NH3) (H2O)3 | −9.46 | −33.86 | 0.64 |
(H SO4−) (H2O)4+(NH3) ⇔ (H SO4−) (NH3) (H2O)4 | −9.44 | −36.47 | 1.43 |
(H SO4−) (H2O)5+(NH3) ⇔ (H SO4−) (NH3) (H2O)5 | −9.07 | −31.42 | 0.30 |
Reaction | ΔH | ΔS | ΔG |
---|---|---|---|
(HSO4−)(H2SO4) (NH3) +H2O ⇔ (HSO4−)(H2SO4) (NH3) (H2O)1 | −8.83 | −23.9 | −1.7 |
(HSO4−)(H2SO4) +H2O ⇔ (HSO4−)(H2SO4)(H2O)1 | −8.2a | −0.6a | |
(HSO4−) (NH3) +(H2SO4) ⇔ (HSO4−)(H2SO4) (NH3) | −46.58 | −42.65 | −33.86 |
(HSO4−) +(H2SO4) ⇔ (HSO4−)(H2SO4) | −45.70a | −32.70a | |
(HSO4−) (NH3) (H2O)1 +(H2SO4) ⇔ (HSO4−)(H2SO4) (NH3) (H2O)1 | −39.61 | −31.02 | −30.37 |
(HSO4−) (H2O)1 +(H2SO4) ⇔ (HSO4−)(H2SO4) (H2O)1 | −40.30a | −28.1a | |
(HSO4−)(H2SO4) (H2O)0 +NH3 ⇔ (HSO4−)(H2SO4) (H2O)0(NH3) | −8.08 | −27.01 | −0.02 |
(HSO4−)(H2SO4) (H2O)1 +NH3 ⇔ (HSO4−)(H2SO4) (H2O)1(NH3) | −8.75 | −25.59 | −1.12 |
© 2008 by MDPI This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nadykto, A.B.; Yu, F.; Herb, J. Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO4-. Int. J. Mol. Sci. 2008, 9, 2184-2193. https://doi.org/10.3390/ijms9112184
Nadykto AB, Yu F, Herb J. Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO4-. International Journal of Molecular Sciences. 2008; 9(11):2184-2193. https://doi.org/10.3390/ijms9112184
Chicago/Turabian StyleNadykto, Alexey B., Fangqun Yu, and Jason Herb. 2008. "Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO4-" International Journal of Molecular Sciences 9, no. 11: 2184-2193. https://doi.org/10.3390/ijms9112184
APA StyleNadykto, A. B., Yu, F., & Herb, J. (2008). Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO4-. International Journal of Molecular Sciences, 9(11), 2184-2193. https://doi.org/10.3390/ijms9112184