3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1 Structure-radical scavenging activity relationship
2.2 3D-QSAR modeling
3. Conclusions
4. Experimental Section
4.1 Structures and Biological data
4.2 Molecular structure generation
4.3 Structural alignments
4.4 Molecular field analysis (MFA)
Acknowledgements
References and Notes
- Rochelle, LG; Fischer, BM; Adler, KB. Concurrent Production of Reactive Oxygen and Nitrogen Species by Airway Epithelial Cells In Vitro. Free. Rad. Biol. Med. 1998, 24, 863–868. [Google Scholar]
- Dhanasekaran, A; Kotamraju, S; Karunakaran, C; Kalivendi, SV; Thomas, S; Joseph, J; Kalyanaraman, B. Mitochondria Superoxide Dismutase Mimetic Inhibits Peroxide-Induced Oxidative Damage and Apoptosis: Role of Mitochondrial Superoxide. Free. Rad. Biol. Med. 2005, 39, 567–583. [Google Scholar]
- Tappel, A. Heme of Consumed Red Meat Can Act as a Catalyst of Oxidative Damage and Could Initiate Colon, Breast and Prostate Cancers, Heart Disease and Other Disease. Med. Hypotheses 2007, 68, 562–564. [Google Scholar]
- Choi, J; Malakowsky, CA; Talent, JM; Conrad, CC; Gracy, RW. Identification of Oxidized Plasma Proteins in Alzheimer’s Disease. Biochem. Biophys. Res. Commun. 2002, 293, 1566–1570. [Google Scholar]
- Irie, M; Miyata, M; Kasai, H. Depression and Possible Cancer Risk due to Oxidative DNA Damage. J. Psychiatr. Res. 2005, 39, 553–560. [Google Scholar]
- Berlett, BS; Stadtman, ER. Protein Oxidation in Aging, Disease, and Oxidative Stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar]
- Galati, G; O’Brien, PJ. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free. Radl. Biol. Med. 2004, 37, 287–303. [Google Scholar]
- Ungwitayatorn, J; Samee, W; Pimthon, J. 3D-QSAR Studies on Chromone Derivatives as HIV-1 Protease Inhibitors. J. Mol. Struct. 2004, 689, 99–106. [Google Scholar]
- Nakatsuka, T; Tomimori, Y; Fukuda, Y; Nukaya, H. First Total Synthesis of Structurally Unigue Flavonoids and Their Strong Anti-inflammatory Effect. Bioor. Med. Chem. Lett. 2004, 14, 3201–3203. [Google Scholar]
- Teixeira, S; Siquet, C; Alves, C; Boal, I; Marques, P; Borges, F; Lima, JLFC; Reis, S. Structure-Property Studies on the Antioxidant Activity of Flavonoids Present in Diet. Free. Rad. Biol. Med. 2005, 39, 1099–1108. [Google Scholar]
- Ji, HF; Zhang, HY. Theoretical Evaluation of Flavonoids as Multipotent Agents to Combat Alzheimer’s Disease. J. Mol. Struct: THEOCHEM 2006, 767, 3–9. [Google Scholar]
- Smith, JB; Cusumuno, JC; Babbs, CF. Quantitative Effects of Iron Chelators on Hydroxyl Radical Production by the Superoxide-Driven Fenton Reaction. Free. Rad. Res. Commun. 1990, 8, 101–106. [Google Scholar]
- Chen, ZY; Chan, PT; Ho, KY; Fung, KP; Wang, J. Antioxidant Activity of Flavonoids is Governed by Number and Location of Their Aromatic Hydroxyl Groups. Chem. Phys. Lipids 1996, 79, 157–163. [Google Scholar]
- Van Acker, SABE; Van Den Berg, DJ; Tromp, MNJL; Griffioen, DH; Van Bennekom, WP; Van Der Vijgh, WJF; Bast, A. Structural Aspects of Antioxidant Activity of Flavonoids. Free. Rad. Biol. Med. 1996, 20, 331–342. [Google Scholar]
- Lien, EJ; Ren, S; Bui, HH; Wang, R. Quantitative Structure-Activity Relationship Analysis of Phenolic Antioxidants. Free. Rad. Biol. Med. 1999, 14, 285–294. [Google Scholar]
- Samee, W; Sae-Lee, N; Ungwitayatorn, J. Structure-Radical Scavenging Activity Relationships of the Synthesized Chromone Derivatives. SWU. J. Pharm. Sci. 2004, 9, 36–42. [Google Scholar]
- Khlebnikov, AI; Schepetkin, IA; Domina, NG; Kirpotina, LN; Quinn, MT. Improved Quantitative Structure-Activity Relationship Modles to Predict Antioxidant Activity of Flavonoids in Chemical, Enzymatic, and Cellular Systems. Bioor. Med. Chem. 2007, 15, 1749–1770. [Google Scholar]
- Cheng, Z; Ren, J; Li, Y; Chang, W; Chen, Z. Study on the Multiple Mechanisms Underlying the Reaction Between Hydroxyl Radical and Phenolic Compounds by Quantitative Structure and Activity Relationship. Bioor. Med. Chem. 2002, 10, 4067–4073. [Google Scholar]
- Gupta, S; Matthew, S; Abreu, PM; Aires-de-Sousa, J. QSAR Analysis of Phenolic Antioxidants using MOLMAP Descriptors of Local Properties. Bioor. Med. Chem. 2006, 14, 1199–1206. [Google Scholar]
- Lemańska, K; Szymusiak, H; Tyrakowska, B; Zieliński, R; Soffers, AEMF; Rietjens, IMCM. The Influence of pH on Antioxidant Properties and the Mechanism of Antioxidant Action of Hydroxyflavones. Free. Rad. Biol. Med. 2001, 7, 869–881. [Google Scholar]
- Farkas, O; Jakus, J; Héberger, K. Quantitative Structure-Activity Relationship Analysis of Flavonoid Compounds. Molecules 2004, 9, 1079–1088. [Google Scholar]
- Reis, M; Lobato, B; Lameira, J; Santos, AS; Alves, CN. A Theoretical Study of Phenolic Compounds with Antioxidant Properties. Eur. J. Med. Chem. 2007, 42, 440–446. [Google Scholar]
- Hopfinger, AJ; Tokarsi, JS. In; Practical Applications of Computer-Aided Drug Design; Chsrifson, PS, Ed.; Maecel dekker Inc: New York, 1997; pp. 105–163. [Google Scholar]
- Seyoum, A; Asres, K; El-Fiky, FK. Structure-Radical Scavenging Activity Relationships of Flavonoids. Phytochemistry 2006, 67, 2058–2070. [Google Scholar]
- Ungwitayatorn, J; Wiwat, C; Samee, W. Synthesis and Evaluation of Chromone Derivatives as Potential HIV-1 Protease Inhibitors. Thai. J. Pharm. Sci. 2000, 24, 155–164. [Google Scholar]
- QUANTA 4.0 Manual (1994). Molecular Simulations: Cambridge, UK.
Cpd | R2 | R3 | R5 | R7 | R8 | EC50 (μM) | log EC50 | Residuals | |
---|---|---|---|---|---|---|---|---|---|
Actual | Calculated | ||||||||
1 | Phenyl | H | H | H | OH | 96.18 | 1.983 | 2.046 | 0.063 |
2 | Phenyl | H | H | OH | H | 125.62 | 2.099 | 2.053 | 0.046 |
3 | Benzyl | H | H | OH | H | 125.09 | 2.097 | 1.964 | 0.133 |
4 | 4′-(NO2)Phenyl | H | H | OH | H | 101.82 | 2.008 | 1.888 | 0.120 |
5 | 3′-(CF3)-Phenyl | H | H | OH | H | 93.37 | 1.970 | 2.315 | −0.345 |
6 | 4′-(F)-Phenyl | H | H | OH | H | 113.22 | 2.054 | 2.172 | −0.118 |
7 | 3′,5′-(diNO2)-Phenyl | H | H | OH | H | 87.45 | 1.942 | 1.962 | −0.020 |
8 | 3′-(Cl)-Phenyl | H | H | OH | H | 117.08 | 2.068 | 2.035 | 0.034 |
9 | 4′-(t-butyl)-Phenyl | H | H | OH | H | 104.56 | 2.019 | 2.064 | −0.045 |
10 | Phenyl | CH3 | H | OH | H | 124.19 | 2.094 | 1.780 | 0.314 |
11 | Benzyl | CH3 | H | OH | H | 123.47 | 2.092 | 2.074 | 0.018 |
12 | 4′-(NO2)-Phenyl | 4″-(NO2)-Benzoyl | H | OH | H | 59.30 | 1.773 | 1.600 | 0.173 |
13 | 3′-(CF3)-Phenyl | 3″-(CF3)-Benzoyl | H | OH | H | 54.32 | 1.735 | 1.637 | 0.098 |
14 | 4′-(F)-Phenyl | 4″-(F)-Benzoyl | H | OH | H | 72.53 | 1.860 | 1.709 | 0.151 |
15 | 3′,4′-(diF)-Phenyl | 3″,4″-(diF)-Benzoyl | H | OH | H | 63.00 | 1.799 | 1.710 | 0.089 |
16 | 4′-(OCH3)-Phenyl | 4″-(OCH3)-Benzoyl | H | OH | H | 70.80 | 1.850 | 2.047 | −0.197 |
17 | 3′-(CF3)-Phenyl | H | OH | OH | H | 85.46 | 1.932 | 1.806 | 0.126 |
18 | 4′-(F)-Phenyl | H | OH | OH | H | 102.21 | 2.010 | 2.043 | −0.034 |
19 | 3′,4′-(diF)-Phenyl | H | OH | OH | H | 98.53 | 1.994 | 2.005 | −0.016 |
20 | 4′-(t-butyl)-Phenyl | H | OH | OH | H | 87.36 | 1.941 | 2.002 | −0.061 |
21 | 3′-(Cl)Phenyl | H | OH | OH | H | 104.30 | 2.018 | 2.014 | 0.004 |
22 | 3′,4′-(diCl)-Phenyl | H | OH | OH | H | 90.19 | 1.955 | 1.823 | 0.132 |
23 | 4′-(OCH3)-Phenyl | H | OH | OH | H | 109.37 | 2.039 | 1.999 | 0.040 |
24 | 3′-(OCH3)-Phenyl | H | OH | OH | H | 111.62 | 2.048 | 2.040 | 0.008 |
25 | 3′,5′-(diNO2)-Phenyl | H | OH | OH | H | 79.74 | 1.902 | 1.766 | 0.136 |
26 | 4′-(NO2)-Phenyl | 4″-(NO2)-Benzoyl | OH | OH | H | 57.54 | 1.756 | 1.860 | −0.104 |
27 | Phenyl | H | H | OH | OH | 31.89 | 1.504 | 1.803 | −0.300 |
28 | Benzyl | H | H | OH | OH | 38.12 | 1.581 | 1.615 | −0.034 |
29 | 3′-(CF3)-Phenyl | 3″-(CF3)-Benzoyl | H | OH | OH | 2.58 | 0.417 | 0.589 | −0.177 |
30 | 4′-(F)-Phenyl | 4″-(F)-Benzoyl | H | OH | OH | 3.93 | 0.594 | 0.707 | −0.113 |
Cpd | R2 | R3 | R5 | R7 | R8 | EC50 (μM) | log EC50 | Residuals | |
---|---|---|---|---|---|---|---|---|---|
Actual | Calculated | ||||||||
31 | CH3 | H | H | OH | H | 182.77 | 2.262 | 2.324 | −0.062 |
32 | 3′,4′-(diCl)-Phenyl | H | H | OH | H | 100.22 | 2.001 | 1.850 | 0.151 |
33 | 4′-(NO2)-Phenyl | H | H | OH | H | 90.43 | 1.956 | 1.856 | 0.100 |
34 | CH3 | H | H | OH | OH | 41.25 | 1.616 | 2.084 | −0.468 |
35 | 3′-(OCH3)-Phenyl | 3″-(OCH3)-Benzoyl | H | OH | H | 70.31 | 1.847 | 2.139 | −0.292 |
36* | 4′-(NO2)-Phenyl | 4″-(NO2)-Benzoyl | H | OH | OH | 3.37 | 0.528 | 1.475 | 0.947 |
Cpd | SMILESes form of structures |
---|---|
1 | [H]/C2=C(/Oc1c(O[H])c([H])c([H])c([H])c1C2=O)c3c([H])c([H])c([H])c([H])c3[H] |
2 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c([H])c([H])c3[H] |
3 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)C([H])([H])c3c([H])c([H])c([H])c([H])c3[H] |
4 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c(N(=O)=O)c([H])c3[H] |
5 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c([H])c(c3[H])C([F])([F])[F] |
6 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c([F])c([H])c3[H] |
7 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c(N(=O)=O)c([H])c(N(=O)=O)c3[H] |
8 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c([H])c([Cl])c3[H] |
9 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c(c([H])c3[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] |
10 | O=C1C(=C(Oc2c([H])c(O[H])c([H])c([H])c12)c3c([H])c([H])c([H])c([H])c3[H])C([H])([H])[H] |
11 | O=C1C(=C(Oc2c([H])c(O[H])c([H])c([H])c12)C([H])([H])c3c([H])c([H])c([H])c([H])c3[H])C([H])([H])[H] |
12 | O=C2C(C(=O)c1c([H])c([H])c(N(=O)=O)c([H])c1[H])=C(Oc3c([H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c(N(=O)=O)c([H])c4[H] |
13 | O=C2C(C(=O)c1c([H])c(c([H])c([H])c1[H])C([F])([F])[F])=C(Oc3c([H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c([H])c(c4[H])C([F])([F])[F] |
14 | O=C2C(C(=O)c1c([H])c([H])c([F])c([H])c1[H])=C(Oc3c([H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c([F])c([H])c4[H] |
15 | O=C2C(C(=O)c1c([H])c([F])c([F])c([H])c1[H])=C(Oc3c([H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c([F])c([F])c4[H] |
16 | O=C2C(C(=O)c1c([H])c([H])c(OC([H])([H])[H])c([H])c1[H])=C(Oc3c([H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c(OC([H])([H])[H])c([H])c4[H] |
17 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c([H])c(c3[H])C([F])([F])[F] |
18 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c([F])c([H])c3[H] |
19 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c([F])c([F])c3[H] |
20 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c(c([H])c3[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] |
21 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c([H])c([Cl])c3[H] |
22 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c([Cl])c([Cl])c3[H] |
23 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c(OC([H])([H])[H])c([H])c3[H] |
24 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c(OC([H])([H])[H])c([H])c([H])c3[H] |
25 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c(N(=O)=O)c([H])c(N(=O)=O)c3[H] |
26 | O=C2C(C(=O)c1c([H])c([H])c(N(=O)=O)c([H])c1[H])=C(Oc3c([H])c(O[H])c([H])c(O[H])c23)c4c([H])c([H])c(N(=O)=O)c([H])c4[H] |
27 | [H]/C2=C(/Oc1c(O[H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c([H])c([H])c3[H] |
28 | [H]/C2=C(/Oc1c(O[H])c(O[H])c([H])c([H])c1C2=O)C([H])([H])c3c([H])c([H])c([H])c([H])c3[H] |
29 | O=C2C(C(=O)c1c([H])c(c([H])c([H])c1[H])C([F])([F])[F])=C(Oc3c(O[H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c([H])c(c4[H])C([F])([F])[F] |
30 | O=C2C(C(=O)c1c([H])c([H])c([F])c([H])c1[H])=C(Oc3c(O[H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c([F])c([H])c4[H] |
31 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)C([H])([H])[H] |
32 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c([H])c1C2=O)c3c([H])c([H])c([Cl])c([Cl])c3[H] |
33 | [H]/C2=C(/Oc1c([H])c(O[H])c([H])c(O[H])c1C2=O)c3c([H])c([H])c(N(=O)=O)c([H])c3[H] |
34 | [H]/C2=C(/Oc1c(O[H])c(O[H])c([H])c([H])c1C2=O)C([H])([H])[H] |
35 | O=C2C(C(=O)c1c([H])c(OC([H])([H])[H])c([H])c([H])c1[H])=C(Oc3c([H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c([H])c(OC([H])([H])[H])c4[H] |
36 | O=C2C(C(=O)c1c([H])c([H])c(N(=O)=O)c([H])c1[H])=C(Oc3c(O[H])c(O[H])c([H])c([H])c23)c4c([H])c([H])c(N(=O)=O)c([H])c4[H] |
Share and Cite
Samee, W.; Nunthanavanit, P.; Ungwitayatorn, J. 3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis. Int. J. Mol. Sci. 2008, 9, 235-246. https://doi.org/10.3390/ijms9030235
Samee W, Nunthanavanit P, Ungwitayatorn J. 3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis. International Journal of Molecular Sciences. 2008; 9(3):235-246. https://doi.org/10.3390/ijms9030235
Chicago/Turabian StyleSamee, Weerasak, Patcharawee Nunthanavanit, and Jiraporn Ungwitayatorn. 2008. "3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis" International Journal of Molecular Sciences 9, no. 3: 235-246. https://doi.org/10.3390/ijms9030235
APA StyleSamee, W., Nunthanavanit, P., & Ungwitayatorn, J. (2008). 3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis. International Journal of Molecular Sciences, 9(3), 235-246. https://doi.org/10.3390/ijms9030235