Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussions
4. Comparison with Experimental HgA Data
5. Chemical Relevance of Results
6. Conclusions
Acknowledgment
References and Notes
- Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, USA, 1960.
- Coulson, CA. Valence; Clarendon Press: Oxford, UK, 1962.
- Murrell, JN; Kettle, SFA; Tedder, SFA. Valence Theory; John Wiley: New York, NY, USA, 1965.
- Deb, BM (Ed.) The Force Concept in Chemistry; Van Nostrand Reinhold Company: New York, NY, USA, 1981.
- Coppens, P; Hall, MB (Eds.) Electron Distributions and the Chemical Bond; Plenum Press: New York, NY, USA, 1981.
- Bitter, T; Ruedenberg, K; Schwarz, WHE. Toward a physical understanding of electron-sharing two-center bonds. I. General aspects. J. Comp. Chem. 2007, 28, 411–422.
- Ruedenberg, K; Schmidt, MW. Why does electron sharing lead to covalent bonding? A variational analysis. J. Comp. Chem. 2007, 28, 391–410.
- Ruedenberg, K. Physical nature of chemical bond. Rev. Mod. Phys. 1962, 34, 326–376.
- Bader, FFW. Atoms in Molecules - A Quantum Theory; Clarendon Press: Oxford, UK, 1995; Volume 22.
- Cremer, D; Kraka, E. A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy, in Conceptual Approaches in Quantum Chemistry - Models and Applications. Croatica Chem. Acta 1984, 57, 1259–1281.
- Kraka, E; Cremer, D. Chemical Implication of Local Features of the Electron Density Distribution, in Theoretical Models of Chemical Bonding; Springer: Heidelberg, Germany, 1990.
- Dirac, PAM. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1958.
- Frenking, G; Shaik, S (Eds.) 90 Years of Chemical Bonding, Special Issue. J. Comp. Chem. 2007, 28, 1–466.
- Periodic table taken from http://www.webelements.com/.
- Herman, F; Skillman, S. Atomic Structure Calculations; Prentice-Hall, Englewood Cliffs: New York, NY, USA, 1963.
- Sing, PP. Relativistic effects in mercury: Atom, cluster, and bulk. Phys. Rev. B 1994, 49, 4954–4958.
- Moore, CE. Atomic Energy Levels; NSRDS-NBS 35 ~U.S. GPO: Washington, D.C., 1971.
- Shepler, BC; Peterson, KA. Mercury Monoxide: A Systematic Investigation of Its Ground Electronic State. J. Phys. Chem. A 2003, 107, 1783–1787.
- Thiel, L; Hotop, H; Meyer, W. Ground-state potential energy curves of LiHg, NaHg, and KHg revisited. J. Chem. Phys. 2003, 119, 9008–9020.
- Steckel, JA. Ab initio modelling of neutral and cationic Hg–benzene complexes. In Chem. Phys. Lett.; 2005; Volume 409, pp. 322–330, 1962.
- Kraka, E; Filatov, M; Cremer, D. Phys. Chem. Chem. Phys. submitted and references cited therein.
- Huber, KP; Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, NY, USA, 1979.
- Filatov, M; Cremer, D. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian – Formulation and applications. J. Chem. Phys. 2005, 122, 044104–044108.
- Becke, AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- Becke, AD. Density-functional exchange-energy approximation with correct asymptotic-behavior. In Phys. Rev. A; 1988; Volume 38, pp. 3098–3100.
- Lee, C; Yang, W; Parr, RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
- Dyall, KG. Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation. J. Chem. Phys. 1997, 106, 9618–9626.
- Filatov, M; Cremer, D. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory. J. Chem. Phys. 2005, 122, 064104–064108.
- Filatov, M; Dyall, KG. On convergence of the normalized elimination of the small component (NESC) method. Theoret. Chem. Acc. 2007, 117, 338.
- Raghavachari, K; Trucks, GW; Pople, JA; Head-Gordon, M. A 5th-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483.
- Dyall, KG. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf-Hg. Theoret. Chem. Acc. 2004, 5–6, 403–409.
- Boys, SF; Bernardi, F. Calculation of small molecular interactions by differences of separate total energies - some procedures with reduced errors. Mol. Phys. 1970, 19, 553–561.
- Dunning, TH, Jr. Gaussian-basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.Woon, DE; Dunning, TH, Jr. Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371.Woon, DE; Dunning, TH, Jr. Gaussian-basis sets for use in correlated molecular calculations. 4. Calculation of static electrical response properties. J. Chem. Phys 1994, 100, 2975–2988.Wilson, AK; Woon, DE; Peterson, KA; Dunning, TH, Jr. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys. 1999, 110, 7667–7676.
- Blaudeau, JP; McGrath, MP; Curtiss, LA. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 1997, 107, 5016–5021.
- Reed, AE; Curtiss, LA; Weinhold, E. 1988, 88, 899–926.
- Cremer, D; Kraka, E. Chemical Bonds without Bonding Electron Density. Angew. Chem. Int. Ed. Engl. 1984, 23, 627–628.
- Kraka, E; Gräfenstein, J; Filatov, M; Joo, H; Izotov, D; Gauss, J; He, Y; Wu, A; Polo, V; Olsson, L; Konkoli, Z; He, Z; Cremer, D. COLOGNE08; Stockton, CA; University of Pacific, 2008.
- Gaussian 03, Revision C.02; Frisch, MJ; Trucks, GW; Schlegel, HB; Scuseria, GE; Robb, MA; Cheeseman, JR; Montgomery, JA, Jr.; Vreven, T; Kudin, KN; Burant, JC; Millam, JM; Iyengar, SS; Tomasi, J; Barone, V; Mennucci, B; Cossi, M; Scalmani, G; Rega, N; Petersson, GA; Nakatsuji, H; Hada, M; Ehara, M; Toyota, K; Fukuda, R; Hasegawa, J; Ishida, M; Nakajima, T; Honda, Y; Kitao, O; Nakai, H; Klene, M; Li, X; Knox, JE; Hratchian, HP; Cross, JB; Bakken, V; Adamo, C; Jaramillo, J; Gomperts, R; Stratmann, RE; Yazyev, O; Austin, AJ; Cammi, R; Pomelli, C; Ochterski, JW; Ayala, PY; Morokuma, K; Voth, GA; Salvador, P; Dannenberg, JJ; Zakrzewski, VG; Dapprich, S; Daniels, AD; Strain, MC; Farkas, O; Malick, DK; Rabuck, AD; Raghavachari, K; Foresman, JB; Ortiz, JV; Cui, Q; Baboul, AG; Clifford, S; Cioslowski, J; Stefanov, BB; Liu, G; Liashenko, A; Piskorz, P; Komaromi, I; Martin, RL; Fox, DJ; Keith, T; Al-Laham, MA; Peng, CY; Nanayakkara, A; Challacombe, M; Gill, PMW; Johnson, B; Chen, W; Wong, MW; Gonzalez, C; Pople, JA. Gaussian, Inc.: Wallingford CT, 2004.
- Lide, DR (Ed.) Handbook of Chemistry and Physics, 72nd Ed.; CRC Press: Boca Raton, USA, 1992.
- Buck, U; Hoppe, HO; Huisken, F; Pauly, H. Intermolecular potentials by the inversion of molecular beam scattering data. IV. Differential cross sections and potentials for LiHg. J. Chem. Phys. 1974, 60, 4925–4929.
- Groblicki, PJ; Bernstein, RB. Atomic-Beam scattering studies on the Li-Hg system: Quantum effects and velocity dependence of the cross sections. J. Chem. Phys. 1965, 42, 2295–2304.
- Rothe, EW; Veneklasen, HL. Glory extrema in total cross sections: Li-Hg. J. Chem. Phys. 1967, 46, 1209–1210.
- Olson, RE. Determination of the Li-Hg intermolecular potential from molecular-beam scattering measurements. J. Chem. Phys. 1968, 49, 4499–4503.
- Gruber, D; Musso, M; Windholz, L; Gleichmann, M; Hess, BA; Fuso, F; Allegrini, M. Study of the LiHg excimer: Blue-green bands. J. Chem. Phys. 1994, 101, 929–936.
- Gruber, D; Li, X. Vibrational constants and long-range potentials of the LiHg (X1/2) ground state. Chem. Phys. Lett. 1995, 240, 42–46.
- Li, X; Pircher, P; Gruber, D; Windholz, L. The LiHg X2Σ+22II3/2 transition: excitation spectrum and rotational analysis of the v” = 0-v’ = 1 band. Chem. Phys. Lett. 1996, 263, 463–470.
- Gruber, D; Li, X; Windholz, L; Gleichmann, M; Hess, BA; Vezmar, I; Pichler, G. The LiHg (22∏3/2-X2Σ+1/2) System. J. Phys. Chem. 1996, 100, 10062–10069.
- Li, X; Vidal, CR; Windholz, L. Rotational Analysis of the LiHg 22∏3/2-X2Σ+1/2 (v’ = 0 v” = 0, 1, 2) Vibronic Bands. J. Mol. Spectrosc. 1999, 198, 94–101.
- Gleichmann, M; Hess, BA. Relativistic all-electron ab initio calculations of ground and excited states of LiHg including spin–orbit effects. J. Chem. Phys. 1994, 101, 9691–9700.
- Buck, U; Pauly, H. Determination of Intermolecular Potentials by the Inversion of Molecular Beam Scattering Data. II. High Resolution Measurements of Differential Scattering Cross Sections and the Inversion of the Data for Na-Hg. J. Chem. Phys. 1971, 54, 1929–1936.
- Buck, U; Kick, M; Pauly, H. Determination of Intermolecular Potentials by the Inversion of Molecular Beam Scattering Data. III. High Resolution Measurements and Potentials for K-Hg and Cs-Hg. J. Chem. Phys. 1972, 56, 3391–3397.
- Buck, U. Elastic Scattering. Adv. Chem. Phys. - Molecular Scattering: Physical and Chemical Applications. 1975, 30, 313–389.
- Buck, U; Köhler, KA; Pauly, H. Measurements of glory scattering of Na-Hg. Z. Phys. 1971, 244, 180–189.
- Czuchaj, E; Rebentrost, F; Stoll, H; Preuss, H. Pseudopotential calculations for the potential energy curves and transition dipole moments of the NaHg system. Chem. Phys. Lett. 1991, 178, 246–252.
- Windholz, L; Musso, M; Pichler, G; Hess, BA. Ultra-violet-laser-induced chemiluminescence of NaCd and NaHg excimers. J. Chem. Phys. 1991, 94, 3366–3370.
- Gruber, D; Domiaty, U; Li, X; Windholz, L; Gleichmann, L; Hess, BA. The NaHg red bands revisited. J. Chem. Phys. 1995, 102, 5174–5180.
- Beck, D; Loesch, HJ. Atom-atom-Streuexperimente - Geschwindigkeitsabhangigkeit einiger totaler Streuquerschnitte. Z. Phys. 1966, 195, 444–451.
- Lackschewitz, U; Maier, J; Pauly, H. Investigation of the K(2S, 2P)–Hg interaction at collision energies between 0.5 and 6 eV. J. Chem. Phys. 1986, 84, 181–191.
- Czuchaj, E; Rebentrost, F; Stoll, H; Preuss, H. Calculation of the potential energies and transition dipole moments of the KHg pair. Chem. Phys. Lett. 1992, 199, 47–54.
- Ohanessian, G; Brusich, MJ; Goddard, WA, III. Theoretical Study of Transition-Metal Hydrides. 5. HfH+ through HgH+, BaH+, and LaH+. J. Am. Chem. Soc. 1990, 112, 7179–7189.
- Kinsey, JS; Anscombe, FR; Lindberg, SE; Southworth, GR. Characterization of the fugitive mercury emissions at a chlor-alkali plant: overall study design. Atmos. Environ. 2004, 38, 633–641, and references therein.
- Mizuno, A; Itami, T; Ferlat, G; San-Miguel, A; Jal, JF. Liquid structure of Rb–Hg alloys studied by neutron diffraction. J. Non-Cryst. Sol. 2007, 353, 3022–3026.
- Mizuno, A; Itami, T; San-Miguel, A; Ferlat, G; Jal, GF; Borowski, M. Local structure in liquid Hg–Rb alloys studied by EXAFS. J. Non-Cryst. Sol 2002, 312–314, 74–79.
- San-Miguel, A; Ferlat, G; Jal, JF; Mizuno, A; Itami, T; Borowski, M. Structure of liquid Hg-Rb alloys: An x-ray absorption study. Phys. Rev. B 2002, 65, 1442031–1442034.
- van der Lugt, W; Geertsma, W. Electron-transport in liquid-metals and alloys. Can. J. Phys. 1987, 65, 326–347.
- Biehl, E; Deiseroth, HJ. Rb5Hg19: A new defect variant of the BaAl4 structure type. Z. Anorg. Allg. Chem. 1999, 625, 389–394.
- Todorov, E; Sevov, SC. Synthesis and structure of the alkali-metal amalgams A3Hg20 (A = Rb, Cs), K3Hg11, Cs5Hg19, and A7H31 (A = K, Rb). J. Solid State Chem. 2000, 149, 419–427.
- Silivi, B; Savin, A. Classification of chemical bonds based on topological analysis of electron locatlized functions. Nature 1994, 371, 683–686.
- Putz, MV. Markovian approach of the electron localization functions. Int. J. Quant. Chem. 2005, 105, 1–11.
Atom (State) | Pauling χ | Allred Rochow χ | IP NESC/CCSD(T) [kcal/mol] | IP exp [kcal/mol] | Atomic, Covalent Radius Å | vdW radius Å | Polarizability α [Å3] |
---|---|---|---|---|---|---|---|
H(2S) | 2.20 | 2.20 | 313.5b | 313.6 | 0.25, 0.37 (1.86) | 1.20 (2.75) | 0.67 |
Li(2S) | 0.98 | 0.97 | 123.2 | 124.3 | 1.45, 1.34 (2.83) | 1.82 (3.37) | 24.3 |
Na (2S) | 0.93 | 1.01 | 115.6 | 118.5 | 1.80, 1.54 (3.03) | 2.27 (3.82) | 23.8 |
K(2S) | 0.82 | 0.91 | 98.5 | 100.1 | 2.20, 1.96 (3.45) | 2.75 (4.30) | 43.4 |
Rb(2S) | 0.82 | 0.89 | 94.6 | 96.3 | 2.35, 2.11 (3.600) | 2.95 (4.50) | 47.3 |
Hg(1S) | 2.00 | 1.44 | 234.2 | 240.7 | 1.50, 1.49 2.98 | 1.55 (3.10) | 5.7 |
Molecule (State) | R(HgA) NESC/B3LYP [Å] | BDE NESC/B3LYP [kcal/mol] | R(HgA) NESC/CCSD(T) [Å] | BDE NESC/CCSD(T) [kcal/mol] | q(Hg) [electron] | Dipole Moment [Debye] | IP [kcal/mol] |
---|---|---|---|---|---|---|---|
HgH (2Σ+) | 1.784 | 11.7 | 1.749 | 10.1 (10.0) | 0.332 | 0.38 | 183.3 |
HgLi (2Σ+) | 2.917 | 4.4 | 3.056 | 3.0 (2.9) | −0.022 | 0.28 | 112.4 |
HgNa (2Σ+) | 3.333 | 3.0 | 3.432 | 2.4 (2.3) | −0.023 | 0.47 | 111.6 |
HgK (2Σ+) | 3.830 | 2.0 | 4.197 | 0.9 (0.8) | −0.042 | 0.58 | 94.4 |
HgRb (2Σ+) | 4.052 | 0.7 | 4.417 | 0.8 (0.7) | −0.030 | 0.64 | 91.1 |
Destab ΔEa | |||||||
HgH+(1Σ+) | 1.606 | 63.2 | 1.597 | 60.9 (60.9) | 0.959 | 0.30 | 50.8, 57.4 |
HgLi+(1Σ+) | 2.674 | 14.9 | 2.709 | 13.8 (13.8) | 0.090 | 9.18 | 10.8, 11.9 |
HgNa+(1Σ+) | 3.031 | 10.1 | 3.097 | 6.3 (6.2) | 0.070 | 10.36 | 3.9, 6.9 |
IIgK+(1Σ+) | 3.521 | 5.2 | 3.551 | 5.1 (5.0) | 0.029 | 11.54 | 4.1, 5.7 |
HgRb+(1Σ+) | 3.726 | 3.3 | 3.735 | 4.4 (4.4) | 0.021 | 10.31 | 3.6, 5.2 |
Molecule | Bond density ρ(rc) [e/Å3] | Energy density H(rc) [hartree/Å3] | Position of rc Δ(Hg) [%] | Atomic Charge Q(Hg) [melectron] |
---|---|---|---|---|
HgH (2Σ+) | 0.681 | −0.331 | −34.8 | 387 |
HgLi (2Σ+) | 0.069 | 0.004 | 37.7 | −306 |
HgNa (2Σ+) | 0.053 | 0.002 | 22.9 | −218 |
HgK (2Σ+) | 0.037 | 0.002 | 10.7 | −158 |
HgRb (2Σ+) | 0.033 | 0.002 | 5.9 | −138 |
HgH+ (1Σ+) | 1.004 | −0.751 | −42.2 | 786 |
HgLi+ (1Σ+) | 0.099 | 0.006 | 36.4 | 43 |
HgNa+ (1Σ+) | 0.074 | 0.011 | 22.9 | 38 |
HgK+ (1Σ+) | 0.053 | 0.006 | 10.7 | 33 |
HgRb+ (1Σ+) | 0.048 | 0.004 | 6.6 | 30 |
Molecule | Exp. BDH(298) [kcal/mol] | NESC/CCSD(T) BDH(298) [kcal/mol] | NESC/B3LYP Frequncy [cm−1] |
---|---|---|---|
HgH (2Σ+) | 9.5 | 9.2 | 1245 |
HgLi (2Σ+) | 3.3 | 3.3 | 167 |
HgNa (2Σ+) | 2.2 | 2.7 | 72 |
HgK (2Σ+) | 1.97±0.05 | 1.2 | 47 |
HgRb (2Σ+) | 2.0 | 1.1 | 32 |
HgH+ (1Σ+) | 50 – 69 | 58.9 | 1997 |
HgLi+ (1Σ+) | 14.0 | 262 | |
HgNa+ (1Σ+) | 6.6 | 123 | |
HgK+ (1Σ+) | 5.4 | 67 | |
HgRb+ (1Σ+) | 4.7 | 45 |
Share and Cite
Kraka, E.; Cremer, D. Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes. Int. J. Mol. Sci. 2008, 9, 926-942. https://doi.org/10.3390/ijms9060926
Kraka E, Cremer D. Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes. International Journal of Molecular Sciences. 2008; 9(6):926-942. https://doi.org/10.3390/ijms9060926
Chicago/Turabian StyleKraka, Elfi, and Dieter Cremer. 2008. "Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes" International Journal of Molecular Sciences 9, no. 6: 926-942. https://doi.org/10.3390/ijms9060926
APA StyleKraka, E., & Cremer, D. (2008). Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes. International Journal of Molecular Sciences, 9(6), 926-942. https://doi.org/10.3390/ijms9060926