(E)-3-[3-(4-Morpholinophenyl)acryloyl]-2H-chromen-2-one
Abstract
:1. Introduction
2. Results and Dicussion
3. Materials and Methods
3.1. General
3.2. Synthesis of 3-Acetylcoumarin 3
3.3. Synthesis of the Title Compound 5
3.4. Evaluation of Anticancer Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Appendino, G.; Mercalli, E.; Fuzzati, N.; Arnoldi, L.; Stavri, M.; Gibbons, S.; Ballero, M.; Maxia, A. Antimycobacterial Coumarins from the Sardinian Giant Fennel (Ferula communis). J. Nat. Prod. 2004, 67, 2108–2110. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Liu, L.; Xue, H.; Li, L.; Han, C.; Wang, L.; Chen, Z.; Liu, G. Chemical Library and Structure-Activity Relationships of 11-Demethyl-12 oxo Calanolide A Analogues as Anti-HIV-1 Agents. J. Med. Chem. 2008, 51, 1432–1446. [Google Scholar] [CrossRef] [PubMed]
- Hoult, J.R.S.; Paya, M. Pharmacological and Biochemical Actions of Simple Coumarins: Natural Products with Therapeutic Potential. Gen. Pharmacl. 1996, 27, 713–722. [Google Scholar] [CrossRef]
- Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An Update on Cytotoxic and Chemoprotective Properties. Curr. Med. Chem. 2005, 12, 483–499. [Google Scholar] [CrossRef]
- Liu, M.; Wilairat, P.; Go, M.-L. Antimalarial Alkoxylated and Hydroxylated Chalcones: Structure-Activity Relationship Analysis. J. Med. Chem. 2001, 44, 4443–4452. [Google Scholar] [CrossRef] [PubMed]
- Suwito, H.; Jumina, M.; Pudjiastuti, P.; Fanani, M.Z.; Kimata-Ariga, Y.; Katahira, R.; Kawakami, T.; Fujiwara, T.; Hase, Y.; Mohd Sirat, H.; et al. Design and Synthesis of Chalcone derivatives as Inhibitors of the Ferredoxin-Ferredoxin-NADP+ Reductase Interaction of Plasmodium falciparum: Pursuing New Antimalarial Agents. Molecules 2014, 19, 21473–21288. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.F.; Boesen, T.; Larsen, M.; Kristian, S.; Kromann, H. Antibacterial Chalcones—Bioisosteric Replacement of the 4′-hydroxy Group. Bioorg. Med. Chem. 2004, 12, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Suwito, H.; Krsitanti, A.N.; Hayati, S.; Dewi, S.R.; Amalina, I.; Puspaningsih, N.N.T. Antimicrobial Activities and In silico Analysis of Methoxy Amino Chalcone Derivatives. Procedia Chem. 2016, 18, 103–111. [Google Scholar] [CrossRef]
- Su, Y.-K.; Huang, W.-C.; Lee, W.-H.; Bamodu, O.A.; Zucha, M.A.; Astuti, I.; Suwito, H.; Yeh, C.-T.; Lin, C.-M. Methoxyphenyl Chalcone Sensitizes Aggresive epithelial Cancer to Cisplatin Through Apoptosis Induction and Cancer Stem Cell eradication. Tumor Biol. 2017, 39, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kurt, B.Z.; Kandas, N.O.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and biological evaluation of novel coumrine-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem. 2017. [CrossRef]
- Rowatt, B.; Herlihy, S.; Davidson, R. Ketocoumarins as Photoinitiators and Photosensitizers in Inks. Eur. Pat. Appl. EP2870147A1, 27 July 2012. Available online: https://patents.google.com/patent/EP2870147A1 (accessed on 23 October 2018).
- Tabata, K.; Motani, K.; Takayanagi, N.; Nishimura, R.; Asami, S.; Kimura, Y.; Ukiya, M.; Hasegawa, D.; Akihisa, T.; Suzuki, T. 4-Hydroxyderricin from Angelica keiskei Roots Induces Caspase-dependent Apoptotic Cell Death in HL60 Human Leukemia Cells. Biol. Pharm. Bull. 2005, 28, 1404–1407. [Google Scholar] [CrossRef] [PubMed]
No. Atom | δH (ppm) (mult, J Hz) | δC (ppm) | HMBC |
---|---|---|---|
2 | 159.6 | ||
3 | 125.8 | ||
4 | 8.57 (s, 1H) | 147.8 | C-2, C-3, C-4a, C-5, C-8a, C-9 |
4a | 118.8 | ||
5 | 7.66 (m, 2H) overlapped with H-7 | 130.1 | |
6 | 7.34 (t, J = 7.6 Hz, 1H) | 125.0 | C-4a, C-8 |
7 | 7.66 (m, 2H) overlapped with H-5 | 134.1 | |
8 | 7.39 (d, J = 8.3 Hz, 1H) | 116.8 | C-4a, C-6 |
8a | 155.3 | ||
9 | 186.3 | ||
10 | 7.79 (d, J = 15.6 Hz, 1H) | 120.6 | C-3, C-9, C-12 |
11 | 7.85 (d, J = 15.6 Hz, 1H) | 145.6 | C-9, C-10, C-12, C-13, C-17 |
12 | 125.9 | ||
13, 17 | 7.61 (d, J = 8.9 Hz, 2H) | 130.9 | C-11, C-13, C-14, C-15, C-16, C-17 |
14, 16 | 6.89 (d, J = 8.9 Hz, 2H) | 114.6 | C-12, C-13, C-14, C-16, C-17 |
2′, 6′ | 3.86 (t, J = 5.3 Hz, 4H) | 48.0 | C-2’, C-3’, C-5’, C-6’ |
3′, 5′ | 3.28 (t, J = 5.3 Hz, 4H) | 66.7 | C-2’, C-3’, C-5’, C-6’ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwito, H.; Hardiyanti, H.D.; Ul Haq, K.; Kristanti, A.N.; Khasanah, M. (E)-3-[3-(4-Morpholinophenyl)acryloyl]-2H-chromen-2-one. Molbank 2018, 2018, M1027. https://doi.org/10.3390/M1027
Suwito H, Hardiyanti HD, Ul Haq K, Kristanti AN, Khasanah M. (E)-3-[3-(4-Morpholinophenyl)acryloyl]-2H-chromen-2-one. Molbank. 2018; 2018(4):M1027. https://doi.org/10.3390/M1027
Chicago/Turabian StyleSuwito, Hery, Helda Dwi Hardiyanti, Kautsar Ul Haq, Alfinda Novi Kristanti, and Miratul Khasanah. 2018. "(E)-3-[3-(4-Morpholinophenyl)acryloyl]-2H-chromen-2-one" Molbank 2018, no. 4: M1027. https://doi.org/10.3390/M1027
APA StyleSuwito, H., Hardiyanti, H. D., Ul Haq, K., Kristanti, A. N., & Khasanah, M. (2018). (E)-3-[3-(4-Morpholinophenyl)acryloyl]-2H-chromen-2-one. Molbank, 2018(4), M1027. https://doi.org/10.3390/M1027